Interaction Techniques for Navigating
and Editing Nested Networks through
Multi-focus Distortion Views

by
Masashi Toyoda

A thesis submitted to

Department of Mathematical and Computing Sciences
Graduate School of Information Science and Engineering
Tokyo Institute of Technology

for the degree of

Doctor of Science

March 1999



Copyright (©)1999

Masashi Toyoda

ALL RIGHTS RESERVED



For my family

and for my friends of fifteen years’ standing
K. Jahana, H. Funatsu, T. Inoue, Y. Shirai and A. Tomioka

i



Acknowledgements

First, I would like to thank Professor Etsuya Shibayama for his continuous
support and encouragement for this work. I also thank Professor Satoshi
Matsuoka and Shin Takahashi for their helpful advice and comments.

Next, I would like to thank Buntarou Shizuki for his work on the visual
tracer of KLIEG visual programming environment, and Toshiyuki Masui for
his ideas and advice for the directory editor HishiMochi.

Finally, T would like to thank the TRIP meeting members, and my col-
leagues for their friendship and help. T also thank our test users for their
participation.



Contents

Introduction

1.1 Motivation . . . . . . . . . . ..o
1.2 Contributions . . . . . . . . . ...
1.3 Content . . . . . . . . . ..
1.4 Publications . . . . . . . . . ..

A Tour of Applications

2.1 KLIEG: A Visual Programming Environment . . . . . . . ..
2.2 KagamiMochi: A Presentation Tool . . . . . . ... ... ...
2.3 HishiMochi: A Directory Editor . . . . . . ... ... .. ...

Literature Survey

3.1 Information Suppression Techniques . . . . . . . ... ... ..
3.1.1 Generalized Fisheye Views . . . . . . .. ... .. ...
3.1.2  Fisheye Presentation Strategy . . . . ... ... .. ..
3.1.3 Fractal Views . . . . ... ... oL

3.2 Image Transformation Techniques . . . . . . . . ... ... ..
3.2.1 Bifocal Display . . . ... ... ... ... ...
3.2.2 Fisheye Views . . . . . . . ... oo
3.2.3 Perspective Wall . . . .. ... .. ... .. ......
3.2.4  Graphical Fisheye Views . . . . . . ... ... .. ...
3.25 Document Lens . . . . . . ... ... L.
326 TableLens. . .. . ... ... ... ... ... ...,
327 FOCUS . .. .. .
3.2.8 Hyperbolic Browser . . . . . . . .. ... ... .....
3.29 CATGraph . .. ... ... ..o
3.2.10 Nonlinear Magnification Fields. . . . . . . .. .. ...

3.3 Multi-focus Distortion Views for Nested Networks . . . . . ..

v



CONTENTS

3.3.1  Multi-viewpoint Perspective Display . . . . . .. . ..
3.3.2 Treemaps . . . . . . . ...
3.3.3 Layout-independent Fisheye View . . . . . . . .. ...
3.3.4 The Rubber Sheet Approach . . . . .. ... ... ...
3.35 Pad++ .. ...
3.3.6 The Continuous Zoom . . . . . .. ... ... .....
3.3.7 The Intelligent Zoom . . . . . ... ... ... .. ...
3.3.8 3-Dimensional Pliable Surface . . . . .. ... .. ...
3.3.9 Dynamic Fisheye Views . . . ... ... ... .. ...
3.3.10 SHriMP . . . . . . . ...

4 Analysis

4.1 Recent Trends in Distortion Views . . . . ... ... ... ..

4.2 Analysis of the Editing Task through Distortion Views

4.3 Problems with Existing Distortion Views . . . . . . . ... ..
4.3.1 Problem with Sizes of Nodes . . . . . . ... ... ...
4.3.2  Problem with Hyperlink Navigation . . . . . . .. . ..
4.3.3 Problem with Search . . . .. ... ... ... .....

4.4 Principles of Desirable User Interfaces. . . . . . . .. ... ..

Interaction Techniques for Focus Management
5.1 Basic User Interface . . . . . . ... ... ... .. .. .....
5.1.1 User Interface . . . . . .. ... .. ... ... .....
5.1.2  Mochi Sheet Algorithm . . . . . . ... ... ... ...
5.2 Focus Size Prediction . . . . . ... ... ... ... L.
5.2.1 Preliminary User Test . . . . . .. ... ... .....
5.2.2  Prediction Algorithm . . . . . . . ... ... ... ...
5.2.3 Size Correction Interface . . . . . ... ... ... ...
5.24 Evaluation . . . .. ... ... ... ...
5.3 Predictive Focus Selection . . . . ... .. ... ... ... ..
5.3.1 Hyperlink Navigation Examples . . . . . . . . ... ..
5.3.2 Prediction Method . . . . ... ... ... .......
5.4 Dynamic Query . . . . . . ...
5.4.1 Details of the Dynamic Query Function . . . . . . . ..
5.4.2 Examples . . ... ... oL
5.4.3 Variation of Search Method . . . . .. ... ... ...
5.5 Implementation . . . . . . ... ... 0L
5.6 Conclusion . . . . . . . .. . ...

21
22
23
23
24
24
25
25
26
26

28
28
30
33
33
35
36
38



CONTENTS vi

5.6.1 Keeping Distortion Layouts Free and Flexible . . . . . 70
5.6.2 Reducing Boring, Repetitive Work . . . . . . ... .. 70
5.6.3 Reducing Multi-focus Management . . . . . . ... .. 70
5.6.4 Reducing the Time for Switching from Searching to
Editing . . . . . . ... o 70
6 Enhancing Usability with Application Semantics 72
6.1 Background . . . ... ... oo 73
6.1.1 Visual Design Patterns . . . . . ... ... ... .... 73
6.1.2 Existing Work . . . . .. ... oo 75
6.2 Visual Design Patterns on KLIEG . . . . . ... .. ... ... 75
6.2.1 Features of KLIEG-VDP . . . . .. ... ... .. ... 76
6.2.2 An Example . . . . ... o000 7
6.3 Support with Hyper Mochi Sheet . . . . . ... ... ..... 80
6.3.1 Management of Multiple Implementations . . . . . .. 80
6.3.2 Focusing Support for Processes Editing . . . . . . . .. 82
6.4 Other Support . . . . . . . ... 83
6.4.1 Visualizing Execution of KLIEG-VDPs . . . . . .. .. 83
6.4.2 Checking Consistency Using Types . . . . .. .. ... 84
6.5 Programming with KLIEG-VDPs . . . . ... ... ... ... 86
6.6 Conclusion . . . . . .. . ... . 87
7 Summary 88
7.1 Discussion . . . . . . . ..o 88
7.1.1 Focus size prediction . . . . . . ... ... 89
7.1.2  Predictive focus selection . . . . . ... ... 89
7.1.3 Dynamicquery . . .. . ... ... ... ... ... .. 90
7.2 Limitations . . . . . . . . ... 90
7.3 Future Work . . . . . ... 91
74 Conclusion . . . . . ... 91



List of Tables

4.1

5.1
5.2
5.3

Comparison of user interfaces for distortion views . . . . . .. 29
Command Sequences around SetSmall . . . . ... ... ... 49
Command Sequences around SetLarge . . . .. ... ... .. 49
The number of use of the size correction interface and the

number of prediction errors checked after the task . . . . . .. 25

vil



List of Figures

1.1
1.2

2.1
2.2
2.3

3.1

3.2
3.3

3.4
3.5

3.6
3.7

3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Single focus distortion views . . . . .. .. ... L.
Multi-focus distortion views . . . . . . . ... ... ... ...

A visual programming environment KLIEG . . . .. ... ..
A presentation tool KagamiMochi . . . . ... ... ... ...
A directory editor HishiMochi . . . . . ... ... ... ....

A transformation function of a polyfocal projection and the
corresponding magnification function . . . . . . ... ... ..
A polyfocal projection on a 2D regular grid . . . . . . .. ...
A transformation function of a bifocal display and the corre-
sponding magnification function . . . . . . ... ..o L.
A bifocal display on a 2D regular grid . . . . ... ... ....
A transformation function of the perspective wall and the cor-
responding magnification function . . . . . . .. ..o L.
The perspective wall of a 2D regular grid . . . . ... ... ..
A transformation function of graphical fisheye views and the
corresponding magnification function . . . . . . ... ... ..
Cartesian, polar, and normalized polar fisheye views of a 2D
regular grid . . . . ...

Initial situation . . . . . . . ... oo
After navigation for editing . . . . .. ... ... .. ... ..
After editing by drag-and-dropping . . . . . .. ... .. ...
One sample presentation created by one test user . . . . . ..
Another sample presentation created by an another test user .
A hyperlink navigation in our presentation tool . . . .. ...
A hyperlink navigation in a visual programming environment .

viil



LIST OF FIGURES ix

5.1
5.2
5.3
5.4
3.5
5.6

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15

5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

A distortion view in Hyper Mochi Sheet . . . . ... ... .. 41
Generating alignment lines and arranging nodes . . . . . . .. 42
A layout when the required width is increased . . . . . . . .. 43
Distributing rest space . . . . . . .. ... ... L. 43
Meshing columns and rows . . . . . . ... ... ... ... 45
The diagram used in the user test: all rectangle sizes are set

tosmall . . ... o 47
The diagram that shows the detailed view of the bottom-right

rectangles . . . ... oL 47
A state transition chart for predicting size . . . . .. ... .. 51
Size correction interface . . . . ... ... oL 52
The table of contents used in the experiment . . . . . . . . .. 53
A sample presentation written by a subject . . . . . . ... .. 54
A hyperlink navigation in our presentation tool . . . . . . .. 56
A hyperlink navigation in a visual programming environment . 57
Hyperlink structure . . . . . . . . ... .. 0L 58
The initial screen dump of Computers & Internet directory of

Yahoo! . . . . . .. 60
Searching with a keyword “sigchi” . . . .. .. ... ... ... 60
The result of search with keywords “palm pilot” . . . . . . .. 62
Looking matched documents one by one . . . . ... .. ... 63
Narrowing search space . . . . . . . . . ... ... L. 64
Search with a new keyword “compiler” keeping the selections . 64
Sherlock Holmes stories classified by written year . . . . . .. 66
Search with a keyword “moriarty” . . . . . . . ... ... ... 66
A photo browser . . . ... o 67
Master worker pattern . . . . . ... ... ... ... ... 7
Master-worker pattern in KLIEG . . . .. ... ... ..... 78
Detail of master network . . . . . . . ... ... L. 78
Alternative implementations . . . . . . . ... . ... ... .. 81
Changing layout for modifying behaviors . . . . . . . ... .. 83
Solving N-Queens problem using master_worker . . . . . . . .. 84
Executing the N-Queens program on the tracer . . . .. . .. 85

Checking port types of the worker . . . . . . . . ... .. ... 86



Chapter 1

Introduction

Two of the most basic and important tasks with computers are the navigation
and editing of structured or semi-structured information such as:

e File systems,

Hypertexts (e.g., HTML documents),

Visual programs (e.g., JavaBeans),

Object-oriented Designs (e.g., OMT and UML),

Presentations.

To build these structures, hierarchical and graph representations are usually
used. For example, in UNIX file systems, directories and files are hierarchi-
cally structured, and hypertexts have a graph structure, in which documents
are linked by hyperlinks. Navigation is by browsing a display of informa-
tion or by looking for objective data by following the hierarchy or links, and
editing involves modification of individual data and information structures.

This task is required not only by experts and programmers, but also by
ordinary users. The recent spread of World Wide Web (WWW) and people’s
desire to edit their home pages have increased the likelihood that ordinary
users will need to perform such a task.

The requirements of editing differ from those of navigation. For example,
the user interfaces of Web page builders differ from those of Web browsers.
Here are some important differences in the view required for editing:



CHAPTER 1. INTRODUCTION 2

e [t is important for the user to grasp the structure of the information,
because editing involves modification of the structure. In addition, it is
often useful to understand where the user is editing and the structure
around editing points during modifying individual data. An outline
view of the structure is required, since there is usually too much in-
formation to display all of the details in a single screen. In practice,
most web page builders provide an outline view of hyperlink structures,
unlike most web browsers.

e During editing, it is frequently necessary to handle multiple parts simul-
taneously. For example, the user may drag-and-drop information from
one node to another, edit one node comparing with other nodes, and
create a hyperlink between two nodes. Therefore, a web page builder
is useless unless it supports multiple windows, whereas a web browser
can be used in a single window without major problems.

The main objective of this research is to construct a framework of graph-
ical user interfaces (GUIs) that satisfy above requirements and are simple
and easy to use for editing.

1.1 Motivation

Practical editor applications still rely on traditional multi-window or multi-
buffer (split window) based user interfaces, though they do not support effi-
cient editing interfaces satisfying above requirements. Navigation and editing
with these interfaces are complicated and time-consuming because:

e No relationship between opened windows (buffers) is shown, and the
layout of the windows (buffers) is independent of the information space,
making it difficult to grasp the structure of the information and to un-
derstand where the user is editing. To show an outline of the structure,
one or more additional windows (buffers) are required. However, an
outline window has a difficulty in showing correspondences of multiple
windows to data in the information space.

e Management of multiple windows and buffers is tedious and time-
consuming. In multi-window systems, the many opened windows over-
lap during editing, making it difficult to find the window needed for
the next editing operation. Moreover, the user may have to rearrange



CHAPTER 1. INTRODUCTION 3

windows in order to see them simultaneously. In multi-buffer systems,
the user must explicitly split the window in the most suitable way (e.g.,
vertical or horizontal), and enter appropriate data in each buffer.

Distortion views [33, 48, 47, 29, 49, 41, 5, 11] are information visualization
techniques that solve problems of multi-window and multi-buffer systems by
showing details of multiple focal points and the overall context of the in-
formation displayed in a single view. To realize such a representation, dis-
tortion views magnify areas around focal points while shrinking other areas,
as shown in Figures 1.1 and 1.2, which show distortion views of a regular
2D grid. Multi-focus distortion views (Figure 1.2) allow the user to spec-
ify multiple focal points, and provide more flexible layouts of focused areas
than single-focus distortion views (Figure 1.1). Since distortion views always
display the relative positions of each editing part in the overall information
space, the user can easily grasp the structure of the information, and the
relationships between focal points in the overall context. In addition, since
magnified focal points are not overlapped in distortion views, there is no need
to rearrange multiple focal points.

This research was motivated by the fact that distortion views have not
been used in practical editor applications, although multi-focus distortion
views seem to have potential for editing large information spaces. However,
in reality, there are still problems with managing multiple foci, although
management is easier than in multi-window and multi-buffer systems. The
greater flexibility and freedom of multi-focus layouts often make greater de-
mands on the user than do single-focus views, in which a change of layout
involves only focus movement and a change in the magnification factor. In
multi-focus views, the user may have to navigate the information by per-
forming boring focusing and defocusing operations on multiple parts of the
screen, in order to obtain the layout most suitable for a particular editing
situation, which changes frequently during editing. The aim of this research
is to develop a user interface that allows users to easily obtain the layouts
required for various editing situations.



INTRODUCTION

CHAPTER 1.

P
ks B
lll‘

Figure 1.1: Single focus distortion views

Multi-focus distortion views

Figure 1.2:



CHAPTER 1. INTRODUCTION 3

1.2 Contributions

The major contributions of this dissertation are as follows:

e Development of a new GUI framework for navigating and editing struc-
tured information through multi-focus distortion views.

e Automatic focus management techniques for simplify users’ tasks, by
using a command history and application semantics.

e Implementation of the techniques as a GUI library, Hyper Mochi Sheet.

e Enhancement of usability with application semantics.

1.3 Content

Chapter 2 shows the application domain of our techniques using example
applications of Hyper Mochi Sheet.

Chapter 3 provides a survey of related literature on distortion view tech-
niques.

Chapter 4 analyzes general problems of using existing distortion views for
navigation and editing. We show that the most important issue is trade-off
between freedom of distortion layouts and the number of command invoca-
tions, and introduce our principles for solving these problems.

Chapter 5 proposes three interaction techniques for multi-focus manage-
ment: focus size prediction, predictive focus selection, and dynamic query.
Our techniques are shown to reduce the number of command invocations,
thereby keeping distortion layouts free and flexible.

Chapter 6 shows that the use of application semantics provides enhanced
support for navigation and editing, and decreases the number of command in-
vocations. This is demonstrated by a case study, using a visual programming
environment (VPE) as a sample application.

Chapter 7 discusses this work and describes contributions.

1.4 Publications

Some of the work in this thesis has been published or will be published in
the following papers.



