
Supporting Design Patterns in a Visual Parallel Data-ow

Programming Environment

Masashi Toyoda Buntarou Shizuki Shin Takahashi Satoshi Matsuoka Etsuya Shibayama

Department of Mathematical and Computing Sciences

Tokyo Institute of Technology

2-12-1 Oookayama Meguro-ku Tokyo 152, JAPAN

ftoyoda,shizuki,shin,matsu,etsuyag@is.titech.ac.jp

Abstract

We propose the notion of visual design pattern

(VDP), which is a visual abstraction representing de-

sign aspects in parallel data-ow programs. VDP

serves as a exible and high-level structure of reuse for

visual parallel programming. We introduced the sup-

port for this notion into the visual parallel program-

ming environment, KLIEG, allowing de�nition and

use of patterns with simple and easy interface.

1 Introduction
Design pattern approaches have been recently pro-

posed to describe recurring design aspects in object-

oriented systems for enhancing software reusability. A

design pattern is a document that describes the com-

bination technique of abstract objects using diagrams,

descriptions, and example programs. Catalogs of de-

sign patterns such as [3] have been published; with

these catalogs, non-expert programmers can use well-

designed combination techniques, and can construct

reusable software by implementing abstract objects

depicted by the patterns.

Design pattern approaches are also important in

visual parallel data-ow programming (VPDP). Our

goal is to formulate the notion of design patterns which

is suitable for VPDP, and to make it easier to de�ne

and reuse design patterns, and also to reuse imple-

mented programs.

It is, however, di�cult to practice pattern-based

design in VPDP, because normal VPDP languages

such as CODE [7] do not support the notion of re-

placeable components. In an object-oriented design

pattern, each abstract object represents a replaceable

component, and a particular behavior of a program

can be determined or modi�ed by replacing compo-

nents in the pattern. Such essential mechanisms to

reuse designs and programs should also be supported

by VPDP languages, but most lack systematic means

to replace their components.

In addition, design information is important not

only for documents, but also for programming envi-

ronments. For object-oriented languages, there are

already tools that support automatic code generation

from design patterns, such as [2]. However, because

they do not maintain design information in the gener-

ated program itself, it is di�cult to learn the intention

of the program design, such as which components can

be modi�ed to change a particular behavior.

Under these observations, we introduce reusable

program structures based on data-ow diagrams, in

which the designer can de�ne replaceable components,

and add design information directly to the structures.

We call these structures visual design patterns (VDP).

We directly support interactive de�nition, reuse, and

even execution of VDPs in a visual parallel data-ow

programming environment.

Here are some important design issues for a VDP

system:

Management of multiple sets of processes A

well-designed VDP will facilitate processes which

can be implemented in several ways. However,

changes to the processes must often be coordi-

nated, i.e., a set of processes must be used at

once. Therefore it is necessary for the VDP sys-

tem to allow management and manipulation of a

set of processes, so that the designer can allow

the user to select from an abstract set of process

implementations such as default, sample, and al-

ternatives.

Focusing support for processes editing

Since most VDPs are comprised of a numerous

number of nested processes, it is important to as-

sist the user on which parts of the given VDP he

should edit on adding/modifying some new func-

tionality. Thus, a VDP system should facilitate a

feature to focus the users editing actions on the

particular part of VDP subject to editing.

Visualizing execution of VDPs In order for the

user to capture the behavior of a VDP, it is impor-

tant for the execution of each instantiated VDP

to be visualized and animated. This will mani-

fest to the user design knowledge that dynamic

and otherwise di�cult to document statically.

Support for consistency checking Consistency

checks on process instantiation and replacement

in VDP are desirable to improve usability. For

example, a user may instantiate a pattern with

a wrong set of processes; by incorporating con-

sistency checking mechanism into a VDP system,

such errors can be checked, or the operation is

invalidated in the �rst place. Furthermore, such

consistency information can be employed to as-

sist in the editing, when there are ambiguities on

which inputs connect to which outputs, etc.

