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Abstract

We describe issues in design of visual languages that
can provide a support for software evolution and lessons
learned from our experience in development of a visual lan-
guage environment KLIEG. In this paper, we put emphasis
on general frameworks for visual syntax, interaction sup-
ports, and aspect visualization. We also describe several
specific techniques and design decisions of KLIEG.

1. Introduction

As its name represents, software is inherently soft. This
very nature is without doubt prerequisite for evolution.
However, solely being soft is not sufficient for successful
evolution. Legacy software cannot evolve not because it is
hard but because it is not comprehensible and thus it is not
modifiable in a favorable direction. Everyone knows that it
is often difficult to design and implement flexible and evolv-
able software, even though evolution is the raison d’être of
software. We certainly need some technologies to fill the
gap between ideals and reality.

Studies of Darwinian evolutions teach us some lessons
of evolutions. First of all, living lives on the earth have
stable structures that are immutable during a series of evo-
lutions. Even though they have astonishing varieties, most
of them have the same genetic coding systems. This means
that their core architecture is incredibly stable and has not
changed for a few billions of years. Some structures are

less stable but still persist over millions of years. Skeletal
structures of animals are such examples. Computer soft-
ware also requires stable structures that will guarantee the
internal consistency in some level. Solely being soft almost
always brings about chaotic results. Another lesson is that
a small change in genotypes can be the cause of a dras-
tic change in phenotypes (e.g., [5]). Software should also
be constructed so that small changes in implementation can
provide new and rich functionality. Changing many por-
tions at a time in a consistent manner is always a hard job.

Figure 1. Software evolution by replacing
components

We assume in this paper that software that can evolve
has its own stable architecture and replaceable components
(Figure 1). Software evolution will proceed by the follow-
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ing manner.

1. recognition of the environmental change,

2. comprehension of software and spotting the compo-
nents to be replaced, and

3. replacement of the components.

Note that our model is hierarchical in the sense that a com-
ponent can have its internal structure consisting of finer
architecture and replaceable components. We have been
concentrating most of our efforts on support of the second
point. Proposing a mechanism or interactive support for the
third point is easy and the first point is rather difficult.

We have been developing a visual language environment
KLIEG[18, 13, 14, 15] that can provide a support for evo-
lution of software in several phases of development cycles.
In this paper we will describe philosophical background in
design of the KLIEG language and also more general issues
and problems in supporting software evolutions by visual-
ization and interaction techniques.

Our discussion in this paper covers visual language syn-
tax, browsing and editing support, the importance of aspect
visualization, and incorporation of designers’ intensions.
We present our general framework based upon hierarchi-
cal visual language syntax and interactive zooming inter-
faces. Our visual syntax is general and expressive enough
for representing programs, designs, and execution in a com-
prehensible manner. Our interaction techniques with zoom-
ing mechanisms provide not only scalable solutions but
also support for visual abstractions. We consider it impor-
tant to provide standard notations with standard interaction
techniques for protecting users’ investment in learning lan-
guages and tools. In addition, in this paper we would like
to shed light on supporting aspects of programs. Aspects
are important in some particular situations but less ubiqui-
tous than language supported abstractions. We describe our
approaches to visualization of ad hoc aspects.

In the following, we begin our discussion with syntax
and presentation issues of (visual) programming languages
in Section 2. We describe the importance of visualization
and interaction techniques for providing and presenting foci
and aspects of software in Section 3. We also discuss a
way to represent extra-linguistic design information such as
designer’s intensions.

2 Syntax and presentation issues

People may consider that syntax and presentation styles
of programming languages are merely a surface issue and
more significant problems are concealed in a deeper level,
e.g., in semantics. However, a presentational structure it-
self is important for human designers and/or programmers.

Suppose for instance that your team members wrote codes
in C or Java with exotic indentations and ciphering names
of identifiers. Even if a computer would perfectly recognize
and execute their codes, you would sooner or later have a
nightmare.

In this section, we describe general syntax and interac-
tion framework of visual languages. As B. Harrison pointed
out in [2], tool skills are significant. It is often easier to
change programming languages than to editors. This is the
very reason why we consider that general interaction frame-
work covering a wide range of visual languages is neces-
sary. Though our background knowledge and experience
heavily depend on design and development of KLIEG, we
believe that our discussion is valid in more general settings
and informative for those people who will design scalable
visual notations or languages.