CHAPTER 1. INTRODUCTION 6

Chapter 5

Masashi Toyoda, Shin Takahashi, and Etsuya Shibayama. Mochi Sheet:
A Zooming Interface witch Supports Efficient Editing of Large Visual Pro-

grams. Transactions of Information Processing Society of Japan, Vol. 39,
No. 5, pp. 1395-1402, 5 1998. in Japanese.

Masashi Toyoda and Etsuya Shibayama. Hyper Mochi Sheet: A Predictive
Focusing Interface for Navigating and Editing Nested Networks through a
Multi-focus Distortion-Oriented View. In Proceedings of ACM CHI’99, May
1999. Accepted and to be published.

Masashi Toyoda, Toshiyuki Masui, and Etsuya Shibayama. HishiMochi: A
Dynamic Search System with Nonlinear Zooming. In Workshop on Interac-
tive Systems and Software "98, pp. 143-152, December 1998. in Japanese.

Chapter 6

Masashi Toyoda, Buntarou Shizuki, Shin Takahashi, Satoshi Matsuoka, and
Etsuya Shibayama. Supporting Design Patterns in a Visual Parallel Data-
flow Programming Environment. In Proc. 1997 IEEE Symposium on Visual
Languages, pp. 76-83, September 1997.



Chapter 2

A Tour of Applications

Basically, our objective applications of Hyper Mochi Sheet are editors of
nested networks. Nested networks are hypertexts, which consists of hier-
archically nested nodes and hyperlinks. A node is a basic component of
hypertexts, and includes texts, pictures, or other primitive representations.
Nodes can be grouped hierarchically, so that hierarchical information can be
directly mapped to nested nodes. In addition, any two nodes may be linked
by a hyperlink, which allows the user to navigate from the source node to

the destination node.
Nested networks can represent various information structures such as:

e File systems,

e Hypertexts (e.g., HTML documents),

e Visual programs (e.g., JavaBeans),

e Object-oriented Designs (e.g., OMT and UML),
e Presentations.

In the following, we show three example applications of Hyper Mochi
Sheet; a visual programming environment, a presentation tool, and a direc-
tory editor.



CHAPTER 2. A TOUR OF APPLICATIONS

™)
o s
pass_answers pass anawers
Outs Outs P>
nqueens count answers count_answers count_answers
outs sk futsT W
ster worker nc M vamty fium fH+1 Num N
nisHeE [T ans I
process main
master_worker dispatchers
master dispatcher
nqueens_gen pass anawers
Sz Dephh outs Probs oo
Probs ns [ =
diepatcher packer linkedSender
- stnl abnl
dispatcher Probs Finalins Msgg[} R e |
robs D Comb ——
N:gs D Mesq Procs Zl
precess Ans ‘ ks D
e dispakeht 3 disy sbemantemanterna
] —
s _lizpatchen _isp pctepcteputapuctapacte
] e | —_— i
ledsutedsen
—i
adetodestondertadents
—
main
e |

Figure 2.1: A visual programming environment KLIEG

2.1 KLIEG: A Visual Programming Environ-
ment

Figure 2.1 shows a visual programming environment KLIEG [66, 53, 65, 52],
which addresses the scalability problem. KLIEG allows the programmer to
edit multiple modules in one view and to construct nested data-flow net-
works for programming in the large. In Figure 2.1, there are four modules at
the top level (nqueens, combiners, master_worker_nqueens, and dis-
patchers). The master worker nqueens module is the most magnified
in size, and nqueens is rather shrunken. In addition to data-flow links, a
program includes invisible hyperlinks from components to their definitions
and documents, and a document is also a hypertext. When the user follows
a hyperlink, the system focuses its definition. Moreover, the system auto-



CHAPTER 2. A TOUR OF APPLICATIONS 9

matically defocuses unnecessary parts. Using KLIEG, the user can easily
drag-and-drop components between modules, and can navigate through a
program using hyperlinks during editing.

2.2 KagamiMochi: A Presentation Tool

Figure 2.2 shows a novel presentation tool, KagamiMochi, which can handle
hierarchically structured slides with hyperlinks. In effect, it can be used
as a 2D visual outline processor for hypertexts. It allows the creator to
edit a presentation through multi-focus views. It can also simultaneously
show multiple slides and their overview during presentation. Each picture in
Figure 2.2 is a different view of the same presentation. The top view is an
overview, and the bottom view is a focus+context view in which the slide
titled “Structure of Diagrams” is the focus. With a single mouse operation,
the presenter can follow a hyperlink from a slide to the next, and the system
automatically moves the focus to the next slide and adjusts the size of the
slides. The creator of the presentation does not have to explicitly designate
these sizes during editing, as the system predicts the sizes from a history of
editing operations.

2.3 HishiMochi: A Directory Editor

Figure 5.15 shows a directory editor, HishiMochi![63]. It visualizes the di-
rectory structure of a file system as nested rectangles. The user browses the
directory structure by magnifying and shrinking directories. Each leaf node
is a text browser or an image viewer, so that the user can see the contents of
the file. In addition, HishiMochi provides editing functions such as adding,
deleting, copying, and moving directories and files.

'Hierarchy search interface for Mochi



CHAPTER 2. A TOUR OF APPLICATIONS

Hyper Mochi Sheet

Our Goal
structure of Diagrams Pragentation | Navigation
A Problem with Navi

Approach Classify Sizes Heuristics
Focus Selecliongs  Technique
Implementation

Related Work

Summary and Future Work

Our DGoaI

Structure of Diagrams

Hierarchically nested graphs

PresentationNavigatior ]

Figure 2.2: A presentation tool KagamiMochi




CHAPTER 2. A TOUR OF

Computers_and_Internet.d

APPLICATIONS 11

= Software Enplzunl arssnizs
Communicaions BuparEse] Programming_ L
Hardware
Personal comp] oo
Lamd ey —
PDAs
= — m
[} . w
PalmPilot
ndex
SCRU Filo SDK - for the acc complet for the Pilotand ather
uilfes in pro—fools.
ilot
ndex o
<GEE win32 for Filat - GU C compilerfo bild Plo]
s S isit 20 nef Vahoot Infermet Life magazine —- like Uiagra for your
~Fiah Pl pilot i o p
R3S o v s Click hiere now fo frytout Fres!
Graphics| = +IE i Work Pad - Filol compaiible. standld
»Life a5 . Pilot ~ a.story fold from the perspective of| o - _
es W SUbserUiant Pilat, Users s encouraged to add 4o th Copyight (<) |95!;': _‘ae;:ahoo!lnc Company Informafion - Suggesta — Caleulade
+ eciPilotinfa @
+0'Railly FalmPilot Canter
+Palm Il - offers PalmPilot and Palm Il PDAS.
+ Paimillora - news, applicafions, and resources for
oraanizsr,
« PaimPilot Easter Eags - Easter Egas forthe paimi
Filot, PalmPilat, Work Pad and Palmill
- palmpilot Health Care websi
+ palmpilotora - news, sothwars, and information sbe
= =i
My =]
eing =
Companents
Informafion_and_Docume oty
Caall Histor Linid
] Conusri watia vear_200
Multimedia. Internet Gomputer_Sicien|
Securfand | Reskial =

Computers_and_Internet.d

|compiler

VLas

VR

— igarashi \

Figure 2.3: A directory editor HishiMochi



Chapter 3

Literature Survey

Numerous distortion view techniques have been proposed in last twenty years.
Research on distortion views can be classified into information suppression
techniques, image transformation techniques, and combinations of these tech-
niques. The information suppression techniques determine the important and
unimportant parts of the information space based on the current focal points,
and suppress unimportant parts from the display; the image transformation
techniques distort the original image by magnifying focal points and shrink-
ing other parts.

We first introduce simple information suppression techniques. Then we
describe image transformation techniques in which some combination of these
techniques is included. Finally, we review multi-focus distortion views for
nested networks, which are suitable for our target information structures.

3.1 Information Suppression Techniques

3.1.1 Generalized Fisheye Views

Generalized fisheye views [15] proposed by Furnas balance local detail and
global context for various information structures, such as lists, trees, acyclic
directed graphs. This technique was applied to a syntax-directed editor of C
prograims.

Generalized fisheye views are based on the DOI (Degree of Interest) func-
tion, which calculates the user’s degree of interest in point x, and any points
that have less DOI than a certain threshold DOI are suppressed. The DOI

12



CHAPTER 3. LITERATURE SURVEY 13

function is represented as follows:
DOI(z|.= f)= API(z) — D(z, f)

where DOI(z|. = f) is the degree of interest in point x, given that the
current focal point is f, API(x) is the predefined A Priori Importance of
x, and D(z, f) is the distance between = and f. This means that the DOI
increases with API and decreases with distance from the focal point.

3.1.2 Fisheye Presentation Strategy

Mitta extended Furnas’ fisheye view and applied the algorithm to displaying
aircraft maintenance data [38]. The example showed a solenoid assembly
that includes a number of mechanical parts, such as screws and nuts.

The fisheye view was generated from the graph that represented parts
and their connectivity, and parts that did not have enough DOI were merely
suppressed. The improvement on Furnas’ fisheye view was the ability to
handle multiple focal points.

3.1.3 Fractal Views

Koike proposed fractal views [26], an improvement of Furnas’ fisheye view,
with the ability to handle tree structures with an unbalanced number of
branches. Koike used fractal algorithms to make the amount of visible data
for each focal point as equal as possible. This technique was applied to a
syntax-directed editor for C programs. Later, it was applied to the VRML
scene graphs in [27].

3.2 Image Transformation Techniques

Leung classified image transformation techniques in 1994[32], using trans-
formation functions and magnification functions. A transformation function
T'(x) transforms the point z in an undistorted view to one in a distortion
view. A magnification M (z) function, which is derived from the transfor-
mation function, represents magnification factor at the point x. Figure 3.1
shows these functions of a polyfocal projection [22], one of the earliest work
on distortion views, used to display statistical data on cartographic maps.
In Figure 3.1, x represents a distance from the current focal point (0) in an



CHAPTER 3. LITERATURE SURVEY 14

undistorted image, and 7'(z) represents the distance in the distorted image.
The distance is normalized by the distance from the focal point to the bor-
der of the screen. Using these functions, a regular two-dimensional grid is
distorted as in Figure 3.2.

Leung’s classification used such one-dimensional functions. Later, Keahey
extended this to two dimension, using a concept of nonlinear magnification
fields [24]. Though this concept provides more general description of dis-
tortion views, we use one-dimensional functions in the following to simplify
descriptions.

3.2.1 Bifocal Display

Spence and Apperley proposed a one-dimensional bifocal display for database
browsing [55]. Later, Leung extended the display to a two-dimensional ver-
sion [31], and used it to display a map of the London Underground.

The bifocal display is characterized by transformation and magnification
functions in Figure 3.3, and distorts a 2D regular grid as shown in Figure 3.4.
In contrast to a polyfocal projection, a bifocal display transforms a point to
x and y directions independently. Therefore, the focal region in the dis-
torted image is also a rectangle. The focal region is magnified uniformly, and
other regions are shrunken, either uniformly or uniformly to x or y direc-
tion according to their relative position to the focal region. The factors of
demagnification are determined so as not to change the size of the display.

The user navigates the map by moving the focal region by a touch-
sensitive screen. The user cannot change the size or the magnification factor
of the focal region.

3.2.2 Fisheye Views

Hollands compared the user performance with a fisheye view and a simple
scrolling view of a fictional subway network [19]. Hollands used the fisheye
view similar to the bifocal display. The user performed three tasks: a route
task, a locate/route task, and an itinerary task. The fisheye view improved
users’ performance in both the locate/route task and the itinerary task.

In this fisheye view interface, the user moved the focal point by clicking
on a station on the map. There were no other operations to change layouts
of the fisheye view.



CHAPTER 3. LITERATURE SURVEY

Transformation function Magnification function

1.5 5
4.5
1 4
Normalize@-9 [ 3.5
Distance 0 Magnificatioh
in Distorted Factor 2.5
Image 05 9
1.5
-1 .
-1.5 ' ' ' 0.5

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Normalized Distance in Undistorted Image Normalized Distance

Figure 3.1: A transformation function of a polyfocal projection and the cor-
responding magnification function

FH
T
g g BT o g it
PR
T
S o

Figure 3.2: A polyfocal projection on a 2D regular grid



CHAPTER 3. LITERATURE SURVEY 16

Transformation function Magnification function
1 T T T 2 T | T
T(x) 18 M(x) — |
0.5 /,/’ — 1.6 - _
Normalized /’ 14 | -
Distance N / i 1\~Iagniﬁcat'10? N i
in Distorted / Factor =~
Image / = n
0.5 | - 0.8 |- —
0.6 = =
-1 | | | 0.4 | | |
-1 05 0 0.5 1 -1 05 0 0.5 1
Normalized Distance in Undistorted Image Normalized Distance

Figure 3.3: A transformation function of a bifocal display and the corre-
sponding magnification function

Figure 3.4: A bifocal display on a 2D regular grid



CHAPTER 3. LITERATURE SURVEY 17

3.2.3 Perspective Wall

The perspective wall [33], proposed by Mackinlay, gives a three-dimensional
look and feel to distortion views, as shown in Figure 3.6. Wide linear infor-
mation is folded into a three-dimensional visualization, in which the center
panel represents detail and two perspective side panels represent context.
Transformation and magnification functions for the x direction are shown in
Figure 3.5. This technique is used to visualize files, sorted by their modified
time and classified by their type.

The perspective wall allows the user to move arbitrary points to the center
panel and to change the magnification factor of the center panel. The user
cannot change the size of center panel.

3.2.4 Graphical Fisheye Views

Sarker proposed two types of graphical fisheye views [48] for topological
graphs. One was a cartesian fisheye view and the other was a polar fish-
eye view. Both views were based on one transformation function, shown in
Figure 3.7. Transformation was performed only on nodes of graphs, then
these nodes were linked by straight lines.

The cartesian fisheye view (the left hand side of Figure 3.8) transforms
a point to z and y directions independently. The center of Figure 3.8 shows
the transformation based on the polar coordinate system. The polar fisheye
view remaps this transformation on a rectangular space, as shown in the
right hand side of Figure 3.8.

Serker and Brown also provided an information suppression/enhancement
mechanism, based on the concept of a priori importance (API) proposed by
Furnas. This scaled nodes by their importance, and suppressed nodes with
less importance than a threshold value.

The user can move the single focal point by dragging with the mouse.
The user also changes the parameters of the transformation function and the
APT function, using a dialog box.

3.2.5 Document Lens

The perspective wall has a problem: it cannot use spaces in the four corners.
The document lens [47] overcomes this problem by adding transformation
in the y direction to the perspective wall. The document lens is similar in



CHAPTER 3. LITERATURE SURVEY

Transformation function

1 | | |
T(x)
0.5 e .
Normalized /
Distance N /
in Distorted /
Image /
-0.5 .
1 ! ! !
-1 05 0 05

1

2
1.8
1.6

Magnificatiof [~

Factor 1.2
1

0.8

0.6

Magnification function

1

05 0

0.5

Normalized Distance in Undistorted Image Normalized Distance

Figure 3.5: A transformation function of the perspective wall and the corre-
sponding magnification function

N

/// I~
T =
T |
| B
L~

Figure 3.6: The perspective wall of a 2D regular grid



CHAPTER 3. LITERATURE SURVEY 19

Transformation function Magnification function
1 | ] | )
T(x) 45 -
0.5 2 asl i
Normalized / 3L _
Distance 0k f B 1\’Iagniﬁcat'§on N B
in Distorted I/ Factor 9
Image / % B N
05 F / N 1.5 | n
A 1 [ —
0.5 .
-1 ! ! ! 0 ! ! !
-1 -05 0 0.5 1 -1 -05 0 0.5 1
Normalized Distance in Undistorted Image Normalized Distance

Figure 3.7: A transformation function of graphical fisheye views and the
corresponding magnification function

Figure 3.8: Cartesian, polar, and normalized polar fisheye views of a 2D
regular grid



CHAPTER 3. LITERATURE SURVEY 20

appearance to the polar fisheye view of graphical fisheye views, except that
the focal region is magnified uniformly as a rectangular lens.

This technique can be used to browse a document laid out on a two-
dimensional surface. The user can move a lens of fixed size over the surface
of the document in 3D.

3.2.6 Table Lens

The table lens [46] applies distortion views to browse large tables, such as
spreadsheets. The appearance of the table lens is similar to the bifocal dis-
play, except that it allows multiple foci and focal regions are based on discrete
rows or columns. In addition, the table lens integrates multiple visualizations
of data. For example, a numerical value is represented as a bar graph when
it is in a context region, and is also represented as a text when it is in a focal
region.