We have implemented a VDP system based on a vi-

sual parallel programming environment KLIEG, which

answers the above issues. KLIEG itself is a visual

parallel data-ow language based on a parallel logic

programming language, moded FGHC [10]. We refer

to a VDP in KLIEG as a KLIEG-VDP. Designers can

de�ne KLIEG-VDPs that retain design information as

patterns, and then users choose a pattern from a cata-

log of KLIEG-VDPs in their programs and implement

customized processes in the pattern. The features of

the KLIEG-VDP are as follows:

� In KLIEG, a KLIEG-VDP is represented as a

data-ow diagram that has some replaceable,

non-instantiated processes called holes. Users can

reuse the topology of the KLIEG-VDP by instan-

tiating the holes with customized processes which

are appropriate for the KLIEG-VDP.

� A hole is allowed to hold multiple processes, one

of which is valid at a given time. This allows

the designer to provide a default implementation,

several alternatives, and sample code for a hole

in the KLIEG-VDP. The user can select an ap-

propriate implementation of the hole from these

alternatives.

� For highlighting replaceable processes, KLIEG-

VDPs support multi-focus �sheye-like viewing.

The designer magni�es the processes which

should be replaced together for changing a partic-

ular behavior, and saves the layout with an ap-

propriate name. The user can easily determine

the replaceable processes by selecting the layout.

master

worker

sub-problems

answers & ready messages

workerworker

Figure 1: Master worker pattern

� To show the dynamic behaviors of processes,

KLIEG provides an execution tracer, which visu-

alizes and animates the execution of the program.

The user can see the behaviors by executing the

sample code.

� KLIEG-VDP system facilitates type checking and

inference algorithm on communication ports for

consistency checking. By checking types, KLIEG

presents only the appropriate processes for a hole

from multiple implementation choices. KLIEG

also links replaced processes as automatically as

possible.

2 Visual Design Patterns on KLIEG
In this section, we describe the details of KLIEG-

VDPs. A KLIEG-VDP is a data-ow network dia-

gram that has holes as parameters and that maintains

the design information described in the previous sec-

tion. Data-ow network diagrams are components of

KLIEG programs, and consist of processes with input

or output ports and links that connect input ports and

output ports. A hole also has ports, and can be in-

stantiated with processes that have at least the ports

of the same type. A network diagram may be con-

structed hierarchically from multiple networks.

In the following, we show an example of KLIEG-

VDP, and then describe how the design information is

maintained in KLIEG-VDPs, and how to de�ne and

reuse them.

2.1 An Example

We show the master-worker pattern, which pro-

vides a simple load balancing scheme that involves a

master process and a collection of worker processes.

Figure 1 illustrates the concept of the master-worker

pattern. The master partitions a problem into sub-

problems and sends them to workers ready to com-

pute. The workers are responsible for computing sub-

problems. A worker returns the solution(s) of a sub-

Figure 2: Master-worker pattern in KLIEG

problem to the master. When a worker completes the

computation of a sub-problem, it noti�es the master

that it is ready to compute again. By providing appro-

priate masters and workers, we can use this pattern for

solving various parallel programming problems, such

as ray-tracing and search problems.

Figure 2 depicts the KLIEG-VDP that represents

the master-worker pattern. The master worker pattern

is a network constructed from two networks, master

and workers, that correspond to the master process

and the collection of worker processes, respectively.

Both master and workers have some holes that repre-

sent processes, which depend on the problem to solve1.

These networks have ports (represented by white

rectangles) to communicate with each other. An ar-

row linking two ports represents a stream that is a

continuous data-ow between the ports. For example,

master has two ports Wks and Ans to communicate

with workers.

The workers is de�ned using a replication network

that replicates processes dynamically, and connects

those processes. The replicated processes in workers

are represented by three holes (recessed rectangles la-

beled worker), and an ellipsis, which abbreviates a set

of processes. Each worker hole has an input port (the

recessed rectangle labeled Probs) and an output port

(the raised rectangle labeled Ans). Each replicated

worker process receives sub-problems from the Probs

port, solves them, and returns answers to the master

via the Ans port.

1Master is shrunken, so the details are hidden.

Figure 3: Detail of master network

A replication network has some special ports that

determine the number of replicated processes and the

topology of the network. For example, the Wks port

in workers is a map port that determines the number

of processes to generate by the number of received el-

ements from the port, and maps each element to each

process. Master (at the bottom-right of Figure 2) is

a merge port that merges the output streams of all

the processes. Besides these ports, we can use broad-

cast ports that broadcast received elements to all the

processes.

