
IEICE TRANS. FUNDAMENTALS, VOL.E82–??, NO.1 JANUARY 1999
1

PAPER

Web Community Chart: a Tool for Navigating the Web

and Observing its Evolution

Masashi TOYODA†, Nonmember and Masaru KITSUREGAWA†, Member

SUMMARY We propose a web community chart that is
a tool for navigating the Web and for observing its evolution
through web communities. A web community is a set of web
pages created by individuals or associations with a common in-
terest in a topic. Recent research shows that such communities
can be extracted by link analysis. Our web community chart
is a graph of whole communities, in which relevant communi-
ties are connected by edges. Using this chart, we can navigate
through related communities. Moreover we can answer histori-
cal queries about topics on the Web and understand sociology of
web community creation, by observing when and how communi-
ties emerged and evolved. We observe the evolution of communi-
ties by comparing three charts built from Japanese web archives
crawled in 1999, 2000, and 2001. Several metrics are introduced
for measuring the degree of community evolution, such as growth
rate, novelty. Finally, we develop a web community evolution
viewer that allows us to extract evolving communities using the
relevance and metrics. Several evolution examples are shown us-
ing this viewer.
key words: link analysis, web community, web community
chart, evolution

1. Introduction

Navigating the Web and observing its evolution are im-
portant issues, since the Web has experienced dramatic
growth and dynamic changes in its structure. We could
see a lot of phenomena in the Web, which correspond to
social activities in the real world. For example, if some
topic becomes popular in the real world, many pages
about the topic are created, then good quality pages
are pointed to by public bookmarks or link lists for
that topic, and these pages become densely connected
in the web.

In this paper, we propose a web community
chart [16] that is a tool for navigating the Web and
for observing its evolution through web communities.
A web community is a collection of web pages created
by individuals or associations with a common interest
in a topic, such as fan pages of a baseball team, and
official pages of computer vendors. Recent research on
link analysis [3], [5], [7], [8], [12]–[15] shows that we can
identify a web community on a topic by finding densely
connected structure in the web graph, in which nodes
are web pages and edges are hyperlinks. In [16], we
proposed the web community chart as a navigation tool
that is a graph of communities, in which related com-

Manuscript received 0, 2002.
Manuscript revised 0, 2002.

†Institute of Industrial Science, University of Tokyo

munities are connected by edges. The main advantage
of our chart is existence of relevance between commu-
nities. We show that the chart can be used not only for
navigating through related communities but also for lo-
cating evolution around a particular community.

Since a web community represents a certain topic,
we can understand when and how new topics emerged
and evolved in the Web. For example, when mad-cow
disease became a serious problem, and what kinds of
web pages have been created about the disease. Such
information is important in the following situations: (1)
answering historical queries about topics in the Web;
(2) observing the emergence of quality web communi-
ties on a specific topic; (3) understanding sociology of
web community creation related to real social activities;
and (4) improving the efficiency of web crawlers by giv-
ing priority to getting emerging and growing parts in
the web at the next crawl.

For extracting such information, we observe the
evolution of web communities by comparing three
charts built from three Japanese web archives (in jp
domain) periodically crawled in 1999, 2000, and 2001
with 70 million pages in total. Several evolution met-
rics are introduced for measuring the degree of evolu-
tion. We describe changes of the community, such as
growing and shrinking. Based on these changes, we de-
fine our evolution metrics, such as growth rate, novelty,
and stability.

By using such metrics, user can extract target com-
munities based on evolving patterns. To examine their
feasibility, we developed a web community evolution
viewer for browsing how communities evolved through
two years. It provides various ways for locating the
evolution of communities such as emerged and grow-
ing. With several examples, we demonstrate that we
can easily locate interestingly evolving web communi-
ties by combining evolution metrics and relevance. For
example, we can find emerged or growing communities
related to a particular community.

1.1 Prior Work

Most research on web communities is based on the no-
tion of authorities and hubs proposed by Kleinberg [14].
An authority is a page with good contents on a topic,
and is pointed to by many good hub pages. A hub
is a page with a list of hyperlinks to valuable pages

2
IEICE TRANS. FUNDAMENTALS, VOL.E82–??, NO.1 JANUARY 1999

Authority

Authority

Authority

Hub

Hub

Hub

Fig. 1 Graph structure of hubs and authorities

on the topic, that is, points to many good authorities.
HITS [14] is an algorithm that extracts authorities and
hubs from a given subgraph of the Web with efficient
iterative calculation. Figure 1 shows a typical graph
structure extracted by HITS. As shown in the graph,
HITS extracts frequently co-cited pages as authorities.
HITS has been improved and refined [2], [3], [5], [12] by
exploiting anchor texts, edge weighting, document sim-
ilarity, and Document Object Models.