The user can select multiple rows or columns as focal regions and can
flexibly control the focal regions. The user can therefore zoom a focal region,
adjust a number of cells in a focal region, and slide a focal region.

3.2.7 FOCUS

The FOCUS [56] is another application of distortion views, to browse tables
that include data that have multiple attributes. The user can perform various
queries by direct manipulation, using cell sorting and selecting operations.
For example, the user can select data based on a range of an attribute value,
by sorting cells by the attribute value, and can select a desirable range by
dragging with the mouse.

3.2.8 Hyperbolic Browser

Hyperbolic Browser [29] is a technique to display large tree structures. A
tree is laid out on the hyperbolic plane and is mapped onto a circular display
region, in which the focal node is at the center. It is extended to handle two
foci in [30].

The user can select a focal node by clicking on the desired node using
the mouse. The node is moved to the center of the display and other nodes
are remapped on the hyperbolic plane. This transition is smoothly animated.



CHAPTER 3. LITERATURE SURVEY 21

The user also moves the any node to any position by dragging with immediate
feedback.

3.2.9 CATGraph

The CATGraph algorithm|[23] uses the arctangent function for a transforma-
tion function. Similar to graphical fisheye views, it provides the cartesian
and the polar transformation. In addition, it allows multiple foci.

The user can select multiple nodes as focal points, and can scale these
points. The user can also create, delete, and move nodes by simple mouse
operations.

3.2.10 Nonlinear Magnification Fields

The distortion views that we have shown distort images by transformation
functions. In contrast, nonlinear magnification fields[24] allow the user to
directory modify the shape of a magnification function by deriving the trans-
formation function from the shape of the magnification function. The user
can flexibly combine various distortion effects.

Keahey proposed a magnification brush interface that allowed the user
to magnify an arbitrary area by painting the area. In addition, Keahey pro-
posed a type of automatic focus management technique, called data-driven
magnification, in which focal points are dynamically moved according to data
that change in real-time. For example, Keahey applied this technique to a
simulated air traffic control system, where regions of higher traffic density
are automatically magnified.

3.3 Multi-focus Distortion Views for Nested
Networks

3.3.1 Multi-viewpoint Perspective Display

Multi-viewpoint Perspective Display[60, 35] is one of the earliest works on
multi-focus distortion views of nested networks. In [35], three distortion
techniques were proposed and compared:



CHAPTER 3. LITERATURE SURVEY 22

Fisheye display This is similar to Sarker’s polar fisheye view
[48], except that it uses arctangent as the transformation
function.

Orthogonal fisheye display This is similar to Sarker’s carte-
sian fisheye view [48], except it uses arctangent as the trans-
formation function.

Biform display This improves the bifocal display [31] by sup-
porting multiple foci.

It is concluded that the biform display is appropriate for displaying nested
networks, since it preserves more of the topological relationships of networks
than other techniques.

The biform display is used in D-ABDUCTOR|36] system, which is a dia-
gram based ideas organizer based on the KJ-method. Using D-ABDUCTOR,
the user edits layouts of text cards with segments of ideas by moving, group-
ing, and linking related cards with lines. During editing, the system auto-
matically arranges layouts of cards [61]. This automatic support improves
users’ performance of editing processes [37]. With biform display, the user
navigates hierarchy of cards by opening and closing groups, and by zooming.

Though D-ABDUCTOR provides good support for editing and navigating
nested networks, it lacks support for navigation through links, and automatic
management of multiple foci.

3.3.2 Treemaps

Treemap [20] visualizes hierarchical information structures efficiently using
the available display space. It maps hierarchies onto a rectangular region in
a space-filling manner. For example, it slices the display space horizontally
for the first hierarchy, then cuts each slice vertically for the second hierarchy,
and so forth. The position, size, and color of tiles convey the properties of
nodes. For example, the size of a file in a directory can be mapped to the
size of the corresponding tile.

Treemap allows the user to enlarge or shrink each tile. The user can also
zoom into a sub-hierarchy, so that only the sub-hierarchy is displayed on the
screen.

In addition, it also supports dynamic queries [54], which continuously
update a search result as the user adjusts a slider or selects a button to ask a
simple question about a property. If the user selects a property range, nodes



CHAPTER 3. LITERATURE SURVEY 23

within the selected range are highlighted. The user can also filter out all of
the nodes outside the selected range. However, since filtering changes mosaic
layouts drastically, the user may become confused.

3.3.3 Layout-independent Fisheye View

In [42], Noik also shows an algorithm that generates multi-focus distortion
views of nested networks. This algorithm is not based on transformation of
given layouts of nodes. Rather it determines sizes of nodes based on focal
points and a layout-independent DOI function before a graph layout phase.
Therefore it can generate a view that is not affected by the original layout
of nodes. Noik applies this algorithm for navigating large hyperdocuments
with nesting and link inheritance [14] techniques in [41].

In these papers, however, there is little discussion of how to construct
the user interface for navigating hyperdocuments and managing multiple
foci. They do not support editing, because implementations of graph layout
algorithms are also left to the application programmer.

3.3.4 The Rubber Sheet Approach

Sarker proposed the rubber sheet approach[49] based on a morphing tech-
nique. The user can specify multiple focal regions as arbitrary closed convex
polygons called handles, and can stretch these regions like a rubber sheet.
Nodes in a focal region are scaled uniformly, and the other nodes are arranged
by a morphing function.

This approach treats hierarchical information. When the area of a handle
becomes large enough, detailed information (e.g., child nodes) is displayed in
the handle. However, it is difficult to access nodes deep within a hierarchy,
because the user cannot specify a focal region within an existing focal region.
To access deep node, the user should precisely select a small area in the non-
distorted view. In most cases, this is impossible.

The user can also edit layouts of nodes. However, since this technique does
not have a general inverse mapping, areas that can be edited are restricted
to the inside of handles.



CHAPTER 3. LITERATURE SURVEY 24

3.3.5 Pad++

Pad++[7, 8] is basically a single focus and pan/zoom based interface. It
realizes real time animation of panning and zooming in a logically infinite
space including texts and images. In Pad++, each graphical object can be
scaled individually. It supports multiple foci by multiple windows called
portals. Since it does not perform automatic portal management, the user
has to create, delete, and arrange multiple portals manually. Pad++ also
supports hyperlink navigation in a single focus view, in which a focus moves
along hyperlinks.

A web browser[9] in Pad++ is also developed. It integrates a web browser
with distortion views of a history tree of visited pages. When the user follows
a hyperlink, the destination page is zoomed, and other nodes are shrunken.
In addition, the user can see multiple pages simultaneously by explicitly
zooming each page.

In addition, Pad++ suffers from the problem of “desert fog” [21], a con-
dition wherein a view of an information space contains no information for
navigation. The solution proposed in [21] is to display indicators for invisible
objects. Although this is useful for navigation, these indicators impair the
original views. Originally, those solutions were unnecessary for distortion
views.

Editing in the Pad++ environment is also difficult. Since each graphical
object has its own scale, the user can not correctly grasp the size of the ob-
ject. The multiscale editor MuSE[17] solves this problem by allowing editing
through space-scale diagrams (details can be found in [16]). However, the
interface is still indirect for ordinary users.

3.3.6 The Continuous Zoom

First, Schaffer modified the bifocal display technique for networks that are
clustered hierarchically by enclosing rectangles, and named the algorithm
the variable zoom [50]. This technique was applied to a network supervisory
control system. Shaffer compared this technique with traditional pan and
zoom interfaces, and showed by user tests that the variable zoom improved
user performance. Later, Dill improved the variable zoom by continuous
animation of zooming in [13], then Bartram improved space utilization using
the DOI approach, and named the algorithm the continuous zoom [5].

The continuous zoom supports efficient navigation through hierarchical



CHAPTER 3. LITERATURE SURVEY 25

networks. The user controls the level of detail in nodes by opening and
closing nodes. The child nodes of an open node are visible, allowing the user
to see more detailed view. An open node is allocated more space than closed
nodes. Closing a node makes the child nodes invisible, and makes it smaller
than any open nodes. In addition to this automatic resizing, the user can
resize nodes continuously with the mouse. The size of a node increases or
decreases, while the user is pointing at the node and holding down a button.

However, the continuous zoom only supports navigation between a parent
and children of node hierarchy, and neither support navigation with hyper-
links nor automatic multi-focus management. Moreover, it lacks support for
editing networks.

3.3.7 The Intelligent Zoom

Bartram improved the continuous zoom with intelligent support by the se-
mantics of the network supervisory control system, and this technique was
called the intelligent zoom |3, 6, 4].

This suggests opening (magnifying) a node in an alarm condition, and
when the node is opened it automatically selects an appropriate representa-
tion from several aspects of the node, such as a bar chart or a trend diagram.
It also adjusts the size of nodes using DOIs based on alarm conditions of
the system and user interactions. Since its application is a real-time control
system, Bartram puts emphasis on providing awareness of alarm conditions.

This is one of several attempts for automatic focus management. How-
ever, since it merely suggests opening and closing nodes, it does not reduce
explicit focusing and defocusing.

3.3.8 3-Dimensional Pliable Surface

3-dimensional pliable surface [11] generates a distortion view using the three-
dimensional gaussian curve. This transforms a two-dimensional flat surface
into a three-dimensional curved surface. The user selects arbitrary-shaped
regions as foci, and they are pulled toward or pushed away from the user’s
view. Multiple focal regions are blended smoothly. It also handles nested
information. When a focal region is magnified, the details in the region are
displayed.

Both the rubber sheet [49] and this technique put emphasis on interfaces
that support flexible selection of a shape as a focal region. These interfaces



CHAPTER 3. LITERATURE SURVEY 26

are effective for applications such as geographical maps. However, they are
less effective in navigation with hyperlinks. It is also difficult to access nodes
deep within a hierarchy, because the user cannot specify a focal region within
an existing focal region.

3.3.9 Dynamic Fisheye Views

Noik proposed a generalized data visualization framework, dynamic fish-
eye views[43]|, which combines dynamic queries[54] and mapping, and im-
plemented the Graphite system. Dynamic mapping refers to the ability to
dynamically assign and modify mappings from data attributes to graphic
properties at run-time.

A main dynamic query widget of Graphite is the frequency distribution
histogram of a single numeric attribute. The range of the attribute is divided
into a user-specified number of subranges, and the user can select arbitrary
subranges to highlight satisfied nodes or to mask unsatisfied nodes. In addi-
tion, Graphite also supports regular (text) expression matching. The results
of matching can be assigned to an attribute of a node. Matching is performed
every time the user modifies the regular expression string. However, regular
expression matching is limited to the identifier or labels of either the nodes
or links in the graph.

Graphite also introduces the notion of focal points and similarity at-
tributes for the user to perform similarity queries, that is to find nodes similar
to the focal points. Graphite allows the user to define customized similar-
ity functions that determine values of similarity attributes, and generates
fisheye views using similarity attributes. Every time the user changes focal
points, similarity functions are recalculated, and the results are reflected to
the fisheye view display.

3.3.10 SHriMP

The SHriMP[58] visualization technique integrates distortion and pan/zoom
viewing and is applied to a C programming source code browser. The user can
combine those two views, for example, by zooming into and then distorting
a subgraph. Distortion views in SHriMP are based on the SHriMP fisheye
view algorithm [57] that supports various layout adjustment strategies for
nested graphs.



CHAPTER 3. LITERATURE SURVEY 27

Though SHriMP also supports navigation by hyperlinks with animations,
it supports single focus navigation only by using pan/zoom effect. When the
user follows a hyperlink, it first zooms out so that both the source and the
destination can be seen, then zooms into the destination. This two-step effect
is important to avoid confusing the user.



Chapter 4

Analysis

Although various distortion view techniques have been proposed, as shown
in Chapter 3, they have not been used for practical editing tasks. In this
chapter, we first discuss about recent trends in distortion views and then
explain the problems associated with using distortion views for navigating
and editing nested networks. Finally we show our approach to solving the
problems.

4.1 Recent Trends in Distortion Views

Recent distortion view techniques allow the user to freely arrange foci and
their shapes. However user interfaces for handling foci have become compli-
cated. Table 4.1 compares user interfaces for distortion views. The following
is the transition of those user interfaces.

1. Single focus, fixed focus shape, without scaling
2. Single focus, fixed focus shape, with scaling

3. Multi-focus, fixed focus shape, without scaling
4. Multi-focus, fixed focus shape, with scaling

5. Multi-focus, free focus shape, with scaling

The first has the most simple interface, and the last has the most complicated.
To use the first interface, the user only needs to select a focal point, whereas

28



CHAPTER 4. ANALYSIS

Table 4.1: Comparison of user interfaces for distortion views

year |# of |type of | scale || graph | hyper | query
foci | foci edit | link
Information suppression
Generalized Fisheye Views |[1986| 1 node
Fisheye Presentation 1990 N | node
Fractal View 1995 1 | node
Image transformation
Bifocal Display 1989| 1 rect
Fisheye Views 1989 1 rect
Perspective Wall 1991 1 rect | +/
Graphical Fisheye Views 1992 1 node | /
Document Lens 1993| 1 rect | +/
Table Lens 1994| N | rect | /
Hyperbolic Display 1994 2 | node
CATGraph 1994| N | node | /
FOCUS 1996| N rect norm
Nonlinear Magnification 1997| N any Vv
Image transformation for nested graphs
M-V Perspective Display 1991| N rect V4 4
Treemaps 1992| N rect N4 dyn
Layout-independent Fisheye |1993| N rect N4
Rubber Sheet 1993| N | poly | / Vv
Pad++ 1994| N | rect | / Vv v/ | norm
Variable Zoom 1994 N | rect | /
Intelligent Zoom 1994| N | rect | /
Continuous Zoom 1995| N rect Vv
3D pliable surface 1996 N | poly | /
Dynamic Fisheye Views 1996 N | node | / dyn
SHriMP 1997| N rect V4 4

# of foci; 1: single-focus, N: multi-focus
type of foci; node: node of graph, rect: rectangular region,
poly: polygonal region, any: any shape
query; norm: normal query function, dyn: dynamic query function

29



CHAPTER 4. ANALYSIS 30

to use the last interface, the user must specify multiple foci and their shape,
and must scale them.

This transition shows that recent distortion view interfaces require the
invocation of many commands for the user to obtain a desirable layout. Note
that those interfaces are intended only for navigating information spaces.

In addition to those navigation commands, various commands (e.g., cre-
ating, deleting, and moving nodes) must be provided to supporting editing.
The resulting interface therefore has too many commands for users to handle
efficiently.

4.2 Analysis of the Editing Task through Dis-
tortion Views

Next, we analyze the task of editing nested graphs through multi-focus dis-
tortion views. The editing task can be divided into two processes, as follows.
During editing, the user repeatedly performs these processes.

1. Nauwigation for editing

The user creates a distortion view suitable for the current or next edit-
ing situation. The user magnifies nodes that are to be edited, and
shrinks nodes that are unnecessary for the current or next editing sit-
uation.

2. Editing

The user edits magnified parts by creating, deleting and moving nodes
in the graph. Hyperlinks are also created and deleted.

As an example, we show a simple editing task in our visual programming
environment KLIEG in Figures 4.1, 4.2, and 4.3. Figure 4.1 is the initial
situation, in which all modules are shrunken. The user plans to drag-and-
drop a process from the node_pools module to the search_framework
module.

In the navigation for editing phase, the user magnifies the appropri-
ate modules one by one. Figure 4.2 is the situation when navigation has
finished. There is a placeholder node_pool to drop a process on the top-
right of search_framework, and there are processes for the placeholder in
node_pools such as stack and queue.



CHAPTER 4. ANALYSIS

31

noae poois

search_controllers

Figure 4.1: Initial situation

issionaries_cannibal

] [ ] [ 10 ]
queue gueue_loop

Jueve_loopyuene_loop

UeUE gweve loop  jueve loopgueve loop

main 50 test
—_— Outs j —1

node pools
StaCk SR stack_loop stack_loop  stack_loop
neh) i) 1 1
stack stack_loop  stack_loop stack_loop

puts_put
Insh | oer ot I o] 1

puts_put puts_put

search framework

test

search

controller

default

Figure 4.2: After

Pool 1]

initializer node_pool

test xz:
node_tree
node m_and_c
Impl
main 5 nsp
test

navigation for editing




CHAPTER 4. ANALYSIS 32

node pools

W tl kl
stacl stack_loop stack_loop stack_loop  stack_loop

[Tsh] i)
stack stack_loop  stack_loop stack_loop

queue uetie_loop Jueve_loopjueve_loop pUts—pUt puts_put puts_put ——r————
prd 2 |
[ o i | 2 = Y — search frartne:vnrk
es
UeUE gweve loop  jueve loopgueve loop —
| | — controller
mai test test default initializer stack
oush] 1 Poolp nt
test m
node_tree
Cntl
node m_and_c

. atell Impl
main i nsf

test

_J

Figure 4.3: After editing by drag-and-dropping

In the editing phase, the user drags the stack process on the top-left of
node_pools to the placeholder node_pool. Figure 4.3 shows the result.