In Figure 3, the structure of the master hidden in

Figure 2 is expanded by zooming. The master net-

work is composed of the generator and combiner hole,

and the dispatcher process. Generator simply generates

a stream of sub-problems. Combiner receives answers

from dispatcher and computes the �nal answer. The

dispatcher process is the default implementation of the

dispatcher hole. It receives sub-problems from gener-

ator and messages from workers (ready and answer).

Then it sends the sub-problems to ready workers, and

sends the answers to the combiner.

In addition, we should also mention that KLIEG-

VDPs can be combined hierarchically for construct-

ing large-scale programs from smaller ones. To con-

struct KLIEG-VDPs hierarchically, we merely instan-

tiate a hole with an entire KLIEG-VDP. In fact, mas-

ter worker is constructed in this way, i.e., master worker

has two holes, and these holes are instantiated with

the master and workers networks.

In the following sections, we will show the details

Figure 4: Alternative implementations

of the de�nition and the use of the master worker pat-

tern. De�nition of network diagrams can be easily

performed by normal graph editors, so we will con-

centrate on issues on de�nition and use.

2.2 Management of Multiple Implemen-
tations

The designer can store a hole with multiple imple-

mentations by repeated dragging and dropping icons

of appropriate processes onto the hole. Using this in-

terface, the designer can provide a KLIEG-VDP with

di�erent kinds of implementations:

Sample implementations By executing these im-

plementations on the tracer, the user can under-

stand the behavior of the KLIEG-VDP.

Default implementations The most likely imple-

mentations the user is likely to use.

Alternative implementations The

implementations that serve as the basis of user

customization.

Implementations in a hole are chosen with a dialog

box. Using the dialog box, the user can not only se-

lect an implementation, but also change a particular

speci�cation of an existing program2. We found this

2A well-designed VDP should be able to change its speci�-

cation by replacing implementations in holes.

is easier than dragging an implementation from the

other module every time the user replaces an imple-

mentation.

As an example, we show how to provide multi-

ple implementations for the master-worker pattern to

solve search problems. When solving search prob-

lems with the master-worker pattern, combiner might

be implemented independent of the problem to solve.

Thus we provide two implementations to combiner

(Figure 4). On the top-right of Figure 4, the Imple-

mentations dialog box is shown. The pass answers pro-

cess passes through the answers from dispatcher to the

output, and the count answers counts the number of

answers.

In addition, we can change the treatment of an-

swers from �nding all answers to �nding the �xed

number of answers. This is done by changing the dis-

patcher process to the process that terminates all the

workers when it receives the �xed number of answers

from workers. To perform this, we only add an im-

plementation of a new dispatcher to dispatcher hole.

On the bottom-right of Figure 4, a dialog box shows

the one ans dispatcher process for �nding single an-

swer, and the n ans dispatcher process for �nding n

answers.

Figure 5: Changing layout for modifying behaviors

2.3 Focusing Support for Processes Edit-
ing

The designer can show which processes should be

modi�ed to change a particular behavior of a KLIEG-

VDP by saving a �sheye-viewed layout of the KLIEG-

VDP with an appropriate name. The user can select

a layout by the behavior name and can easily �nd out

which processes should be modi�ed.

Using multi-focus �sheye viewing, we can obtain a

layout in which all related components are magni�ed

in a single view, even if they are separated from each

other on screen. In such a view, we can see the details

of the components and the overview of the network

at the same time. In addition, the editor of KLIEG

animates transition from one layout to another layout,

so that the user is not confused even if the layout

drastically changes.

When the user intends to change a particular be-

havior of a program, the user selects an appropri-

ate layout and replaces the magni�ed processes. The

changes to a KLIEG-VDP in one layout view are re-

ected in other layouts.

We use a zooming algorithm that resembles the

continuous zoom algorithm[1], which supports multi-

focus �sheye viewing of hierarchically-organized net-

works such as KLIEG programs. We cannot use the

continuous zoom algorithm directly, because it lacks

the facility for editing such as avoiding overlapping

of graphical objects during layout modi�cation. Our

zooming algorithm avoids overlapping automatically,

and also supports saving and recovery of layouts.