A set of authorities and hubs was regarded as a
community in [8], [10], [11]. Gibson et al. [8] inves-
tigated the characteristic of communities derived by
HITS. Kumar et al. [10], [11] performed trawling on a
huge snapshot of the Web, and found more than 100,000
communities. The trawling found communities by ex-
tracting complete bipartite graphs that consist of au-
thorities and hubs.

HITS can also be used to find pages related to a
given seed page. Finding related pages is similar to
finding a community including the seed. Dean and
Henzinger proposed a related page algorithm, Com-
panion [7]. They tailored HITS [14] for finding related
pages, and improved the precision by exploiting link
weighting and by considering the order of links in a
page. Companion extracts authorities in a subgraph
of the Web near the seed, and returns authorities as
related pages.

Some other approaches have been proposed. Lem-
pel and Moran [15] adopted a random walk model for
calculating authorities. Flake et al. [13] redefined a
community including given seed pages as a subgraph
that is separated from the Web using a maximum
flow/minimum cut framework.

Although these techniques can automatically iden-
tify communities, they have not considered relevance
between communities, and evolution of communities.
In this paper, we examined how these identified com-
munities evolve with passing time, and use relevance
for locating evolutions around a given community. As
far as we know, there is still no published research on
examining evolution of web communities.

The change frequency and lifetime of web pages
has been studied in [4], [6]. They estimate frequency
of web page modifications, and use the results for web
crawlers to determine timing for re-crawl. They are
based on the page level analysis. Rather, we analyze
the modification of graph structure in the Web.

Recently, the Internet Archive begins the Wayback
Machine service [1] that allows us to see past web pages

IBM

TOSHIBA

SONY

Yahoo!
/../Maker/Electric
PC vendor links

Computer vendors

SONY
PC fan
SONY
PC User

SONY PC
related links

SONY PC
Users Info

IBM

SONY
PC fan

SONY

TOSHIBA

SONY
PC user

(A) (B)

Seeds
(Authorities)Hubs

Fig. 2 An example of derivation relationships

stored in the Internet Archive’s web archive. Its capa-
bility is still very limited. That is, we can only specify
a single URL, and see the past pages of that URL. It
is impossible to understand what topics are popular in
the past, which we are targeting in this paper.

1.2 Organization of the Paper

The rest of this paper is organized as follows. In Sec-
tion 2, we describe our technique to build the web com-
munity chart and its browser. Section 3 introduces evo-
lution of web communities, and evolution metrics. In
Section 4, we show our web archives, and build charts
from them. Section 5 demonstrates our web community
evolution viewer with some examples. In Section 6, we
discussed more detailed issues, and future work.

2. Web Community Chart

In this section, we briefly describe our technique to
build the web community chart that is a graph includ-
ing communities as nodes, and weighted edges between
relevant communities. Refer to [16], for more detailed
descriptions.

2.1 Intuition for Underlying Techniques

Our algorithm builds the web community chart from a
given seed set. The main idea is applying a related page
algorithm (RPA), such as Companion[7], to each seed,
and investigating how each seed derives other seeds as
related pages.

Since existing RPAs, such as HITS [14] and Com-
panion [7], provide insufficient precision, we use an im-
proved algorithm, Companion– [16]. We have gained
a better precision by ignoring error prone parts in the
subgraph. The algorithm is described in Appendix A.

To identify web communities and to deduce their
relationships, we focus on relationships between a seed
and derived related pages by Companion–. Figure 2
depicts an example of derivation relationships. We
use five seed pages, IBM, TOSHIBA, SONY, and two
SONY PC fans. In Figure 2, the graph (A) shows how
each seed is pointed to by hub pages, and the directed