Of these two processes, navigation for editing is more important. Issues
concerning the editing process are almost the same as those in common dia-
gram editors. It is in the process of navigation for editing that issues peculiar
to distortion views arise.

During navigation for editing, it is important that the user can quickly
obtain multi-focus distortion views. Multiple foci are necessary in many edit-
ing situations such as when dragging information from one node to another,
editing one node comparing to other nodes, and creating a hyperlink between
two nodes. Since the set of nodes required changes frequently according to
various editing situations, the user has to focus and defocus multiple nodes
whenever a change occurs.

To obtain an objective distortion view, the user must find the required
nodes, magnify them to appropriate sizes, and shrink unnecessary nodes.
In common hypertext editors, hyperlink navigation and search functions are
used to find objective nodes. It is important to support these functions in
editors with distortion views. Here are important issues for the support of



CHAPTER 4. ANALYSIS 33

these functions:

Hyperlink Navigation The system should allow users to navigate infor-
mation space by following hyperlinks. That is, when the user follows a
hyperlink by clicking on the anchor, the system should automatically
focus the destination to an appropriate size.

This support is necessary, because destination nodes may be invisible
or squashed, even in multi-focus distortion views, and it is difficult to
locate them in such cases.

Search Functions Search functions are necessary, because it is difficult and
time-consuming task to find objective data within a large information
space by resizing and hyperlink navigation. The system should magnify
objective nodes to appropriate sizes, so that the user can quickly edit
these nodes.

4.3 Problems with Existing Distortion Views

Although there have been various distortion view techniques, it is difficult
to use them for editing nested networks. In the first place, early techniques,
such as the perspective wall[33] and graphical fisheye views[48], are useless for
editing, because they support only single focus views. Moreover, supporting
multi-focus is not sufficient. In this section, we discuss general problems in
existing distortion view techniques and explain what makes the editing task
complicated and time-consuming.

4.3.1 Problem with Sizes of Nodes

The user can resize a node to arbitrary sizes during editing, but it is tedious
to focus and defocus the node by resizing every time its contents are edited.
Such repeated resizing prolongs the navigation time required when editing.
It might be useful if the system allowed the user to focus and defocus a
node to appropriate sizes in simple operations, such as the open/close opera-
tions in the continuous zoom[5]. Such automatic focusing is also necessary to
support hyperlink navigation. When the user follows a hyperlink, the system
should focus the destination node of the hyperlink at an appropriate size.
A set of appropriate node sizes for focusing and defocusing differs between
nodes, according to contents of the node and the context in which the node



CHAPTER 4. ANALYSIS

34

Introduction

The Visual Language KLIEG

| Visual Design Patterns ‘

‘ Scaling-up Issues ‘

. Related Work |

Introduction

The Visual Language KLIEG

Design Patterns in VPE

‘ A Support for Multiple Aspects ‘

A Support for Multiple Inplementations

‘ Visualizing Program Behaviors ‘

. Conclusion

Scaling-up Issues
Related Work
[ Conclusion |

Figure 4.4: One sample presentation created by one test user

Introduction

The Visual Language KLIEG

wisual Design Pattems

Scaling-up Issues

Related Wor

Conclusion

Introduction

The Visual Language KLIEG

Design Pattems in VPE

Asupport for Mutiple Aspects

|A support for Multiple Implementations|

il

‘ Visualizing Program Behaviors ‘

Scaling—up Issues
Related Wor

Conclusion

Figure 4.5: Another sample presentation created by an another test user




CHAPTER 4. ANALYSIS 35

is placed. These sizes are important for applications such as a presentation
tool, in which the user creates a document to show other people.

It would be a tedious and repetitive for the user to explicitly designate
the sizes of each node. Therefore it is desirable that the system automatically
decides the size of a node from its contents and from the context. However,
automatic designation is difficult, because the size also depends on the user’s
preference. We show the difference of node sizes caused by user’s preference
in Figures 4.4 and 4.5. They are two presentations with the same contents,
created by two users. One of slides is focused in the right snapshot in each
figure. In spite of having the same contents, the sizes of slides, both when
focused and defocused, differ in the two presentations.

4.3.2 Problem with Hyperlink Navigation

The layout that is desirable after following a hyperlink may vary according to
the current editing situation. When the user follows a hyperlink, it is always
necessary to focus the destination of the link, but the source and other foci
may or may not be necessary. On the one hand, if the user still wants to edit
the source, both the source and the destination should be focused. On the
other hand, after the user has finished editing the source, it is not necessary
to retain the focus on the source.

As an example, we show a simple navigation task using a presentation tool
in Figure 4.6. If viewing slides consecutively, the focus on the current slide
will become unnecessary when the user follows a hyperlink. In Figure 4.6 (b),
the system should automatically shrink the title slide when the user follows
the hyperlink to the slide “Our Goal.” In Figure 4.6 (c), the slide “Our Goal”
should be shrunken in the same way.

Figure 4.7 shows another navigation example in a visual programming
environment. In case of editing visual programs, it is necessary to retain
foci on nodes that are being edited. In Figure 4.7 (a), the user is editing
a data-flow diagram master at the center of the bottom-left module, and
intends to check the behavior of the pass_answers component by following
the hyperlink to its definition. In this case, the system should retain the
focus on master when the user follows the hyperlink (Figure 4.7 (b).)

Although Pad++[7] and SHriMP[58] support hyperlink navigation, they
only move the focus to the destination of a hyperlink, and do not address
this problem. Therefore, when the source is necessary, the user must keep
the previous focus on the source using tools such as portals in Pad++. If the



CHAPTER 4. ANALYSIS 36

Hyper Mochi Sheet:
Predictive Focus Techniques
for Navigation
in Multi-focus Zooming Editors
Tokyo Institute of Tt Our Goal
To support navigation for editing

Masashi Toyoda Etsu

in hierarchica | pmismm *

Applical

Hyper och Shest
Our Goal

Visual program Structure of Diagrams
Structured 2D outl

[
Related Work Hierarchically nested graphs
immary and Future ¥

PresentationNavigatior

Figure 4.6: A hyperlink navigation in our presentation tool

system were to always keep the focus on the source as the default, the user
would have to manually defocus unnecessary nodes after following the link.
These are tedious and time-consuming tasks.

In addition, the system could provide multiple commands for following a
hyperlink, so that the user can select a layout from multiple candidates. In
this case, however, the user should consider which layout is appropriate for
the current editing situation before following the hyperlink, and must select
an appropriate command. This is cognitive overload.

4.3.3 Problem with Search

When editing, the search function is frequently used to find components to
edit. It is important that the system can quickly provide distortion views
in which objective data is focused. Though some distortion views support
search functions, obtaining such distortion views is time-consuming for the
user because of the way search results are displayed. Search results are shown
using highlighting in most distortion views with search functions, such as
Treemaps|20] and Dynamic Fisheye Views[43]. Therefore, to edit the result



CHAPTER 4. ANALYSIS

nqueens

combiners
e
-

.
0’
. hypprlin to
master_worker_nqueens L4 inition part
process ] p
"
"
L]
master worker :
master L]
. =
nqueens_gen pass_answers
7'Size /Depth " Outd w
—JM dispatcher  a— TP, J-

Fros B> Comb B
@{'/W.KSH Ansp,

37

:
—
Wi 2w
\queens_wdrkeiqueegs worke! “aqueens_worke:
[Prace E?Ds_b A Y
Ans, Ans, Ans,
gMasIer j
main
(a)
combiners
355 answer pass_answers
out Ut
R 4
o [Ansp Anspf
'¢
*
k4
o count_answers count_ answers rs
ou s
o Fum sty U] Num N
' [Ansl sl Anslll
.
1 ]
.
B .
" main
\J
\J
.
-+
A
master_worker_nqueens
aecess
master werker ”
master hd
] (] ]
nqueens_gen pass_answers
“Szs Dl . " Culd ¥
Pt dispatcher [Ans
o complf ™ = 8
Ansbl
Ans, Ans, Ans,
= Master>]
mair
(b)

Figure 4.7: A hyperlink navigation in a visual programming environment



CHAPTER 4. ANALYSIS 38

of a search the user must magnify the appropriate highlighted part manually.

Another way to show search results is by list presentation. For example,
in Pad++[7], the user first invokes a search dialog box and inputs keyword
into a text input box; the result of the search is shown as the list of node
identifiers. When the user clicks one of these identifiers, the focus is moved to
the corresponding object. This is an indirect and time-consuming interface.
It is also difficult to find objective data from numerous candidates.

4.4 Principles of Desirable User Interfaces

Essentially each problem concerns trade-off between freedom of distortion
layouts and an increase in the number of command invocations. To solve
these problems, it is important to keep distortion layout free and flexible
and to reduce the increase of command invocations through automatic focus
management. We show the principles of desirable distortion view interfaces
in the following.

e Distortion layouts must be free and flexible

We must avoid restricting distortion layouts (e.g., to single focus) when
simplifying user interfaces. Support for multiple foci and magnification
of focal points is indispensable.

e Automate boring, repetitive work

Boring, repetitive work can be reduced by automatic invocation of com-
mands. A history of command invocations can be used as a key to pre-
dict timing of command invocation. The prediction algorithm should
be constructed based on user tests, and not on ad-hoc heuristics. This
principle is relevant to the problem with sizes of nodes.

e Automate multi-focus management

The work needed for layout adjustment should be reduced by automatic
multi-focus management, which automatically maintains necessary foci
and defocuses unnecessary foci. Since the need for foci may depend on
application semantics, it must be easy for the application programmer
to introduce the semantics to automatic management behaviors. This
principle is relevant to the problem with hyperlink navigation.



CHAPTER 4. ANALYSIS 39

e Reduce the time needed to switch from searching to editing

The user should be able to quickly obtain a suitable editing layout from
a search result. That is the search result should be not only highlighted
but also automatically focused immediately. This principle is relevant
to the problem with search.

Though there are some attempts to manage multiple foci automatically,
the purpose of their focus management is different from ours. The Intelligent
Zoom[6] and the data-driven magnification[24] manage multiple foci based
on real-time data, such as network conditions and air traffic data, and uses
zooming effects to alert the user to situations. It is easy to know the compo-
nent to magnify in such applications. However, the purpose of our automatic
focus management is to decrease user’s editing tasks by automatically dis-
carding unnecessary foci. This needs more heuristics than systems such as
the network management system or air traffic control system.



Chapter 5

Interaction Techniques for
Focus Management

Based on the principles in Chapter 4, we propose three interaction techniques
for automatic multi-focus management in the following.

e Focus size prediction automatically determines a pair of node size, one
being used when the node is focused and the other being used when
the node is defocused. It is not necessary for the user to explicitly set
these sizes, rather, our technique predicts appropriate sizes of nodes
using a history of editing commands.

e Predictive focus selection automatically selects necessary foci and dis-
cards unnecessary foci during navigation with hyperlinks. When fo-
cusing and defocusing nodes, this technique uses sizes predicted by the
focus size prediction. Since necessities of foci may depend on applica-
tion semantics, Hyper Mochi Sheet provides a default focusing behavior
that can be customized by the application programmer.

e Dynamic query Dynamic query function allows the user to easily find
scattering objective data from hierarchical information, and to quickly
obtain a suitable editing layout from a search result. It shows search
results clearly by automatically magnifying nodes matched to a query,
using node sizes predicted by the focus size prediction. The transitions
of layouts occur dynamically during keyword inputs. Hyper Mochi
Sheet provides a default search engine that can be customized by the
application programmer.

40



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENT41

Figure 5.1: A distortion view in Hyper Mochi Sheet

In this chapter, we first introduce the basic user interface of Hyper Mochi
Sheet. Then we describe three interaction techniques: focus size prediction,
predictive focus selection, and dynamic query.

5.1 Basic User Interface

To generate distortion views, we use the Mochi Sheet algorithm|[67, 68], which
is similar to the continuous zoom[5]. Figure 5.1 displays an application of
our approach to a 2D grid graph. When some nodes are magnified in the left
view, it becomes impossible to display all nodes in their desirable sizes on
the screen. In this case, all nodes are compressed uniformly in the horizontal
and vertical directions keeping relative positions of nodes as the right view.

In addition to the continuous zoom algorithm, our algorithm avoids over-
lapping of nodes by simply aligning nodes in the horizontal and vertical
directions during moving and resizing nodes. To use screen space more effi-
ciently, it also meshes adjoining rows or columns together. For example, in
the right view of Figure 5.1, two columns in the left are meshed together.

In the following, we describe the basic user interface of Hyper Mochi
Sheet, then explain details of the Mochi Sheet algorithm.



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENT42

- [ eem——

1!! | ____*mr_;__!(z’_)__ )
I e | SO y

.I

il R o
=L | 7] | ve

| l | |
¢~ —r——— TRy T T TR T

L] | G

:

‘;’_» ",’ x1 X2 X3

N ~Threshold //

Figure 5.2: Generating alignment lines and arranging nodes

5.1.1 User Interface

The user can focus and defocus nodes by stretching and shrinking them
with handles that are shown as small black rectangles in Figure 5.1. The
width and height of a node can be stretched independently to each direction.
Multiple nodes can be stretched simultaneously by selecting multiple nodes.
All selected nodes become the same size as a node stretched by a handle. In
addition the user can move nodes by dragging.

We also use semantic zooming [44], which changes an amount of infor-
mation of a node according to its size. For example, in a presentation tool,
when a slide is small, we can see only its title. When a slide is large enough,
we can see details of the slide.

5.1.2 Mochi Sheet Algorithm

The Mochi Sheet algorithm is based on a basic algorithm that determines
a layout of child nodes in one parent node. The basic algorithm takes the
size of the parent node, and positions and sizes of child nodes as inputs,
and outputs appropriate positions and sizes of child nodes. By recursively
applying the basic algorithm from the root node, the Mochi Sheet algorithm
determines a layout of an entire hierarchy. The following is the procedure of
the basic algorithm.



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENT43

! ! e = T

. =
BRI | |

i | I N P ]
I =

[

¥ J{ | | |
J L — ry

[ I | [ ] |_ ______ ]

Figure 5.3: A layout when the required width is increased

- =

Figure 5.4: Distributing rest space



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENT44

(1) Generate alignment lines First, a vertical and a horizontal lines are
generated for each node. Both lines pass through the center of the
node (The left hand side of Figure 5.2). Then two adjoining lines are
merged, if the distance between these lines is shorter than a threshold,
which can be defined for each parent node. In the right hand side of
Figure 5.2, two vertical lines on the left are merged. Lines are not
merged, if some nodes will be placed on the same intersection point as
a result of merging.

(2) Calculate required sizes for intervals A required size for each in-
terval (x1 to x3, and yl to y4 in Figure 5.2) is calculated in order to
avoid overlapping. The required size for a horizontal interval xk is:

Wi s
R, = max (—g’]))
where W(; ;) is the width of a node at (7,7). If there is no node at

(i,7), Wiy is 0. The required size for a vertical interval is calculated
similarly.

(3) Arrange nodes Given the required size for each interval, the total
amount of space requested by children nodes is calculated for each

direction:
Ro=Y R By=Y Ry
k k

When R, is longer than the width of the parent node P,, all horizontal
intervals and width of all nodes are shrunken by P,/R, (Figure 5.3).
When R, is shorter than P,, the rest space P, — R, is distributed
to the intervals, so that spaces for nodes will be as equal as possible
(The right hand side of Figure 5.2). The same calculation is performed
for the vertical direction. In particular, the size of a parent node is
changed, the layout is changed as shown in Figure 5.4.

This procedure is performed when the parent node is modified by adding,
deleting or moving child nodes. When nodes are resized, recalculation is
performed from procedure (2), in order to animate continuously.

We can use space efficiently by meshing adjoining rows or columns to-
gether. Meshing is performed after the procedure (2), if R, or R, is longer
than P, or P, respectively. Figure 5.5 shows two meshing examples. Two



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENT45

o

-l

I
|
|
|:> |
|
|

\
A\

_

Figure 5.5: Meshing columns and rows

columns are meshed on the left example, and two rows are meshed on the
right. These meshing are performed by shrinking a gray interval.