As an example, we show two layouts of the master-

worker pattern for search problems. One is for chang-

ing the problem to solve, and the other is for changing

the treatment of the answers. Figure 5 depicts two

layouts and a dialog box for changing layouts. The

layout on the left is for changing the problem. To

change the problem, the user must change the gener-

ator and the worker magni�ed in the editor. Another

layout on the right is for changing the treatment of

the answers. Similarly, the treatment of the answers

can be changed by modifying combiner or dispatcher

magni�ed in the editor.

2.4 Visualizing Execution of KLIEG-
VDPs

The user can observe the behaviors of KLIEG-

VDPs by executing a sample program with the tracer.

As an example, we show the sample program that

solves the N-Queens problem using the master worker

pattern, and its execution on the tracer. The program

in Figure 6 was constructed by selecting the layout for

changing the problem (Figure 5), and instantiating the

Figure 7: Executing the N-Queens program on the tracer

Figure 6: Solving N-Queens problem using mas-

ter worker

holes with processes for the N-Queens problem. In the

master network, the ports Size and Depth3 are added

for inputting the search parameter, and the Answer

port is added to output answers.

Figure 7 shows a snapshot of the execution of the

N-Queens program in the tracer. The tracer animates

the transition of the network during the execution,

while maintaining the topology of the pattern in the

program. This is possible because the design infor-

mation of the KLIEG-VDP can be referred from the

runtime system of KLIEG. The tracer can also show

the contents of streams. Thus the user can easily rec-

ognize the KLIEG-VDPs used in the program, and

can observe the behaviors from the animation and the

contents of streams. The tracer also supports �sheye

viewing, so the user can navigate through large-scale

networks using automated zooming of important parts

of the program.

2.5 Checking Consistency Using Types

To further improve the user interface of KLIEG-

VDPs, we employ type checking and inference of ports

of processes. Using type information, KLIEG can re-

strict the possible candidates for a hole, and can con-

nect ports of processes automatically.

3They are singleton ports that receive only one datum

Figure 8: Checking port types of the worker

As an example, Figure 8 shows the situation

where the generator hole has been instantiated with

nqueens gen process that generates sub-problems for

the N-Queens problem. In this case, processes that

have no relevance to the N-Queens problem should

be disabled when the user instantiates the worker

hole or selects the worker process. To detect this,

the port type of Probs of nqueens gen is propagated

to dispatcher and then to the worker holes by the

type inference algorithm, so that processes except for

nqueens worker are disabled in the Implementations di-

alog box (at the bottom-right of Figure 8).

As another example, consider the case the user

replaces dispatcher with another implementation. It

would be impossible to connect ports automatically

without type information, because dispatcher has two

input ports and two output ports, and can be linked

in di�erent ways. In this case, KLIEG automatically

connects the ports correctly if the types of all ports are

detected. In this way, the user does not have to re-

connect each port every time when replacing the pro-

cesses.

To implement these type checkings, we use a con-

straint based type analysis. The base language of

KLIEG is moded FGHC [10], and our analysis tech-

nique is also based on the mode-analysis algorithm of

moded FGHC. We omit the details of the algorithm

for brevity; interested readers are referred to [10].

3 Programming with KLIEG-VDPs

For users, programming using KLIEG-VDPs is sim-

ple and easy. It can be performed using the same in-

terfaces for de�nition, namely dragging and dropping

interface and dialog boxes:

1. Select a necessary KLEG-VDP from a library,

and drag and drop it on to one's program.

2. If a sample code exists, execute the code with the

tracer, and con�rm the behaviors of the KLIEG-

VDP.

3. Select a layout corresponding to the behavior to

be modi�ed from the dialog box.

4. Leave the default implementation for a hole as

is, if it is su�cient. If not, select an appropriate

implementation for each hole from its dialog box.

If there are no appropriate implementations, im-

plement necessary processes for unspeci�ed holes,

and instantiate the holes with the processes using

drag and drop.

5. Add necessary ports and links that are not de�ned

in the KLIEG-VDP.

6. When changing the other behaviors of the pro-

gram, repeat the steps 3 to 5.

7. Execute the program and for change in behavior

go back to step 3.