TOYODA and KITSUREGAWA: WEB COMMUNITY CHART
3

www.nec.co.jp/
www.melco.co.jp/
www.ibm.co.jp/
www.hitachi.co.jp/ind...
www.fujitsu.co.jp/
www.epson.co.jp/
www.compaq.co.jp/
www.apple.co.jp/
www.toshiba.co.jp/
www.sony.co.jp/ind...
www.sharp.co.jp/
www.sanyo.co.jp/
www.sun.co.jp/
www.canon.co.jp/

www.lotus.co.jp/
www.justsystem.co.jp/
www.adobe.co.jp/
www.symantec.co.jp/
www.microsoft.com/japan/
www.oracle.co.jp/
www.novell.co.jp/
www.macromedia.com/jp/
www.trendmicro.co.jp/
www.nai.com/japan/
www.systemsoft.co.jp/

www.olympus.co.jp/
www.minolta.com/japan/
www.konica.co.jp/
www.kodak.co.jp/
www.fujifilm.co.jp/
www.casio.co.jp/

www.melcoinc.co.jp/
www.logitec.co.jp/
www.iodata.co.jp/
www.intel.co.jp/
www.adaptec.co.jp/
www.ricoh.co.jp/
www.iiyama.co.jp/
www.allied-telesis.co.jp/
www.amd.com/japan/

www.hitachi-cable.co.jp/
www.furukawa.co.jp/
www.fujikura.co.jp/
www.fujielectric.co.jp/

1533

2116

Fig. 3 A part of the web community chart

graph (B) shows how each seed derives each other as
related pages by Companion–.

First, consider about IBM, TOSHIBA, and SONY.
They derive each other as related pages, since they are
mainly pointed to by link lists of electric companies,
such as the electric maker directory in Yahoo!. Then,
consider about two SONY PC fans. They derive each
other and SONY as related pages, because they are
mainly pointed to by such as SONY PC related links.
In this case, SONY PC fans derive SONY, but SONY
does not derive SONY PC fans. It is because major
hubs of SONY differ from major hubs of SONY PC
fans. That is, SONY is pointed to by not only electric
company lists but also SONY PC related links, how-
ever, the number of electric company lists is more than
one of other link lists. From the graph (B) in Fig-
ure 2, we can see that symmetric derivation is a strong
relationship, and asymmetric derivation is a weak re-
lationship. Under these observation, we define that a
community is a set of pages densely connected by sym-
metric derivation relationships (SDR), and two commu-
nities are related if there is an asymmetric derivation
relationship between members of them.

To extract densely connected seeds, we use a trian-
gle of SDR as a unit (like IBM, SONY, and TOSHIBA
in Figure 2), since the triangle is a complete graph and
most seeds in the triangle share the same topic. We also
found that (1) two triangles, which share an edge, often
share the same topic, and (2) two triangles, which share
only one seed, often have related but slightly different
topic. Based on these observations, we consider a set
of triangles sharing edges as the core of a community.

2.2 Algorithm for Building Chart

Here we describe our algorithm for building a chart.
The first step is selecting a seed set from a web archive.
As seeds, we select web pages that have in-links from
IN or more different servers. Here, IN is a parameter
to determine the seed set. Only the number of different
servers is counted, and intra-server links are not con-
sidered, because links from the same server are often
made by the same creator.

The second step is to build a directed graph
that shows how each seed derives other seeds by
Companion–. Nodes represent seeds in the seed set.
Each directed edge, from a node s to another node t,
represents the fact that s derives t as one of the re-
lated pages by Companion–. We create directed edges
between nodes by applying Companion– to each seed,
so that an edge from a node s to another node t exists
when s derives t as one of the top N authorities, where
N is a parameter. We call this graph the authority
derivation graph (ADG) in the following.

The third step is to extract a symmetric derivation
graph (SDG) from ADG, and also extract web commu-
nities. In this step, we focus on SDRs, in which two
nodes at both ends derive each other by Companion–.
SDG includes nodes in the seed set, and an edge from
s to t exists when s and t point to each other in ADG.

Then we extract densely connected seeds in SDG
as web communities. We use a node triangle as a unit
of extraction. We use a simple algorithm that finds
densely connected cores, then adds isolated nodes to
these cores. First, cores are made by extracting tri-
angles that share edges. Note that these cores include
complete graphs with four or more nodes. Then we add
each isolated node to a neighbor core. After finishing
this process, every connected node in SDG becomes a
member of a community. Note that communities be-
come disjunctive sets of nodes. The following explains
the process in detail:

1. Extract all triangles of nodes from SDG. Then each
subgraph, consists of triangles that share edges, is
extracted as a core. When two cores share some
nodes, we temporarily isolate them, and pass them
to the next step.

2. Add each remaining node in SDG to a neighbor-
ing core, if the node has edges connected to the
core. When there are multiple candidates, select
one core taking into account of directed edges in
ADG. That is, to select a core that has the most
incoming edges from the node in ADG. Each core
then becomes a community.