For meshing columns and rows, a shrunken size is first computed for each
interval. The shrunken size of a horizontal interval xk is:

W1y W(k,j))

2 2
The shrunken size of a vertical interval is calculated similarly. Then hor-
izontal and vertical intervals are sorted together by differences between a
required size and a shrunken size in descendent order. The difference is
calculated taking a scaling factor into account:

P, P,

D,y = (ka — S )R_ Dyk = (Ryk _Sy )R_
T Yy

Spr = max(

Each interval is shrunken in this order, that is to replace R, or I, with
Sgk Or Syk, respectively. During shrinking, some intervals will not be able to
shrink because of causing overlap of nodes. In that case, these intervals are
merely ignored.

5.2 Focus Size Prediction

Focus size prediction automatically determines a pair of node size' in the
following.

e Small size is used when the node is defocused. The node area of this
size is smaller than the large size. It is possible to edit inside roughly
in this size.

'In the following, a size stands for a pair of width and height of a node.



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENT46

e Large size is used when the node is focused. The user can edit inside
details of the node. The node area of this size is larger than the small
size.

The system predicts these sizes from a history of editing commands. It is
not necessary for the user to explicitly set these sizes during editing. Once
the small and large sizes of a node are determined, the user can easily select
one of these sizes by clicking a mouse button or by using a popup-menu.
Changes to the large size and the small size perform instant focusing and
defocusing, respectively. These commands are useful when the user edits one
node repeatedly and when the user navigates edited networks.

We do not provide any other intermediate sizes for the prediction, al-
though they are useful in some situations. This decision simplifies size
changing commands and makes the prediction easy but useful. Note that
the determination of sizes is not trivial, because the user can resize nodes
to arbitrary sizes in arbitrary orders during editing. For example, when the
user stretches a node from its small size, it is difficult to distinguish whether
the user wants to modify its small size or its large size.

5.2.1 Preliminary User Test

We performed a preliminary user test to investigate when the user determines
small and large sizes during editing. We use the editor in which the user must
set these sizes of each node explicitly. By tracing command histories, we tried
to find out typical sequences of commands around size setting.

Method

o System: We used a simple editor for drawing nested nodes. The editor
provides typical editing commands such as adding, removing, resizing,
and moving nodes. For node size setting, it provides SetSmall and
SetLarge commands that store the current node size as the small size
and the large size, respectively. The editor also provides Small and
Large commands for changing a node to the corresponding size.

e Subjects: Seven student volunteers and an instructor of computer sci-
ence served as subjects in the user test. All subjects were familiar with
typical window-based GUIs.



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENTA47

Figure 5.6: The diagram used in the user test: all rectangle sizes are set to
small

]

Figure 5.7: The diagram that shows the detailed view of the bottom-right
rectangles



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENT48

e Tuask: Subjects were required to draw a diagram, which is shown in
the left hand side of Figure 5.6, on the right blank area, and to set
small and large sizes of all nodes. This diagram consists of 13 nested
rectangles?, and sizes of each node have been set. The default size of
each node is its small size. Figure 5.7 shows the diagram in which
bottom-right rectangles are changed to its large size. Each subject was
instructed to set sizes immediately when he decided sizes, and to edit
without hurry. In addition, we did not limit the time for the task.

e Procedure: Before performing the task, subjects were given an expla-
nation of the system and a practice trial on a part of the diagram. We
spent about 10 minutes on this session.

Result and Observations

Tables 5.1 and 5.2 show patterns of command sequences around SetSmall
and SetLarge respectively, and the number of times each pattern was used
by each subject. A pattern begins when the node was in its small or large size
after its creation® or changing its size. This is the initial size in the pattern
and is followed by a command sequence performed on the node before the
execution of set command. The pattern also includes a command performed
after the set command.

We considered only resize related commands such as resizes (Shrink and
Expand) and size changes (Small and Large), because we could not find dis-
tinctive regularity from other commands. Note that we treated consecutive
resizes on a single node as a single resize command, since such a sequence
stands for a fine tuning of the size.

We show observations of the result in the following.

1. SetSmall occurs after repeated Shrink from the small size in most cases
(See the first pattern in Table 5.1).

2. SetSmall also occurs after a single Expand from the small size, and is
mostly followed by Expand or Large (See the second pattern in Ta-
ble 5.1). In some cases, SetSmall is followed by Small, but SetLarge
occurs more frequently between Expand and Small (See the first pat-
tern in Table 5.2).

2Some nodes are not displayed in Figure 5.6, because their parent nodes are too small
3A node is in small size at the creation time



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENT49

Table 5.1: Command Sequences around SetSmall

Initial Command Sequences Subjects
size around SetSmall 1 2 3 4 5 6 7 8
small Shrink+.SetSmall.except Shrink 5 6 5 5 3 5 9 2
- 2 2 2 1 1 1
small Expand.SetSmall. Expand or Large || 2 1 1 1 1 2 2 2
Small 1 1 1
- 1 1 1
large Shrink+.SetSmall.Small 2
Large 1
small | Expand.Shrink.SetSmall. Any 2
Others 3 3
Shrink: resize to a smaller size, Expand: resize to a larger size
Small: change to the small size, Large: change to the large size
+: one or more execution of the command
—: the node was left
Table 5.2: Command Sequences around SetLarge
Initial Command Sequences Subjects
size around SetLarge 1 2 3 4 5 6 7 8
small | *.Expand.SetLarge.Small |6 7 3 5 2 2 2 3
Shrink 3
large | Expand+.SetLarge.Small 11 6
Shrink+.SetLarge.Small 1 11
Others 1 3 1 3

*: alternative sequence of commands that may be empty



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENT50

3. SetLarge mostly occurs after Expand and before Small (See Table 5.2).
Both SetSmall and SetLarge may occur after Shrink from large size and
before Small (See the third pattern in Table 5.1).

4. Among six SetLarge commands performed by the subject 5, three of
them occur before Shrink. The subject first set the large size then
shrunk and set the small size, though most subjects set the small size
first. In the fourth pattern in Table 5.1, we can see this sequence before
SetSmall.

5.2.2 Prediction Algorithm

Based on the above observations, we designed and implemented a size pre-
diction algorithm. Our design policies are (1) to give a higher priority to
patterns used by most subjects, (2) to satisfy subjects as fairly as possible,
and (3) to keep the algorithm simple.

The algorithm is based on state transitions on each node that are shown
in Figure 5.8. The state is changed when the user performs a command on
the node, and a label on an arrow represents the command. There are three
states: small, small.Ex, and large. The small and large states represent that
the node is in the corresponding sizes, and small.Ex represents that the node
has been expanded repeatedly from the small size. The small.Ex state is
necessary, since the size is uncertain when the node is expanded from the
small size (See the observation 2).

When a transition occurs, the small and large sizes (S and Sigrge) may
be changed. In Figure 5.8, rectangles include actions performed after the
transition. S, and Sp,s represent the sizes before and after the transition,
respectively, and Sy, represents the temporal store of a size. We describe
the reason for each action in the following.

o Shrink from small: According to the observation 1, Sy, is changed
to Spost-

e Expand from small: Since Sy,s may be either size, S, is stored tem-
porary into Siy.

e FExpand or Large from small. Ex: According to the observation 2, Sg,q
is changed to Syyp.



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENT51

Large

Slarge = Spre

Small

Ssmall = Stmp

Stmp = Spost

Ssmall = Strnp

Shrink Shrink Shrink,

Ssmall = Spost Slarge = Spre

Expand

Ssmall = Spost

Slarge = Spost

Small

Figure 5.8: A state transition chart for predicting size

e Small from small. Ex: According to the observation 3, Sj4ge is changed
to Spre-

o Shrink from small. Ex: We don’t ignore the observation 4 to satisfy
subjects fairly (This is policy 2). In fact, there are few conflicts with
other observation. In this case, Sige and Sgmay are changed to Sy
and Sy, respectively.

o Shrink or Ezpand from large: According to the observation 3, Sy,s may
be the small size in the case after Shrink from large. In this algorithm,
Starge 18 changed to S, because there are three subjects who used
SetLarge and is only one who used SetSmall. This decision follows the
design policies 1 and 3.



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENT52

nent itar

Figure 5.9: Size correction interface

5.2.3 Size Correction Interface

Since prediction may be error-prone, manual correction is necessary. We
provide an interface to correct a size by choosing a size from the size history
of the node. When the user performs a size changing command on a node,
two buttons appear near the node (Figure 5.9). The smaller button changes
the size to the next smaller size in the history and the larger button the
next larger size. If the predicted size is acceptable, the user can ignore these
buttons. This interface allows the user to correct size precisely to a past size
rather than using handle interface.

5.2.4 Evaluation

In this section, we describe an experiment to evaluate the feasibility of the
focus size prediction technique.

Method

o System: We used a simple presentation editor with the focus size pre-
diction function. Differences from the editor in the preliminary user
test are that a node has one line editable text inside, and that the ed-
itor does not provide size setting commands (SetSmall and SetLarge).
A text in a node is not displayed when the node has child nodes and
the node is large enough* to display its children.

o Subjects: Ten student volunteers served as subjects. Four of them were
also ones of the preliminary user test. All subjects were familiar with

1A node is large enough if the width and height of the node are larger than 70 pixels.



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENT53

1 Introduction

2 The Visual Language KLIEG

2.1 Why Being Visual?

2.2 Patterns in KLIEG

2.2.1 Basic Usage

2.2.2 Hierarchical Constructions

2.3 Pattern-Oriented Visual Programming

3 Visual Design Patterns

3.1 Design Patterns in VPE

3.2 A Support for Multiple Aspects

3.3 A Support for Multiple Implementations

3.4 Visualizing Program Behaviors

4 Scaling-up Issues

4.1 The Zooming Interface of the KLIEG Tracer
4.2 The Zooming Interface of the KLIEG Editor
5 Related Work

6 Conclusion

Figure 5.10: The table of contents used in the experiment

typical window-based GUIs.

e Task: Subjects were required to edit a simple presentation based on the
table of contents shown in Figure 5.10. Each subject was instructed (1)
to represent the presentation hierarchy as nested nodes like Figure 5.11,
(2) to put some empty text boxes as contents of each leaf section such
as “1 Introduction” and “2.2.1 Basic Usage,” (3) to arrange nodes as
you like, and (4) to edit without hurry and we did not limit the time
for the task. In addition, we did not force for subjects to check node
sizes during editing.

e Procedure: Before performing the task, subjects were given an explana-
tion of the system and a practice trial on a part of the presentation. We
spent about 10 minutes on this session. After each subject performed
task, we checked whether sizes of each section are along to the subject’s
intention. In this session, we asked subjects about correctness of sizes
using Large and Small commands.



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENT54

Introduction

[The Visual Language KLIEG]

\ Visual Design Patterns \ \ Scaling-up Issues

Related Work

Conclusion

| Introduction |

Why Being Visual?

| Patterns in KLIEG |

Pattem- Oriented Visual Programming

Visual Design Pattems | Scaling-up Issues
Related Work
Conclusion

Figure 5.11: A sample presentation written by a subject



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENT55

Table 5.3: The number of use of the size correction interface and the number
of prediction errors checked after the task

Subjects

1 2 3 4 5 6 7 8 9 10

# of size corrections | Small (1 4 1 0 3 1 0 3 4 3
on 17 sections Large |1 0 1 0 2 1 0 4 0 0
# of errors in Small |2 0 0 0 1 0 0 0 0 0
17 sections Large |2 0 3 0 0 3 3 0 3 3
total Small |3 4 1 0 4 1 0 3 4 3
Large |3 0 4 0 2 4 3 4 3 3

Result and Discussion

Table 5.3 shows the number of the use of the size correction interface, and the
number of prediction errors. The use of the size correction interface means
that a subject found and corrected a wrong node size, which was not along to
the subject’s intention, during editing. An error was counted when a wrong
node size was found during the check session after the task. Each number
was counted for each size. Subjects 1 to 4 were also ones of the preliminary
user test, but there were no significant differences in the result from other
subjects.

In spite of the fixed algorithm, error rates are significantly small. The
average error ratio after the task is 6% (the best is 0% and the worst is 11%).
Even in total error ratio, the average is only 14% and the worst is 20%.

Note that the prediction algorithm almost suits all subjects, though they
edited the presentation in various manners. Some subjects resized nodes
without using Small and Large command, and some subjects used Small and
Large command on about half of the nodes. In addition, some subjects first
decided a large size of a node, and other subjects decided a small size first.

5.3 Predictive Focus Selection

During navigation with hyperlinks, the system predicts foci that will be un-
necessary, and automatically discards these foci. Focus selection enables the
user to obtain almost desirable layout only by following hyperlinks.



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENT56

Hyper Mochi Sheet:
Predictive Focus Techniques
for Navigation
in Multi-focus Zooming Editors
Tokyo Institute of Tt Our o;I
To support navigation for editing

Masashi Toyoda Etsu

in hierarchica | pmismm *

Applical

Hyper och Shest
Our Goal

Visual program Structure of Diagrams
Structured 2D outl

[
Related Work Hierarchically nested graphs
immary and Future ¥

PresentationNavigatior

Figure 5.12: A hyperlink navigation in our presentation tool

5.3.1 Hyperlink Navigation Examples

As an example, we show a simple navigation task using a presentation tool
in Figure 5.12. In case of viewing slides one after another, the focus on the
current slide will become unnecessary when the user follows a hyperlink. In
Figure 5.12 (b), the system automatically shrinks the title slide when the
user follows the hyperlink to the slide “Our Goal.” In Figure 5.12 (c), the
slide “Our Goal” is shrunken in the same way.

Figure 5.13 shows another navigation example in a visual programming
environment. In case of editing visual programs, it is necessary to retain foci
on nodes that are in the middle of editing. In Figure 5.13 (a), the user is edit-
ing a data-flow diagram master at the center of the bottom-left module, and
intends to check the behavior of the pass_answers component by following
the hyperlink to its definition part. In this case, the system can predict that
master is still necessary because there are unconnected components in the
network. Therefore, the system retains the focus on master when the user
follows the hyperlink (Figure 5.13 (b).)



CHAPTER 5.

INTERACTION TECHNIQUES FOR FOCUS MANAGEMENT57

nqueens

combiners
e
-

.
‘O
. hypprlm to
master_worker_nqueens L4 inition part
process ] p
"
"
L]
master worker :
master L]
= w ]
nqueens_gen pass_answers
e . oupl ®
—JM dispatcher  a— TP, J-
Probs B Corrb [
Ansh
—
Wi
\queens_wdrkeiqueegs worke! “aqueens_worke:
[Prace E?Ds_b A Y
Ans, Ans, Ans,
gMasIer j
main
(a)
combiners
ass answer pass_answers
outd| uig>
»|
o [Ansp Anspf
'¢
*
k4
o count_answers count_ answers rs
u o
o Fum sntd U] Num N
' [Ansl sl Anslll
.
1 ]
.
£ .
"\ main
\J
\J
.
-+
A
master_worker_nqueens
e
master - hd - -
nqueens_gen pass_answers
Sie (e . " Quidd ™
Pl dispatcher . [ngb |
Frobs [5 Camb [
Ansbl
— ers
2 14 Wl
naueens fer  manes worker encens vorker
Probs Probs tobs >
Ans, Ans, Ans,
= Master>]
mair
=
(b)

Figure 5.13: A hyperlink navigation in a visual programming environment




CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENT?58

Destination 1

Destination 2

Anchor 1

Anchor 3

Figure 5.14: Hyperlink structure

5.3.2 Prediction Method

To realize such automatic focus management, Hyper Mochi Sheet library
provides each node with a boolean function f(F’), which returns true if the
focused (large size) node F' is still necessary. Programmers can reflect appli-
cation semantics in their applications by defining customized f(F) for each
node. For example, in visual programming editor, f(F’) returns true if there
exist unconnected ports in the node F'. The default implementation of f(F)
returns false if all child nodes in the F' are in the small size.

When the user follows a hyperlink from an anchor (See Figure 5.14),
the system changes the size of the destination to its large size, and stores
the source and the destination in the focus list. Simultaneously, the system
changes the sizes of all the ancestor nodes of the destination to their large
size in parent-to-child order, so that the destination will be visible. After
magnifying the destination, the system checks whether each node except the
destination in the focus list satisfies f. If f returns false with a node in the
list, the node size is changed to its small size. Then the system changes the
sizes of ancestors in child-to-parent order. Before changing the size of an
ancestor A, the system checks f(A). If f(A) returns false, A is changed to
its small size, and if not, the system stops changing sizes of upper ancestors.