2.1 Strings, trees, and hyperlinks

In theory, a formal language is a set of (one-dimensional
or linear) strings. This linear representation is useful for
data exchange by computers but is not necessarily appropri-
ate for human to understand programs. For human beings,
more comprehensible representations are necessary.

Looking back to the structured programming era, the
standard programming notation was a two-dimensional
character layout with indentations, in which trees or hier-
archical structures can naturally be represented in a reason-
ably comprehensible manner. As far as data and control
structures are naturally regarded as trees, this presentation
style is effective. Even today this old wisdom is still there.

Everyone knows, however, that today’s object-oriented
software consists of an organized collection of interrelated
objects. Its natural shape is a directed graph and cannot be
reduced to linear strings or trees without loss of comprehen-
sibility. Coping with this trend, in the software engineer-
ing community, UML and other visual notations have been
proposed for representing various aspects of object-oriented
software. An essential advantage of a visual notation is that
it can provide more freedom of layout in 2D or 3D spaces
and is expressive enough to represent relationships among
interrelated objects.

Our language syntax follows this visual line. However,
we do not employ general directed graphs as the basic struc-
tures. Instead, we put more attention on hierarchical struc-
tures with hyperlinks by the following reasons:

• They are expressive. A hyperlink can certainly be a
substitute of a directed edge of a graph. Hierarchical
structures can naturally represent layered abstractions,
which are essential in today’s programming and/or de-
sign languages.

• Hierarchical structures are ubiquitous and thus shall be
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treated with its own worth. Note that they are often the
key to scalable solutions in various domains.

• Hierarchical structures and hyperlinks can be easily
mapped into XML, the standard exchange format in
the foreseeable future.

Summing up, they are not only expressive but also struc-
tured and at least potentially interoperable. Since we know
the limit of human cognitive power, we often sacrifice ex-
pressiveness for order and simplicity. We are also interested
in protection of users’ investment.

2.2 Visual syntax

In the literature, various visualization techniques have
been proposed to depict hierarchical structures on a com-
puter screen. Examples include ConeTree[12], Information
Cube[11], hyperbolic browser[8], the continuous zoom[1],
and so on. Those techniques more or less tackled on the
screen real estate problem. ConeTree depends on the extent
of 3D space and the other on zooming techniques.

Since our visual syntax shall be expressive enough to
represent software design, programs, and execution, we put
strong emphasis on visualizing abstractions. “Exposing ev-
erything if possible” is not our goal. Abstractions are more
related to the notions of hiding and encapsulation. Fortu-
nately, zooming techniques are promising not only for scal-
able visualization but also for representing hiding. That is,
by zooming, while some portions are magnified, the others
are cut down and effectively hidden.

Figure 2. Depicting a hierarchy by nested rect-
angles

After careful consideration, we have followed the con-
tinuous zoom and have employed nested rectangles to rep-
resent a hierarchy (Figure 2). Each rectangle corresponds

to a node in the hierarchy and the parent-child relation is
represented by geometrical inclusion. For instance, in Fig-
ure 2, B has two children B1 and B2 and three siblings A,
C, and D. Hyperlinks would be illustrated as arrows, though
they are omitted in this figure.

Major uses of hierarchies in our problem domain are rep-
resenting:

• syntax trees,

• call graphs,

• composite or aggregate objects, and

• directories.

In any case, a parent node is representative of the sub-
hierarchy consisting of its descendants. This means that
outline editing, in which a sub-hierarchy may be folded
into its root node, is promising. In fact, outline editing has
proven to be useful by many years of experiences, and is
employed by text editors, e.g., Emacs, and word proces-
sors, e.g., MS Word. We consider that nested rectangles
(or circles, triangles, etc.) are most suitable for outlining in
2D spaces. We did not employ single focus zooming tech-
niques including hyperbolic browser and Information Cube
since in outline editing two or more focal points are often
necessary.

2.3 Browsing and layout supports

Again in theory, a language has been considered as a set
of static entities. However, visual languages are interactive.
This is another source of the power. We can incorporate
syntax-directed supports, e.g., those for browsing and edit-
ing, into a language itself. In addition, providing not only
general syntax framework but also general interaction meth-
ods for syntax-directed manipulations, we hope the burden
to change languages are reduced.