3. There remain connected components that do not
form triangles, such as lines of nodes. We also
extract such components as communities.

Finally, we construct a web community chart that
can be used to navigate from a community to other re-
lated communities. The chart is a directed graph that
includes communities as nodes, and directed edges be-
tween related communities. Each edge has a weight
that represents the strength of relationships. We create
a directed edge from a community c to another commu-
nity d with a weight w, when there exists w directed
edges in ADG from nodes in c to nodes in d.

In the following, we use the simplified weight, that
is the sum of weights of edges between c and d ignoring
directions. This is because the semantics of the direc-

4
IEICE TRANS. FUNDAMENTALS, VOL.E82–??, NO.1 JANUARY 1999

tion is not yet clear. We call this simplified weight as
the relevance between communities at both ends.

2.3 An Example of a Web Community Chart

Figure 3 shows a part of the web community chart built
from our web archive in 1999. Each box with a label
represents a web community, and edges represent rela-
tionships between communities. We put labels to these
communities for readers convenience. The number at-
tached to each edge denotes the weight. We select the
‘Computer’ community as a center, since it has most
edges in the chart. Each community, around the ‘Com-
puter’, has edges to the ‘Computer’, and these weights
are more than 15. Actually, there are more com-
munities around the ‘Computer’ connected by lower
weighted edges, that are not shown in Figure 3.

As shown in Figure 3, these communities are
clearly classified and actually related to the ‘Computer’
community. The ‘Software’ community includes Lo-
tus, Microsoft, etc., and obviously related to the ‘Com-
puter’. The companies in the ‘Cable’ community pro-
vides cables and optical fibers.

3. Evolution of Web Communities

In this section, we explain how web communities evolve,
and what kinds of metrics can measure degree of the
evolution, such as growth rate, and novelty†.

Here we summarize the notations we use.

Wt: the web archive crawled at time t.
Ct: the web community chart derived from Wt.
ct, dt, et, ...: communities in Ct.

The subscript t denotes time. For simplicity here
t takes an integer value between 1 and n instead of the
date of crawling. The first time of crawling is denoted
by 1, and the last time is denoted by n.

We observe the evolution from a series of peri-
odically crawled web archives (W1,W2, ...,Wn) by (1)
building web community charts (C1, C2, ..., Cn) for all
web archives, and (2) investigating differences between
neighboring charts. We first explain changes of com-
munities, and then introduce evolution metrics.

3.1 Changes of Communities to Derive Evolution

There are two ways to see the evolution of a community,
backward and forward. For simplicity, here we explain
backward examination. That is, first we select a web
community chart at time t, Ct, and see how communi-
ties had been evolved until time t by examining Ct−1.
We can do the same thing for forward examination of

†Currently, we still have not exploited metrics that mea-
sure the evolution of relationships between communities in
web community charts. Instead, in Section 5, we show that
the relationships are useful for locating evolution patterns.

evolution by fixing Ct and then examining Ct+1.
Here we show how communities changes from Ct−1

to Ct, such as growing and shrinking. Changes of a
community are complex, when the community splits or
merges, since they may involve multiple communities.

Emerge: A community emerges in Ct, when the com-
munity shares no URLs with any community in Ct−1.

Dissolve: A community in Ct−1 is dissolved, when the
community shares no URLs with any community in Ct.

Grow and shrink: When ct−1 in Ct−1 shares URLs
with only ct in Ct, and vice versa, only two changes
can occur to ct−1. The community grows when new
URLs are appeared in ct, and shrinks when URLs are
disappeared from ct−1. When the number of appeared
URLs is greater than the number of disappeared URLs,
we consider it a growing community. In the reverse
case, we consider it a shrinking community.

Split: When a community ct−1 in Ct−1 shares URLs
with multiple communities in Ct, ct−1 splits into some
smaller communities by disconnections of URLs. The
community may grow and shrink before splitting, and
split communities may also grow and shrink. In addi-
tion, split ones may merge with other communities.

Merge: When multiple communities in Ct−1 share
URLs with a community ct in Ct, these communities in
Ct−1 are merged into ct by connections of their URLs.
Each community being merged may grow, shrink, and
split before merging, and the result community may
grow and shrink.

3.2 Evolution Metrics

Our evolution metrics measure how community ct

evolved using macroscopic changes. For example, we
can know how ct is emerged, or how rapidly ct grew.
Our metrics can be used for finding such as emerged
and rapidly growing communities.