In addition, the system animates transition from one layout to another,
so that the user is not confused even if the layout drastically changes during



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENT59

navigation.

5.4 Dynamic Query

The dynamic query function of Hyper Mochi Sheet allows the user to easily
find scattering objective data from a set of textual data that is constructed
hierarchically such as Yahoo![1], and class libraries of Java[2] and C++[59].
This shows search results clearly by magnifying nodes matched to a query.
The transitions of layouts occur dynamically during keyword inputs.

The function provides following four methods to search hierarchical tex-
tual data. These methods can be performed with only two operations, typing
keywords and selecting nodes.

e Exploring a hierarchy from the root.
e Scanning results of full-text pattern matching.

e Narrowing search space by exploration then performing pattern match-
ing.

e First performing full-text pattern matching then narrowing search space
to some sub-trees that includes the results. This process is performed
repeatedly.

It is important that our query function facilitates the fourth method,
which overcomes problems of the first three methods. The first method often
causes many and deep backtracks. The result of the second method may
include too numerous matches to find objective data. The third method
may miss finding scattering multiple objects in a hierarchy. Using the fourth
method, the user can find scattering multiple objects without both deep
backtracks and scanning numerous results.

In addition, Hyper Mochi Sheet provides a default search engine for the
pattern matching that can be customized by the application programmer.
As a default search engine, we use a dynamic approximate string matching
technique.

In the following, we use a directory editor, HishiMochi[63], as an example
of our dynamic query function. Figure 5.15 shows a screen snapshot of Hishi-
Mochi. It visualizes a part of directories in Yahoo! as nested rectangles. The



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENTG60

Computers_and_Internet.d

Software
Databases Ereewar] i nultin,
ol crohis o ks
e LA |5£hm Internet | ) Ermployment Organizations
Programmin| a3 e k!
st | s wew  REVIEWS
== = = Sterega]
Communications_and_Metwarking communical] e f— feat ] Programming_Languages
T em was blahod s Supercomputing_and_Fi =l — R — = —
e e R i . = =
et :-umw_l Protacols Ethics = =
R T = = = ="
Elchonic | mss  sn  prufingl Hardware == = =
i personal_Compiters =
GraphICS Biblioaraphis: =l Platforms Standards
_I Landon| ‘Eenchm Tasmind
PDAs Calculators
Information_and_Documentation Perigherals | Componenty
Compufing Al rechnical
=]

Easter |
Data_Farmats Indices |

Contests HIS’[OI‘ Trainin
Product_Reviews _ 4 ﬂ g

Camnudil Metadata
Mobile_computing Conuenﬂons,amtca] e wear_2000_Problem
: ) Internet C ter Sci
Multimedia mm cused e wes o | COmputer_Science
Lirfugl Bed Countries_ %"%Mb oo Inferesfina] e eyt
= = =

Businessl  OAMAN|  whw  Skachi
Chat Emal  odad  Shiis
ﬁ FIo 8 wieed  Lisenef

Desktop_Publishing] News_and_Medj

Computers_and_Internet.d Il \

Figure 5.15: The initial screen dump of Computers & Internet directory of
Yahoo!

Computers_and_Internet.d
=  Software | mem

Organizat
‘Superconf ihin Proarsmming_Lan
Giraphics aun Hardware ]
Iniﬁmaﬁnr\_and_nncumj
candd Histol Trminid
‘Hohile | Conwer it vaar_20)
Computer_Science
Human_Computer_Interaction_ HCI_
Conferences
ndex
. Organizations .
helex
Multimedia — Internet ot
s | Q Organizations

Professional __ 7
Association_for_Computing_Machinery_ ACM_

nclex

hdex

ACM_SIGCHI ‘ a

fevere)

ILLE

securiw_and_1

g

1|

Computers_and_Internet.d |sigchi

Figure 5.16: Searching with a keyword “sigchi”



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENT61

size of each directory represents the number of files below the directory. The
user performs queries by typing in keywords into the right-bottom text box.
Whenever the user types in a character, the system matches text lines of all
files with the keyword, magnifies found file with animation, and highlights
matched lines. Figure 5.16 is the result of the query, “sigchi.”

5.4.1 Details of the Dynamic Query Function
Displaying Results

The sizes of nodes matched to a query are changed automatically to their
large size. Simultaneously, all ancestors of matched nodes are also changed
to their large sizes. Then the other nodes are changed to their small sizes.
These changes of layouts occur whenever the user types in a character into
the keyword box. In addition, the system animates these changes, so that
the user is not confused during transition of layouts.

Dynamic Approximate String Matching

As a default search engine, we adopt a dynamic approximate string matching
technique, which is used for searching a dictionary in the pen-based text
input method, POBox[34]. First, it performs exact pattern matching. If
the keyword specified by the user does not match any text lines in nodes,
the system automatically performs approximate string matching that allows
errors in spelling. For example, the keywords, “virtial” and “virtal” match
“virtual” with the allowance of one misspelling. The allowance of misspelling
is gradually increased till at least one candidate is found (the maximum
allowance is three misspells.) The detail of the algorithm is described in [34].

This approximate matching feature is useful when the user does not know
the correct spelling of the objective data. We also provide a feedback of
misspelling. When the misspell allowance is increased, the background color
of the screen becomes darker and darker. Therefore, the user can notice
whether the current keyword is appropriate during typing the keyword.

In addition, this string matching feature also handles a simple wildcard
character represented by the “.*” pattern. In order to find keywords in the
middle of a line, the system attaches “.*” on the head and the tail of the
keywords, and replaces blank characters to the “.*” pattern. For example,
the keyword, “virtual reality” is replaced to the “.*virtual.*reality.*”



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENT62

Computers_and_Internet.d

Software _
B ~ PDA_Software
_ . index
_ PalmPilot _ _
~  Shareware
_ _ [ndex ‘
= - Hardware - =
PDAs N -
Informationeand_Dézumentation ) Pa!'ﬂ&?t FAG - -

Easter_Eggs : Easter_Eggs [Indices
Emulatian

Ffroduct_Re_v:iews

_FersonaLD\g\EAsslstants

Mobile_Computing
Magazines
nelex

Com puters_aﬁa_lnternet.d |palm pilc):li \

Internet | Came

Figure 5.17: The result of search with keywords “palm pilot”

pattern.

5.4.2 Examples

In this section, we show some examples using our directory editor with dy-
namic query interface.

Yahoo!

In this example, we show that our dynamic query interface allows the user
to efficiently find objective data scattering about a large hierarchical infor-
mation space. As an example, we use a part of directories in Yahoo!.

Scenario: The user purchased a PalmPilot®, and want to collect
information to handle this device.

*PalmPilot is a registered trademark of 3Com Corporation.



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENT63

Computers_and_Internet.d

= Software| mws  oma
i DR = ing_L
Grphics — Hardware =
Information_and_Documentation
camt —
DafaFom] =
Product_Reviews
Mahun Buer_s_Gul
j— Laptop_Comp
Desth,CumDuﬁ Peripherals
Perscnal_Digital_Assistants
3Com_Pilot
CE
¥ PalmPilot Professional (4)
= Pilot 1000 - CNET
Yahao! Bookmark et tors] ==
Make Yahoo! your Homepage -
- Capytight (c) 1994-98 Yahoo! Inc. - Company Information - Suggast a e
Site - FAQ
pr)
Dalmpild
o windos |
e
== hivtats
“HoBIE] Conued —tia vear_20f
Multimeclia = |hternet DumDuhLS(leT
Set\lmv,ind_‘ Cuaesleted s
Computers_and_Internet.d |palm pilo{ \

Figure 5.18: Looking matched documents one by one

First, the user types in keywords, “palm pilot.” The result of this query is
shown in Figure 5.17. It is clearly shown that there are matched documents
in directories such as Software and Hardware.

By pushing ‘Enter’ key repeatedly, the user can look matched documents
consecutively (Figure 5.18). Each leaf rectangle is a document browser, in
which the user can scroll texts by cursor keys. In the browser, matched lines
are highlighted with red colored texts.

The user can narrow search space by a direct manipulation technique.
This interface is useful when the number of the candidates is too much to
look consecutively. To narrow search space to some sub-directories, the user
selects these directories using a mouse. The eight small black handles are
attached on the selected directories and browsers. Selection task is easy for
the user, since matched parts are magnified in the editor.

In this case, the user selects some directories in Software and Hardware
directories. Product_Reviews and Magazines directories are ignored, since
these have nothing to do with the user’s purpose. After the selection, the
user types in ‘Space’ to search selected directories with the same keywords.
Figure 5.19 is the result.



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENT64

Computers_and_Internet.d

Software
E’DA_Soﬁware
PalmPilot
. ndex
= —_— = = LE ) p—
== = = . Beviegr |
Shareware
nidex
- — __
Communig = Tt === = — Programm|
Hardware
= Tz
PDAs
- " L | — |
PalmPilot
FAQ
ekl - — t E . = =
—taster_Eggs |Indices -
Emulation
nfornztion_a| _ ] == =
Computers_and_Internet.d |palm pilot]
Figure 5.19: Narrowing search space
Computers_and_Internet.d
=  Software Enn )
Communicafions. Supercon] P Programming_ Lan|
Hardware
—_ Parsonal COMBH pttoim o
— = =
PDAs
= : = -
PalmPilot
FAQ
nijt?lc‘u Pilot SOK - for the gce compiler for the Pilotand other
ufilities in pre —tools.
ilot
ndex -
+GCC win32 for Pilot — GMU C compiler to build pila]
Windoirs 95 and HI. [Uisit 2D nefl Vahoo! Infermet Life magazine - ke Uiaarator your
“Hiah in ot Tios B2 -
'I*gjnﬁ‘ﬁffm’pié“‘ ;ﬂr%“omu{;{‘hmh Click hers now fo trit out Free!
Graphics| Py . - Filot compaiible. -
- -sﬂgamﬁg“;?suvsuer:stfr\f::‘\:ugug;::;réb:;gt3'! Copyightic) 12'4!-_9i:smounc - Company Informafion - Suggesta o colound
Lot center
+Palm Il - offers PalmPilot and Palm Il PDAS.
+ PRIMILoFG - news, applicedions, and pesources for
oraanise
+ Palmpilot Easter £993 - Easter E995 for the Pami
Filot, PalmPilat, Work Pad and Palmill
+ Palmpilot Healfh Care website
+ Palmpilot.org - ns Hware, and information ab
= =
sty £
ewtod R
Infomafion_and_Docume |EEperiy] Components
Caall Histor Linid
Mnhile | Conuer| I adid Vear_20(
Multimecia. — nternet Computer_Scien|
Seaihand| ekl ] e

Computers_and_Internet.d

|compiler \

Figure 5.20: Search with a

new keyword “compiler” keeping the selections



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENT65

Since the selected directories and browsers are kept magnified, the user
can search these directories with new keywords. This allows the user to
perform a kind of AND search, that is to find a document that includes
lines matched to previous keywords and lines matched to new keywords. For
example, in Figure 5.20, the user types in the keyword “compiler” to find
compilers for PalmPilot.

In addition, the user can make personal bookmarks by making a new
directory and store the results of the search by drag-and-dropping browsers
into the directory.

Novels

The second example is a collection of novels written by the same author. We
use full-texts of Sherlock Holmes stories. We classify them by written year
(Figure 5.21), and sort first top to bottom then left to right.

The user can easily perform simple data mining such as finding when a
character appears, and how a case is referred from subsequent stories. Such
an exploration can be done on data-bases of research papers and news articles.

Figure 5.22 shows a result of a search with keyword “moriarty”. The
result clearly shows which stories and when professor Moriarty appears.

Photo Browser

Figure 5.23 shows the third example, a photo browser. The user can easily
find photos, and can perform arrangement of photos. In Figure 5.23, each
photo is attached keywords, such as a date, and the names of persons and
things in the photo. Then the user can find photos with these keywords.

5.4.3 Variation of Search Method

Since the user can perform keyword inputs and node selection in an arbitrary
order, all the methods listed in the beginning of Section 5.4 are available as
follows.

e Exploring a hierarchy can be done by selecting a node and typing in
‘Space.” Backtrack is simply done by selecting a parent node.

e Scanning a result of full-text pattern matching can be done by typing
in keywords then pushing ‘Enter’ key repeatedly.



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENT66

holmes
1887 1903 1914 1925
F_Study_in_scarnettt [he_adventure_of_the_Dancing_Men.i< e valey ol Fearbd || [=—rvenire_of the Wustrious Clent xt

[The_Adventure_of_the_Empty_House t<
[he _Achventure_of_the_Norwood_Buider =t

1830 1924m Tl s dver T The_Aduern Lm|1917 1926
e Tore_ Tl he_Adverstire ot averire_oi_frd -
[ S ERRI _Adventure_of_The_Elanched_Soldier Trl
e
[The_Adventure_of_the_Lion"s_Mane t<
[The_Adventure_of_the_Three_Gahles.td

1891 1908 1921 1927

A_Case_of_Identity t [FheWenwlife skl o] The _Adveniure_of_wisiena_Looge ba e AV ETiTe T TRe WazanT Siona T | [TE_aventure_of_shoseombe_OW_Flace 1
&_Seandal_jn_Bohemia.txt [he_Read-headed League, e _nl_the_| I _

| R T 07 | T acduenmire_oT Ma_brice- peanator_ FlRnefl |
The_Five_Crange_Fips.It | The_Adventure_of_the_Veiled_Lodgertd
1892 1910 1922

% he_Adventure_of_the_Devils_Fooltd he_Problem_of_Thor_Bridge b
mmmmmmﬂq\

_Adfveriure_of {he_Thres_Gamidohs il

e _Actventure_of_the_Retirec_Colourman t<t

thAduanman‘hLBngﬂ ‘
1893 1911 1923
The_"Glorz_ i TuzareLe_Riuel fibe_vellow_Fece fiT

T e . o ['he_adventure_af_the_ Red_Circle b4 [The_Adventure_of_the_Creeping_Man.td
Tl LCVOOE!? Man.% e._RugaE 5Q\llt’e5§
T o e e e e _Disappearance_oT_Lady_Francis_Garfar bl
T et Tnterprefer[The_ Stock -Erofera_
1901 1913 1924

The_Hound_of_the_Baskervilles i<t [The_Adventure_of_Dying_Detective t<t [Mhe_Adventure_of_the_Sussex_\ampire txt

lholmes Il \

Figure 5.21: Sherlock Holmes stories classified by written year

helmes
The Adventure_of | lhe Illuslnuus Chemlxt
he_adveniure_of_the_Empty_Houze it The yalley of Feartd 1 7 P seeeral opoNETts 1o i 15 ferm hasbeen 2pp|
jerock, Wafsis Tiom~da—plume, 3 mare denticationmart; bt | rsaid Halmes i a.mile e e e
it &3hiFhyand suasive personalitl In sformer letter he franklyin Ilahtmy pipe. 1f your mar is more danaerousthan the lafe Professor Mo

e T e e S
3 tha Wamina mil-llons of i3 s Iy Porick is moorn notfor | | L eryiretsing Eolonsl Sebastianttoran, then he #indsed wardh m
_ imslf butfor fhe arest man with wham fe i in fouch. Piciurs b voursel [ [ "iawe you ever heard of Baron srner=n
B ot i i e s, e Juckad Wi i - anuatireathatis | | | gt mean fhe Aushian nadaperon
i it whitis il formic i i 5 .
[N e N A R U N o, bt shiske ™ n et degressncar Tht s e e Rt A s et et
e i mipivien. vou o me ek of provesso woriertye | [mardareon
o o S C AR, 55 O Mo HO0HsRs " mit business o follow the dtuils of Caninanta cim. Whacenld
”mvhlushzi pone e i depecainauelc 33ibI9 hawe read whad happenied st Prague and haue sny doubtsss o he
niown fo fhe public auif 1t & purely fechnicallesal point and thesuspicious death af.

i Toht . icHtToucheie Holmes i e duelopin .certs | [ mecs it St b 3 SPE 2% he ledbE it wheh fhe 5 -calle

1904 1917

[he_Adventure_of_the_Missing_Three—| Eluarler it
D Lesle Armirira  cerfainlya man of eneray andcharactersaid b
i o Soun & an o, f e AT sl i wats was more G
ke ol o g9 4oy Wil Hararhs Anc now, mopoar
ed and Fiendless in this inhaspifebls foun, wh
wecannotleae wiihont abandoning our case. This ltte inn justopposit
pmstronats house is singuledp sdapted fo our nesds. fou would ensas|
= it room and purthase the fecessaries farthe nighd, | mey hawe fime fo |e=|
B el inauities.
Thess fu inquiries proved, howeuer, fo be a more lengthyproceeding
Holmes had imagined, for hé did not rihien tothe inn anfil nearly nine o'
ck. He was pale and dejected,stained with dust, and exhansted with hu
d fatigue. & coldsupper was readyupan he fable, and when his needs|

15_Last Bow i<t
ThEwId 3Tt song,»said Holmes. "How offen have | heard itin days o
b 1 was a facurife dity ot e fte lamenfed Proessor morarhe Col
el Sebasfian Woren hes alsa been known o warble it And yet 1 live
ep bees upon e South Downs.!
1urse o, you double fraitonn cried the German, shraining againsthis
vonds and 3laring murder from his furious eye:
o, o, it s not so bad a3 thad'said Holmes, smiling, %5 myspeech s
rely S wou, e Altamont af Ghicage hid o existence in fact, L uses
im and he is gone "
g

s eal inmederial who 1 am, but since e matier seems fa inferest
aRE e S e it i Vo Bork, s st i s ot o st gt fance i
= = SHitE ¢ members of vour family. | have done a good deal of business in Gem:
= =
= =
= e

=
he_Final Problem i<
1H1 771 & e et i | e up m pan o e these helistwior
s i which I shall ever record fhe singular gifts bywehich e friend . 5
oxch Holmes was disfinguished, In anincoherentand. as | desplu fee,
By nadsatet Glon, s indeswoud o v sons account ot
any from the chance which frst brought u;
therad fhe period of the LS St 1 e Ak SRS
ncein e nedterot e WavalIeaty - an ifrtr—ance hich hed
cadion.
s i nfon 1 havs hoppadihars, 0 1o hs s0d o of 1
fert which hias cheafed auvoid in nuslite which e lapse of tuo years has d
[t oAl wshandhas been o, howeuer, by e ecentleters n
h cal memary othis beoherand b
T e i LRl gt
jone know the sbsolute fruth of the metterand | am satisfied fhat the f

holmes ] ] [moriarty ] \

Figure 5.22: Search with a keyword “moriarty”



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENT67

VL9s

igarashi

Figure 5.23: A photo browser

V98

e Selecting an appropriate node then typing in keywords.
e Described in Section 5.4.2.