Since our target hierarchies are too large to fit in a com-
puter screen, browsing supports are inevitable. In a fo-
cus+context view like ours, browsing in a general sense is
to create a view, in which nodes of interest are magnified,
and possibly to adjust its layout for comprehensibility.

Obviously we need methods to specify the nodes of in-
terest. The following are popular ways to specify the desti-
nation(s) of browsing.

• Navigation to the parent or a child

• Navigation via a hyperlink

• Search or query

The first two are navigation via a link. If the reader is too
familiar with an HTML browser such as Internet Explorer
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or Netscape Navigator, she or he may consider that there are
no differences between those two types of link navigation.
However, they are significantly different in our context.

The most fundamental and important requirement is that
every node be specifiable, either directly or indirectly. Oth-
erwise we would have unreachable nodes. This means that
the target structures should be strongly connected. Thanks
to the hierarchical structures, the first sort of navigation is
sufficient to reach any node. The other two might be con-
sidered as short cuts.

Navigation to the parent is very simple in our visual syn-
tax. As is obvious from Figure 2, whenever the source node
is visible (or sufficiently large), its parent is also visible
(or larger than any one of its children including the source
node). Therefore, we have nothing to do. Navigation to any
ancestor is easy, too. Navigation to a child is also simple. It
is just to magnify a node whose enclosing parent is already
visible.

Navigation via a hyperlink is considerably different. In
general, after navigation, the current focus on the source
node may or may not disappear. Suppose for instance that
a hyperlink from a function call expression to the definition
of the function is created. Upon navigation of the hyperlink
it seems reasonable to keep the focus on the source node
since a user often would like to see both the definition and a
use of a function during editing a program. However, if the
screen is already full of foci, the user may hope to clean up
obsolete ones. With an extremely flexible and expressive
zooming interface like ours, it is often tedious to specify
the foci and their degrees of interest by manually adjusting
layout. Unfortunately, more freedom always means more
responsibility.

In order to alleviate this problem, we proposed a tech-
nique, in which the runtime system manages a three-state
automaton for each node and predicts whether or not a fo-
cus is on the node. This simple predictor is effective partly
because its prediction accuracy for novice users is about
80%[16]. In addition, the accuracy for expert users is al-
most 100%. Any human user can soon learn the behavior
of simple three-state automata perfectly by experience. Mu-
tual understanding between a user and a supportive environ-
ment is often significant.

Keyword search is another means to specify destinations
and popular in text editing. Structured queries specifying
link structures may be useful in visual languages.

2.4 Implementation and applications

We have implemented a zooming library
HyperMochiSheet[16] for building applications that
provide a support for browsing and editing hierarchical
structures with hyperlinks in the visual syntax illustrated as
in Figure 2. The most intriguing feature of this library is

its focus prediction and a support for layout management
mentioned in the previous subsection.

Figure 3. Klieg

On top of HyperMochiSheet, we have developed several
tools. The most noticeable is the KLIEG environment. Fig-
ure 3 is a snapshot of the KLIEG program editor. Each top-
level rectangle represents a module, in which object defini-
tions are included. In this figure, there are five modules of
various display sizes, one on the top left, another on the top
right, two on the bottom, and a thin one right adjacent to the
top left one. It might be difficult to capture the last one.

Each module is naturally regarded as a hierarchy, which
corresponds to a syntax tree of a textual programming lan-
guage. We omit the details of KLIEG visual syntax since
they are irrelevant in this section.

KLIEG is a dataflow visual language and so the arrows in
the figure represent dataflow links, which are implemented
by hyperlinks in our framework. Also a number of invis-
ible hyperlinks are automatically generated, e.g., between
the uses and the definition of each object. Note that an ob-
ject definition in KLIEG corresponds to a class definition of
mainstream object-oriented languages. Objects in our sense
are closed to those in prototype-based languages[9, 19].

One interesting point in representing abstractions by
zooming is that they can be continuous. In contrast, in a tra-
ditional setting, each entity in a hierarchy is either exposed
or hidden. With continuous representations of abstractions,
a property of an analog value can be mapped to an appear-
ance of a node. For instance, in response to a search re-
quest, our directory browser[17] maps the relevance factor
of a node to its display size. For instance, the view in Fig-
ure 4 represents the directory hierarchy of Java 2 SE library
source files, with magnifying every file in the java package
that contains occurrences of the word “EventListener.” This
browser is also implemented on top of HyperMochiSheet.
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Figure 4. A directory browser

In this example, the more a node is promising, the more
it is exposed. On the other side of the coin, less important
nodes may be aggressively cut down. A translucent display
technique[7] may have similar continuous effects by map-
ping the degree of exposure to the degree of transparency.
Without zooming, however, a translucent technique is not
scalable.