To measure changes of ct, we need to know the
corresponding community ct−1 in Ct−1. First we define
ct−1 be the corresponding community that shares the
most URLs with ct. If there were multiple communi-
ties that share the same number of URLs, we select a
community that has the largest number of URLs.

The metrics are defined by differences between the
community ct and ct−1. We use the following attributes
to define evolution metrics.

N(ct): the number of URLs in the ct.
Nshare(ct−1, ct): the number of URLs shared between
ct and ct+1.
Ndisappear(ct−1): the number of URLs disappeared
from ct−1 and not appeared in any community at t.
Nsplit(ct−1, ct): the number of URLs split from ct−1 to
communities other than ct.

TOYODA and KITSUREGAWA: WEB COMMUNITY CHART
5

Nappear(ct): the number of URLs appeared in ct and
not appeared in any community at t − 1.
Nmerge(ct−1, ct): the number of URLs merged in ct

from communities other than ct−1.
Then our evolution metrics are defined as follows.
The growth rate, Rgrow(ct−1, ct), is the most simple

evolution metric defined as

Rgrow(ct−1, ct) =
N(ct) − N(ct−1)

N(ct)
.

When ct grows, the growth rate becomes between 0 and
1. When ct shrinks, the growth rate fells into a negative
value. When ct−1 does not exist, ct is totally new and
the growth rate becomes 1. The growth rate allows us
to find growing and shrinking communities.

The stability, Rstability(ct−1, ct), measures how
much URLs are preserved in ct, and is defined as

Rstability(ct−1, ct)=
Nshare(ct−1, ct)

2 ·N(ct−1)
+

Nshare(ct−1, ct)

2 ·N(ct)
.

The stability takes a value from 0 to 1. When there
is no change of URLs, the stability is 1. Note that ct

may not be stable even if the growth rate of ct is 0,
because ct may lose and obtain the same number of
URLs. A stable community on a topic can be used
as a good starting point for finding interesting changes
around the topic.

A community obtains and loses URLs in some
ways. For example, the community obtains URLs in
two ways. One is appearance of URLs, and the other is
merging of URLs. The following metrics measure how
much the community obtains or loses URLs.

The novelty, Rnovelty(ct−1, ct), is the ratio of newly
appeared URLs in ct, and defined as

Rnovelty(ct−1, ct) = Nappear(ct)/N(ct).

The novelty takes a value from 0 to 1. When the nov-
elty is high, we can say that it mainly obtains newly
appeared URLs. We can find emerged communities us-
ing the novelty metric. If the novelty is 1, we can say
that ct is a newly born community.

The merge rate, Rmerge(ct−1, ct), is the ratio of
absorbed URLs from other communities by merging,
and takes a value from 0 to 1. Higher merge rate means
that the community mainly obtains URLs by merging.
The merge rate is defined as

Rmerge(ct−1, ct) = Nmerge(ct−1, ct)/N(ct).

The disappearance rate, Rdisappear(ct−1, ct), is the
ratio of disappeared URLs from ct−1, and takes a value
from 0 to 1. Higher disappear rate means that the
community mainly loses URLs by disappearance. The
disappear rate is defined as

Rdisappear(ct−1, ct) = Ndisappear(ct−1)/N(ct−1).

The split rate, Rsplit(ct−1, ct), is the ratio of split

Year #Pages Total #links #seeds #commu-
URLs nities

1999 16.8M 29.6M 126M 627K 70K
2000 14.1M 23.5M 100M 600K 68K
2001 40.5M 63.3M 343M 1135K 131K

Table 1 Details of our web archives

URLs from ct−1, and takes a value from 0 to 1. When
the split rate is low, we can know that ct is larger than
other split communities. Otherwise, ct is smaller than
other split communities. The split rate is defined as

Rsplit(ct−1, ct) = Nsplit(ct−1, ct)/N(ct−1).

By combining these metrics, we can represent some
complex evolution patterns as follows. Note that simi-
lar evolution patterns can be defined for shrinkage.

Stable growth: A community stably grows when its
growth rate is positive, and its disappearance and split
rates are low.

Stable growth by appearance: When a community
stably grows, and its novelty is high, the community
grows mainly by newly appeared URLs.

Stable growth by merge: When a community sta-
bly grows and its merge rate is high, the community is
grows mainly by merging.

4. Building Web Community Charts from
Series of Web Archives

For experiments, we used three web archives of
Japanese web pages (in jp domain) periodically crawled
in 1999, 2000, and 2001 (See Table 1). We used the
same web crawler in 1999 and 2000, and collected about
17 million pages in each year. The size of the 2001
archive is more than twice of other archives. This is
because we improved the crawling rate significantly in
2001. Our crawlers collect pages in the breadth-first
order. As you can see in Table 1, the 2000 archive is
smaller than one in 1999, because we lost randomly
about 3 million pages due to disk crash.