In addition, there is an another way to explore a hierarchy. The user
can explore by keywords, assuming that the path name are attached to each
node. For example, to reach the directory “/graphics/3D/Software,” the user
types in keywords “/gra /3d /sof.” It may be faster than direct manipulation,
because the user can omit keywords in the middle of the path.

5.5 Implementation

We implemented Hyper Mochi Sheet as a library for the Amulet user inter-
face development environment[39] (Version 2.0), and made it easy for Amulet
users to use the library. Amulet is based on a prototype-instance object sys-
tem constructed on C++[59], and provides a constraint solver. The detailed
description of Amulet can be found in the Amulet home page[39].



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENT68

The main component of Hyper Mochi Sheet is the MochiGroup object,
which aggregates graphical objects hierarchically. Since MochiGroup inher-
its a group object Am_Group in Amulet, application programmers can use
MochiGroup in the same way as Am_Group, except that child objects are ar-
ranged and zoomed automatically. In addition, the programmer can define a
function f(F'), for the predictive focus selection, as a method in MochiGroup.

The following code fragment creates a new instance of MochiGroup, and
adds some graphical object to the instance.

Am_0Object new_grp = MochiGroup.Create()
.Set (Am_WIDTH, 200)
.Set (Am_HEIGHT, 200)
.Add_Part (Am_Rectangle.Create())
.Add_Part (MochiGroup.Create());

In Amulet, a new object is created by copying an existing object, and modify-
ing attributes. The first line creates a instance of MochiGroup by invoking the
Create method, and assigns it to the variable new_grp. Next two lines set the
width and height of new_grp. Last two lines add instances of Am_Rectangle
and MochiGroup to new_grp by the Add_Part method.

The Mochi Sheet algorithm is implemented as constraints between MochiGroup
and its children. Therefore, positions and sizes of graphical objects are auto-
matically recalculated, whenever the layout is modified by user interactions.

The structure of a Hyper Mochi Sheet application is almost the same as
one of an ordinary Amulet application. The following is the skeleton of the
main function.

1 int main(void)

2 {

3 Am_Initialize(); // Initializing Amulet

4 Initialize_Mochi(); // Initializing Hyper Mochi Sheet
5

6 Am_0Object TopGroup = MochiGroup.Create();

7

8 Am_Object TopWindow = Am_Window.Create ("TopWindow")

9 .Set (Am_WIDTH, 800)

10 .Set (Am_HEIGHT, 600)

11 .Add_Part (propagateChildren, TopGroup)
12 ;



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENT69

13  Am_Screen.Add_Part (TopWindow) ;

14

15 // application dependent initialization code

16

17  Am_Object SelectionWidget = MochiSelectionWidget.Create ()
18 .Set (Am_OPERATES_ON, TopWindow)

19 ;

20  TopWindow.Add_Part (Am_SELECTION_WIDGET, SelectionWidget);
21

22 Am_Main_Event_Loop(); // invoking the main event loop
23  Am_Cleanup();

23 }

To use Hyper Mochi Sheet library, the Initialize Mochi() function must
be invoked after Am_Initialize(). Lines 6 to 12 create TopGroup and
TopWindow. TopGroup is the root of a nested network, and is added to
TopWindow at the line 11. TopWindow is the main window of the applica-
tion, which inherits a window object Am_Window. The window is displayed in
the screen by adding it to the Am_Screen object (the line 13).

Hyper Mochi Sheet features are activated by adding MochiSelectionWidget
to the window object as shown in lines 17 to 20. Once MochiSelectionWidget
is added to the window, the user can select, move, and resize graphical objects
in the nested network with the focus size prediction and the predictive fo-
cus selection. MochiSelectionWidget inherits Am_Selection_Widget, which
provides editing support with handles such as selecting, moving and resizing.

To complete the application, the programmer must define graphical ob-
jects to be edited, and menus for editing operations. To define graphical
objects, Hyper Mochi Sheet provides text and image objects with zoom-
ing support. Menus and tools can be implemented in the same manner as
Amulet. In addition, Hyper Mochi Sheet provides widgets for the dynamic
query function, such as a keyword input box, and a text browser with high-
lighting support.

5.6 Conclusion

We have proposed a new GUI framework to support navigation and edit-
ing through multi-focus distortion views. This framework keeps distortion
layout free and flexible, while reducing the number of command invocations



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENTT70

by automatic focus management techniques: the focus size prediction, the
predictive focus selection, and the dynamic query. In the following, we show
how proposed techniques satisty our principles in Section 4.4.

5.6.1 Keeping Distortion Layouts Free and Flexible

We kept distortion layouts free and flexible, while reducing the number of
command invocation. Hyper Mochi Sheet allows the user to select multiple
nodes as focal points in a nested network, and to magnify and demagnify
them in arbitrary sizes. Although the user cannot modify the shape of a
focal point, our algorithm is sufficient for implementing our target appli-
cations, such as visual programming environments, directory editors, and
presentation tools.

5.6.2 Reducing Boring, Repetitive Work

Hyper Mochi Sheet reduces boring, repetitive work using the focus size pre-
diction technique. The user does not have to explicitly designate a set of
sizes for each node, as the system predicts the sizes from a history of editing
operations. This technique is based on the heuristics obtained from prelim-
inary user test, and we showed reasonable accuracy of this technique with
an experiment. The technique cut the number of size designations by about
eighty percent.

5.6.3 Reducing Multi-focus Management

Hyper Mochi Sheet supports automatic multi-focus management by the pre-
dictive focus selection technique, which automatically defocuses unnecessary
foci during navigation with hyperlinks. In most case, the user does not have
to adjust distortion layouts before or after following hyperlinks. Applica-
tion programmers can reduce the error rate of this technique by customizing
prediction methods for their applications.

5.6.4 Reducing the Time for Switching from Searching
to Editing

Hyper Mochi Sheet also reduce the time for switching from searching to
editing by its dynamic query technique. This shows search results clearly by



CHAPTER 5. INTERACTION TECHNIQUES FOR FOCUS MANAGEMENTT1

magnifying nodes matched to a query, so that the user can quickly edit the
results of the query.



Chapter 6

Enhancing Usability with
Application Semantics

This chapter shows that the use of application semantics provides more en-
hanced support for navigation and editing, and decreases the number of
command invocations. We have made a case study using a visual program-
ming environment (VPE) as a sample application. In VPEs, distortion view
interfaces have not been used effectively though there are some VPEs with
distortion views such as VIPR[12]. This study is one of the earliest attempt
to use application semantics for editing visual programs through distortion
views.

In the VPE, we use type information and design information as applica-
tion semantics. Using the semantics, we can provide various support, such
as searching appropriate components, focusing components to be modified,
and automatic component linking.

Each support is realized based on the notion of wvisual design patterns
(VDP), which is a visual abstraction representing design aspects in data-
flow programs. VDP serves as a flexible and high-level structure of reuse for
visual parallel programming.

In the following, we first describe the background of this work, and in-
troduce the notion of VDP and its implementation in KLIEG visual pro-
gramming environment (KLIEG-VDP). Then we explain how application
semantics support navigation and editing in KLIEG-VDP system.

72



CHAPTER 6. ENHANCING USABILITY WITH APPLICATION SEMANTICST3

6.1 Background

Design pattern approaches have been recently proposed to describe recurring
design aspects in object-oriented systems for enhancing software reusability.
A design pattern is a document that describes the combination technique of
abstract objects using diagrams, descriptions, and example programs. Cata-
logs of design patterns such as [18] have been published; with these catalogs,
non-expert programmers can use well-designed combination techniques, and
can construct reusable software by implementing abstract objects depicted
by the patterns.

Design pattern approaches are also important in visual parallel data-flow
programming (VPDP). Our goal is to formulate the notion of design patterns
that is suitable for VPDP, and to make it easier to define and reuse design
patterns, and also to reuse implemented programs.

It is, however, difficult to practice pattern-based design in VPDP, be-
cause normal VPDP languages such as CODE [45] do not support the notion
of replaceable components. In an object-oriented design pattern, each ab-
stract object represents a replaceable component, and a particular behavior
of a program can be determined or modified by replacing components in the
pattern. Such essential mechanisms to reuse designs and programs should
also be supported by VPDP languages, but most lack systematic means to
replace their components.

In addition, design information is important not only for documents, but
also for programming environments. For object-oriented languages, design
patterns, such as [10]. However, because they do not maintain design infor-
mation in the generated program itself, it is difficult to learn the intention of
the program design, such as which components can be modified to change a
particular behavior.

6.1.1 Visual Design Patterns

Under these observations, we introduce reusable program structures based
on data-flow diagrams, in which the designer can define replaceable compo-
nents, and add design information directly to the structures. We call these
structures visual design patterns (VDP). We directly support interactive def-
inition, reuse, and even execution of VDPs in a visual parallel data-flow
programming environment.

Here are some important design issues for a VDP system:



CHAPTER 6. ENHANCING USABILITY WITH APPLICATION SEMANTICS74

Management of multiple sets of processes A well-designed VDP will
facilitate processes which can be implemented in several ways. How-
ever, it is time-consuming task to find appropriate processes from li-
braries and drag-and-drop them. In addition, changes to the processes
must often be coordinated, i.e., a set of processes must be used at once.
Therefore it is necessary for the VDP system to allow find, manage-
ment, and manipulation of a set of processes, so that the designer can
allow the user to select from an abstract set of process implementations
such as default, sample, and alternatives.

Focusing support for processes editing Since most VDPs are comprised
of a numerous number of nested processes, it is important to assist the
user on which parts of the given VDP he should edit on adding/modifying
some new functionality. Thus, a VDP system should facilitate a feature
to focus the users editing actions on the particular part of VDP subject
to editing.

Visualizing execution of VDPs In order for the user to capture the be-
havior of a VDP, it is important for the execution of each instantiated
VDP to be visualized and animated. This will manifest to the user
design knowledge that dynamic and otherwise difficult to document
statically.

Support for consistency checking Consistency checks on process instan-
tiation and replacement in VDP are desirable to improve usability. For
example, a user may instantiate a pattern with a wrong set of pro-
cesses; by incorporating consistency checking mechanism into a VDP
system, such errors can be checked, or the operation is invalidated in
the first place. Furthermore, such consistency information can be em-
ployed to assist in the editing, when there are ambiguities on which
inputs connect to which outputs, etc.

We have implemented a VDP system based on a visual parallel program-
ming environment KLIEG, which answers the above issues. KLIEG itself is
a visual parallel data-flow language based on a parallel logic programming
language, moded FGHC [69]. We refer to a VDP in KLIEG as a KLIEG-
VDP. Designers can define KLIEG-VDPs that retain design information as
patterns, and then users choose a pattern from a catalog of KLIEG-VDPs in
their programs and implement customized processes in the pattern.



CHAPTER 6. ENHANCING USABILITY WITH APPLICATION SEMANTICST5

6.1.2 Existing Work

There are many visual parallel data-flow programming environments such as
CODE[45], Meander[70], and SAA[40]. There are also environments based
on parallel logic programming languages like Pictorial Janus|[25], and PP[62].
Because these environments lack the support for VDPs, it is difficult to re-
place a set of components in data-flow diagrams. The user must manually
delete a set of processes, create new processes, and link processes appropri-
ately. This is a tedious and time-consuming task.

In VISTA[51], processors may have an internal network of processors.
In particular, internal processor called public processor can be replaced by
another processor with a compatible interface. Although similar to VDPs,
public processors in VISTA are merely replaceable, thus the user must search
appropriate processors from libraries. In addition, since VISTA shows only
the list of public processors, it is difficult to know which processors need to
be changed when multiple processors should be changed to obtain desired
behavior.

Holon/VP[28] uses an object sharing technique to enhance reusability of
program. This technique allows multiple networks sharing the same process
as their components. This is usable for customizing existing programs by
adding functions, but difficult for customizing by replacing the functions,
which is easy with KLIEG.

6.2 Visual Design Patterns on KLIEG

In this section, we describe the details of KLIEG-VDPs. A KLIEG-VDP is
a data-flow network diagram that has some replaceable and non-instantiated
processes called holes as parameters, and that maintains the design infor-
mation described in the previous section. Data-flow network diagrams are
components of KLIEG programs, and consist of processes with input or out-
put ports and links that connect input ports and output ports. A network
diagram may be constructed hierarchically from multiple networks.

Users can reuse the topology of the KLIEG-VDP by instantiating the
holes with customized processes which are appropriate for the KLIEG-VDP.
A hole also has ports, and can be instantiated with processes that have at
least the ports of the same type.

In the following, we first describe the features of KLIEG-VDP, then show



CHAPTER 6. ENHANCING USABILITY WITH APPLICATION SEMANTICS76

an example of KLIEG-VDP.

6.2.1 Features of KLIEG-VDP
The features of the KLIEG-VDP are as follows:

1. The user can find appropriate processes for a hole by a process search
function. This function searches processes using the types of ports in
the hole. In addition, a hole is allowed to hold multiple processes, one
of which is valid at a given time. This allows the designer to provide a
default implementation, several alternatives, and sample code for a hole
in the KLIEG-VDP. The user can select an appropriate implementation
of the hole from these alternatives.

2. For highlighting replaceable processes, KLIEG-VDPs support multi-
focus distortion viewing. The designer magnifies the processes which
should be replaced together for changing a particular behavior, and
saves the layout with an appropriate name. The user can easily deter-
mine the replaceable processes by selecting the layout.

3. To show the dynamic behaviors of processes, KLIEG provides an execu-
tion tracer, which visualizes and animates the execution of the program.
The user can see the behaviors by executing the sample code.

4. KLIEG-VDP system facilitates type checking and inference algorithm
on communication ports for consistency checking. By checking types,
KLIEG presents only the appropriate processes for a hole from mul-
tiple implementation choices. KLIEG also links replaced processes as
automatically as possible.

Since features 1 and 2 are closely related to navigation for editing, they
are supported by Hyper Mochi Sheet with application semantics of KLIEG.
Though other features also use application semantics, they are out of the
scope of Hyper Mochi Sheet. We use type information and design informa-
tion as application semantics. Type information provides keys for searching
processes, and design information shows which processes should be focused.

These features can be implemented with the dynamic query technique in
Hyper Mochi Sheet.