4 Related Work

There are many visual parallel data-ow program-

ming environments such as CODE[7], Meander[11],

and SAA[6]. There are also environments based on

parallel logic programming languages like Pictorial

Janus[4], and PP[9]. Because these environments lack

the support for VDPs, it is di�cult to replace a set

of components in data-ow diagrams. The user must

manually delete a set of processes, create new pro-

cesses, and link processes appropriately. This is a

tedious and time-consuming task. In KLIEG, holes

can be easily instantiated with dragging and dropping

with automated support for linking ports, etc.

In VISTA[8], processors may have an internal net-

work of processors. In particular, internal processor

called public processor can be replaced by another pro-

cessor with a compatible interface. Although similar

to VDPs, public processors in VISTA are merely re-

placeable, thus the user must search appropriate pro-

cessors from libraries. In KLIEG, a hole can have al-

ternative processes, so the search for processes is un-

necessary. In addition, since VISTA shows only the

list of public processors, it is di�cult to know which

processors need to be changed when multiple proces-

sors should be changed to obtain desired behavior.

Holon/VP[5] uses an object sharing technique to

enhance reusability of program. This technique al-

lows multiple networks sharing the same process as

their components. This is usable for customizing ex-

isting programs by adding functions, but di�cult for

customizing by replacing the functions, which is easy

with KLIEG. Furthermore, we can add functions to

a process by adding another process that implements

the function and intercepts input ports of the process.

5 Conclusion

We have proposed the notion of visual design pat-

terns, which is exible and high-level structure of

reuse, and introduce this notion into the visual paral-

lel programming environment KLIEG. A VDP main-

tains design information through out all programming

stages. Checking consistency improves usability and

reusability of components in visual parallel data-ow

language. In addition, designers and users can per-

form each task using the same simple user interfaces.

In future work, we plan to support interaction di-

agrams and protocol checking on VDPs, to represent

more information of designs.

References

[1] Lyn Bartram, Albert Ho, John Dill, and Frank

Henigman. The Continuous Zoom: A Con-

strained Fisheye Technique for Viewing and Nav-

igating Large Information Space. In Proceedings

of UIST '95, pp. 207{215, November 1995.

[2] F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and

P. S. Yu. Automatic code generation from design

patterns. IBM Systems Journal, Vol. 35, No. 2,

1996. { Object technology.

[3] Erich Gamma, Richard Helm, Ralph Johnson,

and John Vlissides. Design Patterns { Elements

of Reusable Object-Oriented Software. Addison-

Wesley, 1995.

[4] Vijay A. Saraswat Kenneth M. Kahn. Complete

Visualizations of Concurrent Programs and their

Executions. In Proc. 1990 IEEE Workshop on

Visual Languages, October 1990.

[5] Yuichi Koike, Yasuyuki Maeda, and Yoshiyuki

Koseki. Enhancing Iconic Program Reusability

with Object Sharing. In Proc. 1996 IEEE Sym-

posium on Visual Languages, pp. 288{295, 1996.

[6] Keng Ng, Je� Kramer, Je� Magee, and Naranker

Dulay. A Visual Approach to Distributed Pro-

gramming. In A. Zaky and T. Lewis, editors,

Tools and Environments for Parallel and Dis-

tributed Systems, chapter 1. Kluwer Academic

Publishers, February 1996.

[7] P.Newton and J.C.Browne. The CODE 2.0

Graphical Parallel Programming Language. In

Proc. ACM Int. Conf. on Supercomputing, July

1992.

[8] Stefan Schi�er and Joachim Hans Fr�ohlich. Vi-

sual Programing and Software Engineering with

Vista. In Visual Object-Oriented Programming:

Concepts and Environments, chapter 10, pp. 199{

227. Manning Publications Co., 1995.

[9] Jiro Tanaka. Visual Programming System for

Parallel Logic Languages. In The NSF/ICOT

Workshop on Parallel Logic Programming and its

Program Environments, pp. 175{186. the Univer-

sity of Oregon, 1994.

[10] Kazunori Ueda and Morita Masao. Moded Flat

GHC and Its Message-Oriented Implementation

Technique. New Generation Computing, Vol. 13,

No. 1, pp. 3{43, 1994.

[11] Guido Wirtz. Modularization and Process Repli-

cation in a Visual Parallel Programming Lan-

guage. In Proc. 1994 IEEE Symposium on Visual

Languages, pp. 72{79, 1994.