From each archive, we extracted a web graph with
URLs and links. Our graph includes not only URLs
inside the archive but also those outside the archive
that is pointed to by inside URLs. Namely, the graph
includes URLs outside jp domain, such as com and edu.
Table 1 also shows the number of links and the total
URLs. For link analysis, each web graph is stored in
a main-memory database that provides out-links and
in-links of a given URL. Its implementation details are
similar to the connectivity server [9]. We implemented
the whole system on Sun Enterprise Server 6500 with
8 CPU and 4GB memory. Building our connectivity
database of 2001 takes about one day.

From the above three web graphs, we built three
community charts using the technique described in Sec-
tion 2. To compare web community charts in the same

6
IEICE TRANS. FUNDAMENTALS, VOL.E82–??, NO.1 JANUARY 1999

Fig. 4 Evolution of a MLB fan community

condition, we fixed values of parameters, IN and N ,
for the chart building algorithm in Section 2. We used
the value 3 as IN , that is, we selected seeds that have
in-links from three or more different servers. Using a
larger value than 3 drastically decrease seeds. We used
the value 10 as N . We selected the value 10, because
Companion– provides enough precision with top 10 au-
thorities in our previous work [16], and members of ma-
jor communities do not change much from the value 9
to 11†. It took about one day to build the chart for
2001. Most of the time was spent on calculating re-
lated pages of seeds by Companion–. Table 1 shows
the number of seeds and communities in the chart of
each year.

5. Web Community Evolution Viewer and
Evolution Examples

We developed a web community evolution viewer for ex-
amining how communities evolved through two years.
In this section, we describe the viewer with some sim-
ple examples of evolution. Our viewer visualizes the
evolution of communities, so that the user can easily
compare communities in different time. The user can
extract communities evolving in various patterns, by
filtering and sorting communities using their relevance
and the evolution metrics.

5.1 Visualizing Evolution of a Community

The most basic function of our viewer is showing evo-
lution of a given community in a specified period. Fig-
ure 4 depicts how the viewer shows evolution of a com-
munity, when the user specifies the community in 2001.
Each column represents a time (currently each year).
Each community is represented as a rectangle includ-
ing the list of its URLs. Labels on communities are
automatically attached by selecting frequent keywords

†Ideally, these parameters should be determined locally
in a chart depending on topics and density of the web graph.
It is future work to develop such adaptive algorithms.

from anchor texts that point to URLs in the commu-
nity. Each URL in communities can be browsed with a
web browser by clicking it with the mouse.

Once the user specifies a certain community, the
viewer displays the corresponding communities for each
year which are determined as we discussed in the Sec-
tion 3.2. We call the sequence of these communities as
a history of the community. Then communities in the
history are arranged horizontally, and lines are drawn
between them, so that the user can easily compare their
differences. The viewer shows only a history as de-
fault. If the user needs more detailed changes (merge
and split), the viewer shows multiple communities that
share URLs with the given community (See Figure 6).

5.2 Selecting, Sorting, and Filtering

Our viewer provides flexible means to find various kind
of evolution. We first describe how to select communi-
ties to be displayed, then describe how to sort and filter
communities using evolution metrics.

The user can select communities by providing a
time, then a URL or keywords. If the user provides a
URL, the viewer shows the community including that
URL. If the user provides keywords, the viewer shows
communities that have URLs of pages including key-
words. In addition, the user can select communities
related to a specified community in the chart.

The system automatically extract histories for se-
lected communities over the given time range specified
by the user. In our experiments, since we have only
three web archives, time range specification looks mean-
ingless, but when we have more series of web archives,
it will be important.

The number of selected communities might become
large. So the user can sort the communities and browse
the communities in a sorted order. The user can also
specify filtering condition and reduce the number of tar-
get communities. When the history includes multiple
intervals, we use the average of the metric for all inter-
vals. The metrics which is introduced in Section 3.2 is
used for both sorting and filtering. When the user does
not select communities, all communities at the time are
sorted. Actually sorting and filtering communities by
the evolution metrics are very powerful means to find
the communities with various evolving patterns.

In addition to the evolution metrics, we can use
the following metrics for sorting and filtering.