3 Aspect visualization

Next to visual syntax and browsing supports, we propose
a general framework for visualization of aspects. Since both
screen sizes and our cognitive abilities are severely limited,
we cannot look at all the details of design, implementation,
or execution at a time, unless the target software is excep-
tionally small. Therefore, for software comprehension, we
need appropriate aspects that are small enough to fit in a
computer screen.

There are various aspects. Some may consist of orga-
nized collections of interrelated objects, methods, variables,
and so on that are scattered among design, implementation,
or execution. Program slicing is an example and the method
definitions of a same method name may be another. A tracer
of Lisp or a functional language often produces information
about the calls and returns of a function. The collection of
the corresponding portions of the call graph is yet another
aspect. An instance of a design pattern[4, 10] can also be re-
garded as an aspect. However, a design pattern is not merely
a collection of syntactic entities. It includes design informa-
tion or designer’s intensions. Visualizing such information
is still a challenge.

3.1 A framework for aspect visualization

Corresponding to various sorts of aspects, there are var-
ious techniques for exploiting and visualizing them. How-
ever, the major issue of this subsection is a general frame-
work for aspect visualization. We do not mention any do-
main specific techniques for exploitation of aspects.

Our visualization framework is based upon the visual
syntax and interaction techniques proposed in the previous
section. We assume that an aspect in this section consists
of nodes in a hierarchy that are possibly scattered to sep-
arate sub-hierarchies. Since in our syntactic framework a
node is usually a unit of language abstraction, an aspect in
this sense is not an abstraction directly supported by the lan-
guage but a collection of interrelated language abstractions.

On the one hand, language abstractions are persistent and
directly supported by language processors and/or environ-
ments. However, they are limited in numbers and sorts. On
the other hand, some aspects are short-lived but very use-
ful in limited situations. The language designer cannot ac-
cept every possible aspect as a built-in abstraction. With
a general framework for manipulating aspects, it should be
possible to visualize an ad hoc aspect as if it were a first-
class abstraction. We should provide an environment that
can cooperate with a user and create and visualize personal
abstractions. This is the ultimate goal of our proposal.

Proposing a concrete solution, we assume that the fol-
lowing are the only parameters for visualizing an individual
node:

• Size

• Location

• Texture

As far as visual syntax like Figure 2 is concerned, the size,
location, and label are the only parameters of a node. The
first two parameters determine the layout of a view and the
last one the appearance of each node. Controlling layout
and appearance with those parameters is the key idea of this
model and it is sufficiently general.

In the multi-focus zooming interface like ours, the size of
a node is influenced by its degree of interest (DOI), which
is usually supplied by an exploitation algorithm of aspects.
The way to determine its location is less clear. Hyper-
MochiSheet calculates the geometry of each node under the
assumption that each node has its own home position rel-
ative to its siblings and within its parent. This assumption
is valid in visual languages since descriptions in visual lan-
guages include layout information, which are usually pro-
vided by human designers and/or programmers. In sum, if
we use visual languages from the beginning, the only extra
information necessary for layout is DOIs.
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The zooming algorithms in an ordinary sense are irrel-
evant to the last parameter. Still, however, with the mech-
anism of semantic zooming[3], the appearance of a node
may be controlled somehow. For the purposes, of course,
we have to prepare mapping rules and so this part might be
rather ad hoc.

3.2 Design patterns and aspects

It is a difficult question whether design patterns should
be language abstractions or mere aspects. They are not lan-
guage abstractions in today’s typical implementation lan-
guages such as C++ and Java. The core abstractions of
those languages are classes and objects. An inter-class or
inter-object relation is extra-linguistic. Design languages
like UML capture more about inter-class and inter-object
relations. Still, however, they do not provide every possible
sort of pattern as a built-in abstraction.

In any case, effective visualization of a design pattern
shall display the following information:

• Structural information among classes or objects in the
pattern, and

• Design information or designer’s intensions.

In these days, language designers sometimes propose new
abstractions for representing the former information explic-
itly but the real problem is lack of the latter information.