• Relevance with the given community.
• The number of URLs in the community

To implement these functions, we use chart and
evolution databases. A chart database stores URL lists
of communities, and their relevance values for each
chart. The evolution databases provide how a given
community share URLs with communities in neighbor-
ing charts. That is, which communities share URLs,

TOYODA and KITSUREGAWA: WEB COMMUNITY CHART
7

Fig. 5 Communities about Afghanistan emerged around an Is-
lam information community

and how many URLs are shared. The evolution met-
rics can be easily calculated by those databases.

5.3 Examples

Here we show how the relevance and evolution metrics
can be used for extracting evolving communities.

Firstly, Figure 4 shows a fan community of Major
League Baseball stably grew in Japan. Its growth rate
keeps positive, and its disappear and split rate are low
for two years. Especially, it rapidly grew from 2000
to 2001, since a Japanese star player Ichiro Suzuki is
transferred to Seattle Mariners, and he became an out-
standing player in Major League (You can see his name,
“ichiro,” in some URLs in the community in 2001).

We found the MLB (Figure 4) fan communities as
stably growing communities around the community of
Japanese baseball teams. We first select communities
related to the community of Japanese baseball teams
at 2001. Then we sorted these related communities by
their growth rate, and filtered communities with high
disappear and split rates.

Secondly, we can find emerged communities related
to a particular community. In Figure 5, we first se-
lect related communities to a community of Islam and
Muslim information in 2001. Then we sort these related
communities by their novelty metric from 2000 to 2001.
There emerged two communities about Afghanistan.
We guess that such hubs are rapidly created after the
attack on America by terrorists on 11 September, 2001.
(Note that our web archive in 2001 was crawled in early
October.) From this example, we can see that commu-

Fig. 6 Communities of biotechnology companies

nities grow very quickly when their topic has a great
impact to the real society.

Finally, Figure 6 shows that a web community
gradually grows by absorbing other small communi-
ties on the same topic. Communities of biotechnology
and biochemistry companies are gradually growing by
merging other small communities, as biotechnology be-
come a great business, and awareness of biotechnology
is growing. We can find such communities using our
evolution viewer by searching stably growing commu-
nities with high merge rates. This evolution pattern
occurs for the following two reasons: (1) existing hubs
are gradually added new links, and become larger and
sophisticated; and (2) Larger and sophisticated hubs
are newly created over time, and become major hubs.

6. Discussion and Future Work

Our system takes about two days for building a web
graph database, a community chart, and databases of
evolution from a web archive with 40 million pages.
Since it is significantly shorter than the time for crawl-
ing (some weeks), our system can analyze evolution at
the same interval of crawling.

We have separately developed viewers for web com-
munity chart and community evolution. We plan to in-
tegrate them, and realize seamless navigation through
related communities, and through past communities.

Web archives used in our experiments are small
subsets of the entire Web, and the crawling interval is
still long (one year). We are interested in applying our
technique to larger archives, and investigating how the
results will be influenced by changing the archive. We
are also planning to crawl web pages more frequently,
and observe more fine-grained evolution.

8
IEICE TRANS. FUNDAMENTALS, VOL.E82–??, NO.1 JANUARY 1999

References

[1] Wayback Machine, The Internet Archive. http:// www.
archive. org/.

[2] K. Bharat and M. Henzinger. Improved Algorithms for
Topic Distillation in a Hyperlinked Environment. In Proc.
ACM SIGIR ’98, 1998.

[3] K. Bharat and G. A. Mihaila. When Experts Agree: Using
Non-Affiliated Experts to Rank Popular Topics. In Proc.
10th WWW Conference, 2001.

[4] B. E. Brewington and G. Cybenko. How dynamic is the
web? In Proc. 9th WWW Conference, 2000.

[5] S. Chakrabarti. Integrating the Document Object Model
with Hyperlinks for Enhanced Topic Distillation. In Proc.
10th WWW Conference, 2001.

[6] J. Cho and H. Garcia-Molina. The Evolution of the Web
and Implications for an Incremental Crawler. In Proc. 26th
VLDB Conference, 2000.

[7] J. Dean and M. R. Henzinger. Finding related pages in the
World Wide Web. In Proc. 8th WWW Conference, 1999.

[8] D. Gibson et al. Inferring Web Communities from Link
Topology. In Proc. HyperText98, 1998.

[9] K. Bharat et al. The Connectivity Server: fast access to
linkage information on the Web. In Proc. 7th International
WWW Conference, 1998.

[10] R. Kumar et al. Extracting large-scale knowledge bases
from the web. In Proc. 25th VLDB Conference, 1999.

[11] R. Kumar et al. Trawling the Web for emerging cyber-
communities. In Proc. 8th WWW Conference, 1999.

[12] S. Chakrabarti et al. Automatic resource compilation by
analyzing hyperlink structure and associated text. In Proc.
7th International WWW Conference, 1998.

[13] G. W. Flake, S. Lawrence, and C. L. Giles. Efficient Iden-
tification of Web Communities. In Proc. KDD 2000, 2000.

[14] J. M. Kleinberg. Authoritative Sources in a Hyperlinked
Environment. In Proc. ACM-SIAM Symposium on Discrete
Algorithms, 1998.

[15] R. Lempel and S. Moran. The Stochastic Approach for
Link-Structure Analysis (SALSA) and the TKC Effect. In
Proc. 9th WWW Conference, 2000.

[16] M. Toyoda and M. Kitsuregawa. Creating a Web Commu-
nity Chart for Navigating Related Communities. In Proc.
Hypertext 2001, pages 103–112, 2001.

Appendix A: Algorithm of Companion–

Companion– takes a seed page as an input, then outputs
related pages to the seed. It first builds a subgraph of the
Web around the seed, and extracts authorities and hubs in
the graph. Then authorities are returned as related pages.

First, it builds a vicinity graph of a given seed, which
is a subgraph of the web around the seed. A vicinity graph
is a directed graph, (V, E), where nodes in V represent web
pages, and edges in E represent links between these pages.
V consists of the seed, a set of nodes pointing to the seed
(B), and an another set of nodes pointed to by nodes in
B (BF). When following outgoing links from each node in
B, the order of links in the node is considered. Not all the
links are followed but only R links immediately preceding
the link pointing to the seed, and R links immediately suc-
ceeding the link. This is based on an observation that links
to related pages are gathered in a small portion of a page.

To each edge, it assigns two kinds of weights, an au-
thority weight and a hub weight for decreasing the influence

of a single server. The authority weight is used for calcu-
lating an authority score, and the hub weight is used for
calculating a hub score of each node. Companion– uses the
following weighting method proposed by Bharat and Hen-
zinger [2]: (1) If two nodes of an edge are in the same server,
the edge has the value 0 for both weights; (2) If a node has n
incoming edges from the same server, the authority weight
of each edge is 1/n; and (3) If a node has m outgoing edges
to the same server, the hub weight of each edge is 1/m.

Then it calculates a hub score, hub(n), and an author-
ity score, auth(n) for each node n in (V, E). The follow-
ing is the calculation process, where auth weight(n, m) and
hub weight(n, m) represent the authority weight and the
hub weight of the edge from n to m, respectively.

Step 1. Assign 1 to hub(n) and auth(n) of each node.

Step 2. Repeat the following calculation for all node n in
V until hub(n) and auth(n) have converged for each node.

hub(n)←∑
(n,m)∈E

auth(m)× hub weight(n, m)

auth(n)←∑
(m,n)∈E

hub(m)× auth weight(m, n)

Normalize hub(n), so that the sum of squares to be 1.
Normalize auth(n), so that the sum of squares to be 1.

Step 3. Return N nodes with highest authority scores.

Masashi Toyoda received the B.E.
in science in 1994, the Master and Doctor
of Science from Tokyo Institute of Tech-
nology, in 1996 and 1999, respectively.
Since 1999 he has been a research fellow
at Institute of Industrial Science, Univer-
sity of Tokyo. His research interests in-
clude web mining, information visualiza-
tion, and user interface. He is a member
of IPSJ, JSSST, IEEE and ACM.

Masaru Kitsuregawa received the
B.E. in electronic engineering in 1978, the
Master and Doctor of Engineering degree
in information engineering from the Uni-
versity of Tokyo, in 1980 and 1983 respec-
tively. In 1983 he joined the Institute of
Industrial Science, The Univ. of Tokyo
as a lecturer. He is currently a profes-
sor. His research for the last 10 years has
been directed toward the design of high
performance relational database systems

such as parallel hash join algorithm, its skew handler, an intel-
ligent disk system named functional disk system, highly paral-
lel architecture for relational SQL server SDC (Super Database
Computer), high speed hardware sorter, disk array, persistent
programming system, KD join algorithm, and digital library for
earth engineering. He is a member of VLDB endowment, a chair-
man of Data Engineering Technical Group, IEICE Information
and Systems Society, and an Asian coordinator of IEEE TCDE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