Taking account of this point and the nature of design pat-
terns, we have proposed a mixed solution. That is, a design
pattern is an inter-object abstraction explicitly supported by
a language and one pattern may have more than one design
related aspect[18].

If design patterns were mere aspects and were not sup-
ported by languages, we would need pattern-mining algo-
rithms. However, exploitation of design information with-
out any help of the pattern designer is hopelessly difficult.
We consider that the only feasible solution is to ask design-
ers to provide necessary information. For the purpose, pro-
gramming environments should be able to recognize pat-
terns as persistent abstractions and explicitly keep track of
the provided information.

We restrict the object structure of a pattern to the visual
syntax introduced in Section 2. Objects in a pattern may or
may not be abstract. An abstract object must be instantiated
with concrete objects before runtime.

Figure 5 is an example definition of a pattern in KLIEG.
This figure represents a master-workers object network, in
which a single master dispatches tasks to multiple worker
objects and gathers the results of the workers’ computa-
tions. The master part consists of three objects, generator,
combiner, and dispatcher. The workers part consists of mul-
tiple workers.

Figure 5. Master-workers pattern

In visual languages, it is not difficult to illustrate this sort
of skeletal structure. We have also implemented interaction
mechanisms to replace components[18] but they are not an
issue of this paper.

Upon reuse of software that is constructed from patterns,
the following information is desirable:

• Which components are replaced?

• What are their alternatives?

The answers depend on the functionality or behavior that
changes via evolution. We consider that different views or
aspects are necessary for different purposes. That is, (an
instance of) a design pattern is not an aspect but may have
multiple aspects, corresponding to multiple types of evolu-
tion.

Figure 6 depicts two aspects of the master-worker pat-
tern. The Top view, which puts emphasis on the generator
and workers, presents an aspect for answering the first ques-
tion when the problem domain will change. In such a case,
both the way to partition a given problem and the way to
solve sub-problems should change but other portions, e.g.,
the dispatching algorithm, can survive. In the figure, those
portions that should be replaced are magnified. As for the
second question, we propose to create hyperlinks between
abstract object and concrete candidates. Similar to the top
view, the bottom one emphasizes the dispatcher and com-
biner1.

Currently, pattern designers must provide this sort of lay-
out information for each aspect. As is already described, as-

1“Combiner” is a formal parameter name. In Figure 6, it is replaced
with an actual object name “pass answers.”
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pects of design patterns include designers’ intensions and it
seems difficult (even if it is not impossible) to exploit those
in an automatic manner.

3.3 Concerns and Aspects

Figure 6 reveals another debatable question: Is a meta-
level an aspect? The master-workers pattern is designed to
provide an automatic load balancing mechanism. It might
be natural to put such a mechanism on a meta-level. In some
sense, the two views in Figure 6 emphasize base level and
meta-level, respectively. On the top view, the generator and
workers, which are problem dependent and thus can be re-
garded as base level objects, are emphasized. On the bottom
view, the dispatcher, which is problem independent and thus
can be regarded as a meta-level object, is emphasized.

The essential role of a meta-level is to implement sep-
aration of concerns. The two views in Figure 6 represent
different concerns and these concerns are visually separated
into two figures. However, they are two sides of the same
coin. Even if we can separate objects, we cannot separate
the architecture in our model. In addition, one may prefer
a mixed view like Figure 5 or some other views that share
visible portions with the top and/or bottom view in Figure 6.

In this respect, our aspects are different from those of
AOP (Aspect-Oriented Programming)[6]. Aspects, in our
sense, of the same software inevitably have shared portions.
Since our motivation is to provide better views for software
comprehension, this is not the problem. As mentioned in
Section 1, with referring to biological evolution, we believe
that just a small number of hotspots can change during a
successful evolution. Our mission is to create a comprehen-
sible view including such hotspots and any relevant infor-
mation.

4 Conclusion

In this paper, we propose general frameworks of the fol-
lowing:

• Visual syntax that is expressive, structured, and inter-
operable

• Multi-focus zooming interface and its browsing sup-
ports

• Visualization of various aspects

These frameworks are designed by our experience in de-
sign and implementation of the visual language environ-
ment KLIEG. We consider that they are useful for devel-
opment of a wide range of visual language systems that are
scalable and provide a support for building comprehensible
software.
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