CHAPTER 6. ENHANCING USABILITY WITH APPLICATION SEMANTICST7

master

ub-problems

v v

answers & ready messages

Figure 6.1: Master worker pattern

6.2.2 An Example

We show the master-worker pattern, which provides a simple load balancing
scheme that involves a master process and a collection of worker processes.
Figure 6.1 illustrates the concept of the master-worker pattern. The master
partitions a problem into sub-problems and sends them to workers ready
to compute. The workers are responsible for computing sub-problems. A
worker returns the solution(s) of a sub-problem to the master. When a
worker completes the computation of a sub-problem, it notifies the master
that it is ready to compute again. By providing appropriate masters and
workers, we can use this pattern for solving various parallel programming
problems, such as ray-tracing and search problems.

Figure 6.2 depicts the KLIEG-VDP that represents the master-worker
pattern. The master_worker pattern is a network constructed from two net-
works, master and workers, that correspond to the master process and the
collection of worker processes, respectively. Both master and workers have
some holes that represent processes, which depend on the problem to solve!.

These networks have ports (represented by white rectangles) to commu-
nicate with each other. An arrow linking two ports represents a stream that
is a continuous data-flow between the ports. For example, master has two
ports Wks and Ans to communicate with workers.

IMaster is shrunken, so the details are hidden.



CHAPTER 6. ENHANCING USABILITY WITH APPLICATION SEMANTICST8

master_worker

Figure 6.2: Master-worker pattern in KLIEG

master worker
master

generator combiner

dispatcher

Frobs [ Comb
A vis |

workers
& Wks

Figure 6.3: Detail of master network



CHAPTER 6. ENHANCING USABILITY WITH APPLICATION SEMANTICST9

The workers is defined using a replication network that replicates processes
dynamically, and connects those processes. The replicated processes in work-
ers are represented by three holes (recessed rectangles labeled worker), and an
ellipsis, which abbreviates a set of processes. Each worker hole has an input
port (the recessed rectangle labeled Probs) and an output port (the raised
rectangle labeled Ans). Each replicated worker process receives sub-problems
from the Probs port, solves them, and returns answers to the master via the
Ans port.

A replication network has some special ports that determine the number
of replicated processes and the topology of the network. For example, the
Wks port in workers is a map port that determines the number of processes
to generate by the number of received elements from the port, and maps
each element to each process. Master (at the bottom-right of Figure 6.2) is
a merge port that merges the output streams of all the processes. Besides
these ports, we can use broadcast ports that broadcast received elements to
all the processes.

In Figure 6.3, the structure of the master hidden in Figure 6.2 is expanded
by zooming. The master network is composed of the generator and combiner
hole, and the dispatcher process. Generator simply generates a stream of
sub-problems. Combiner receives answers from dispatcher and computes the
final answer. The dispatcher process is the default implementation of the
dispatcher hole. It receives sub-problems from generator and messages from
workers (ready and answer). Then it sends the sub-problems to ready workers,
and sends the answers to the combiner.

In addition, we should also mention that KLIEG-VDPs can be combined
hierarchically for constructing large-scale programs from smaller ones. To
construct KLIEG-VDPs hierarchically, we merely instantiate a hole with an
entire KLIEG-VDP. In fact, master_worker is constructed in this way, i.e.,
master_worker has two holes, and these holes are instantiated with the master
and workers networks.

In the following sections, we will show the details of features in Sec-
tion 6.2.1. Definition of network diagrams can be easily performed by normal
graph editors, so we will concentrate on issues on definition and use. We first
describe support with Hyper Mochi Sheet in Section 6.3, then explain other
support in Section 6.4. We use the master_worker pattern as an example.



CHAPTER 6. ENHANCING USABILITY WITH APPLICATION SEMANTICSS80

6.3 Support with Hyper Mochi Sheet

6.3.1 Management of Multiple Implementations

The designer can search appropriate processes for a hole. KLIEG searches
processes using the types of ports in the hole, and show the result in a dialog
box. The hole is replaced only by clicking one of processes. We found this
is easier than dragging an implementation from the other module every time
the user replaces an implementation. Another method for showing search
results is magnifying processes using distortion views. The designer and pro-
grammer can easily access the definitions of processes for determining which
process is appropriate for the hole. This feature can be easily implemented
by customizing the search engine of the dynamic query function in Hyper
Mochi Sheet?.

In addition, the designer can store a hole with multiple implementations
by repeated drag-and-dropping icons of appropriate processes onto the hole.
Using this interface, the designer can provide a KLIEG-VDP with different
kinds of implementations:

Sample implementations By executing these implementations on the tracer,
the user can understand the behavior of the KLIEG-VDP.

Default implementations The most likely implementations the user is
likely to use.

Alternative implementations The implementations that serve as the ba-
sis of user customization.

Implementations in a hole are chosen with a dialog box. Using the dia-
log box, the user can not only select an implementation, but also change a
particular specification of an existing program?®.

As an example, we show how to manage multiple implementations for
the master-worker pattern to solve search problems. When solving search
problems with the master-worker pattern, combiner might be implemented
independent of the problem to solve. Thus we provide two implementations

2Currently we have not yet implemented the distortion view version of the search
function. The future version will incorporate this function.

3A well-designed VDP should be able to change its specification by replacing imple-
mentations in holes.



CHAPTER 6. ENHANCING USABILITY WITH APPLICATION SEMANTICSS81

KLIEG 1 =]
load_balancing |
Imple me ntations =]
master_worker combiner
1
ek pass_answers
pass_answers count_answers J
generator

Outs H

dispatcher

1:4 | Ca.ncell
Imple mentations ) [m] 5

dispatcher

dispatcher
one_ans_dispatcher
n_ans_dispatcher

[ |

workers

[1):4 | Canc:ell

Figure 6.4: Alternative implementations

to combiner (Figure 6.4). On the top-right of Figure 6.4, the dialog box shows
dropped processes. To show the result of query, we use the same dialog box.
The pass_answers process passes through the answers from dispatcher to the
output, and the count_answers counts the number of answers.

In addition, we can change the treatment of answers from finding all
answers to finding the fixed number of answers. This is done by changing
the dispatcher process to the process that terminates all the workers when
it receives the fixed number of answers from workers. To perform this, we
only add an implementation of a new dispatcher to dispatcher hole. On
the bottom-right of Figure 6.4, a dialog box shows the one_ans_dispatcher
process for finding single answer, and the n_ans_dispatcher process for finding
7 answers.



CHAPTER 6. ENHANCING USABILITY WITH APPLICATION SEMANTICSS82

6.3.2 Focusing Support for Processes Editing

The designer can show which processes should be modified to change a par-
ticular behavior of a KLIEG-VDP by providing a distortion view layout of
the KLIEG-VDP in which the processes are magnified. The user can select a
layout by the behavior name and can easily find out which processes should
be modified.

Using multi-focus distortion viewing, we can obtain a layout in which all
related components are magnified in a single view, even if they are separated
from each other on screen. In such a view, we can see the details of the
components and the overview of the network at the same time. In addition,
the editor of KLIEG animates transition from one layout to another layout,
so that the user is not confused even if the layout drastically changes.

When the user intends to change a particular behavior of a program, the
user selects an appropriate layout and replaces the magnified processes. The
changes to a KLIEG-VDP in one layout view are reflected in other layouts.

This support uses design information as application semantics, and can be
easily implemented with Hyper Mochi Sheet library. One way to implement
the function uses the dynamic query technique. The programmer can find
modifiable processes by dynamic queries, if the name of a behavior is attached
to the processes by the designer. Another implementation uses saving and
recovery of distortion view layouts. The designer should make distortion
views and save them with behavior names. It is obvious to introduce layout
saving and recovery functions into Hyper Mochi Sheet.

As an example, we show two layouts of the master-worker pattern for
search problems. One is for changing the problem to solve, and the other is
for changing the treatment of the answers. Figure 6.5 depicts two layouts and
a dialog box for changing layouts. The layout on the left is for changing the
problem. To change the problem, the user must change the generator and the
worker magnified in the editor. Another layout on the right is for changing
the treatment of the answers. Similarly, the treatment of the answers can be
changed by modifying combiner or dispatcher magnified in the editor.



CHAPTER 6. ENHANCING USABILITY WITH APPLICATION SEMANTICSS83

Modifiable behaviors of

master_worker
/\- The problem to solve 4
The treatment of answers~]

master_worker master_worker
master master
generator / pass_answers
generator
Prot e & | o] et Outs P
Ans [
dispatcher
dispatcher
i robsl  comi

workers

B wis
B Waster [

Figure 6.5: Changing layout for modifying behaviors

6.4 Other Support

6.4.1 Visualizing Execution of KLIEG-VDPs

The user can observe the behaviors of KLIEG-VDPs by executing a sample
program with the tracer. As an example, we show the sample program
that solves the N-Queens problem using the master_worker pattern, and its
execution on the tracer. The program in Figure 6.6 was constructed by
selecting the layout for changing the problem (Figure 6.5), and instantiating
the holes with processes for the N-Queens problem. In the master network,
the ports Size and Depth* are added for inputting the search parameter, and
the Answer port is added to output answers.

Figure 6.7 shows a snapshot of the execution of the N-Queens program
in the tracer. The tracer animates the transition of the network during the
execution, while maintaining the topology of the pattern in the program.
This is possible because the design information of the KLIEG-VDP can be

“They are singleton ports that receive only one datum



CHAPTER 6. ENHANCING USABILITY WITH APPLICATION SEMANTICS84

master_worker
master

Figure 6.6: Solving N-Queens problem using master_worker

referred from the runtime system of KLIEG. The tracer can also show the
contents of streams. Thus the user can easily recognize the KLIEG-VDPs
used in the program, and can observe the behaviors from the animation and
the contents of streams. The tracer also supports distortion viewing, so the
user can navigate through large-scale networks using automated zooming of
important parts of the program.

6.4.2 Checking Consistency Using Types

To further improve the user interface of KLIEG-VDPs, we employ type check-
ing and inference of ports of processes. Using type information, KLIEG can
restrict the possible candidates for a hole, and can connect ports of processes
automatically.

As an example, Figure 6.8 shows the situation where the generator hole has
been instantiated with nqueens_gen process that generates sub-problems for
the N-Queens problem. In this case, processes that have no relevance to the
N-Queens problem should be disabled when the user instantiates the worker
hole or selects the worker process. To detect this, the port type of Probs
of nqueens_gen is propagated to dispatcher and then to the worker holes by



CHAPTER 6. ENHANCING USABILITY WITH APPLICATION SEMANTICSS85

Files Options
main 4
ngueens By MasterWorker
master worker ™,
master
ngqueens_gen pass_answers
{Size{D: (Depth{Z:

Probs} |

I~ I -

Continue ‘ Redraw ‘ Hhao ‘ Step ‘

Figure 6.7: Executing the N-Queens program on the tracer

the type inference algorithm, so that processes except for nqueens_worker are
disabled in the Implementations dialog box (at the bottom-right of Figure 6.8).

As another example, consider the case the user replaces dispatcher with
another implementation. It would be impossible to connect ports automat-
ically without type information, because dispatcher has two input ports and
two output ports, and can be linked in different ways. In this case, KLIEG
automatically connects the ports correctly if the types of all ports are de-
tected. In this way, the user does not have to reconnect each port every time
when replacing the processes.

To implement these type checkings, we use a constraint based type anal-
ysis. The base language of KLIEG is moded FGHC [69], and our analysis
technique is also based on the mode-analysis algorithm of moded FGHC. We



CHAPTER 6. ENHANCING USABILITY WITH APPLICATION SEMANTICS86

load _halancing
master_worker
master

pass_shawers

worker

ngueens_worker
slght pupsle worker
manciebrot worker

-

[1):4 | Canc:ell

Figure 6.8: Checking port types of the worker

omit the details of the algorithm for brevity; interested readers are referred
to [69].

6.5 Programming with KLIEG-VDPs

For users, programming using KLIEG-VDPs is simple and easy. It can be
performed using the same interfaces for definition, namely dragging and drop-
ping interface and dialog boxes:

1. Select a necessary KLEG-VDP from a library, and drag and drop it on
to one’s program.



CHAPTER 6. ENHANCING USABILITY WITH APPLICATION SEMANTICS87

2. If a sample code exists, execute the code with the tracer, and confirm
the behaviors of the KLIEG-VDP.

3. Select a layout corresponding to the behavior to be modified from the
dialog box.

4. Leave the default implementation for a hole as is, if it is sufficient.
If not, select an appropriate implementation for each hole from its
dialog box. If there are no appropriate implementations, implement
necessary processes for unspecified holes, and instantiate the holes with
the processes using drag and drop.

5. Add necessary ports and links that are not defined in the KLIEG-VDP.

6. When changing the other behaviors of the program, repeat the steps 3
to 5.

7. Execute the program and for change in behavior go back to step 3.

6.6 Conclusion

We have shown that the application semantics can provide further support
for navigation and editing in a visual programming environment. We use
type information and design information as the semantics for the support.
The management of multiple implementations and the focusing support for
process editing can be easily implemented in our framework of Hyper Mochi
Sheet. We also show some other support without Hyper Mochi Sheet, and
proposed the notion of visual design patterns for integrating all support.



Chapter 7

Summary

We have proposed a new GUI framework to support navigation and editing
through multi-focus distortion views. This framework keeps distortion layout
free and flexible, while reducing the number of command invocations by
automatic focus management techniques.

Hyper Mochi Sheet enhanced navigation for editing using three automatic
focusing techniques: focus size prediction, predictive focus selection, and dy-
namic query. The focus size prediction automatically determines appropri-
ate sizes of nodes, and reduces boring repetitive work. The predictive focus
selection automatically defocuses unnecessary foci during navigation with
hyperlinks, and reduces layout adjustment tasks before and after following
hyperlinks. The dynamic query function allows the user to find scattering
objects with simple operations and quickly create layouts for editing search
results.

We have also shown that the application semantics can provide further
support for navigation and editing. We have made a case study using a
data-flow visual programming environment (VPE) as a sample application.
We use type information and design information as the semantics for the
support, and showed that navigation support can be easily implemented in
Hyper Mochi Sheet.

7.1 Discussion

We have shown that the combination of proposed techniques is effective in
navigating and editing nested network through multi-focus distortion views.

88



CHAPTER 7. SUMMARY 89

There are relationships between those techniques. In short, the focus size
prediction technique provides a set of appropriate node sizes for automatic
focusing in the predictive focus selection and the dynamic query techniques.
In the following, we discuss generality and applicability of each technique.

7.1.1 Focus size prediction

The focus size prediction technique itself is independent of the other tech-
niques. Basically, a set of node sizes determined by the technique is used for
opening/closing the node, which is the most simple automatic focusing. The
other techniques only reuse the set of sizes.

The technique is also independent of nested networks and the Hyper
Mochi Sheet algorithm, since the prediction algorithm concerns only the his-
tory of resize and open/close commands on each node. Therefore, this tech-
nique can be applied to other distortion views that focus on each node, such
as the layout-independent fisheye view[42], and the continuous zoom/[5]. The
technique is also applicable to pan/zoom based interfaces, such as Pad++[7,
8] and SHriMP[58], because they scale each node independently.

In addition, the technique is most effective in applications such as pre-
sentation tools and hypertext editors, in which the representation of each
node is important and the user should adjust node sizes according to their
preferences. Otherwise, the technique is less effective, because the user often
compromises on a set of node sizes determined automatically.

7.1.2 Predictive focus selection

The predictive focus selection technique uses results of the focus size pre-
diction for focusing necessary nodes and defocusing unnecessary nodes to
appropriate sizes. Therefore, the user can quickly obtain an appropriate
distortion view after following a hyperlink.

Although the technique uses results of the focus size prediction for focus-
ing selected nodes, the method of the selection itself can be used indepen-
dently of the other techniques. The technique can be applied to multi-window
and multi-buffer systems for automatically closing unnecessary windows or
buffers. Therefore, the technique is also independent of distortion views and
nested networks.

In addition, the technique is more effective in editor applications than in
browser applications. In editors, the system can obtain keys for the prediction



CHAPTER 7. SUMMARY 90

from editing status and operations, in addition to navigation operations. In
practice, useful semantics is often obtained from editing status and operations
as shown in Chapter 5.

7.1.3 Dynamic query

The dynamic query technique uses results of the focus size prediction to
show results of dynamic queries. Therefore, the user can quickly edit results
of queries through an appropriate distortion view.

The technique relies on hierarchical structures. Reliable information hi-
erarchy is necessary for the user to narrow search space correctly. Especially,
it is important that each parent node is labeled appropriately, so that the
user can guess subtrees by labels and paths from the root node.

In addition, the technique is applicable to various applications by chang-
ing the search engine. Hyper Mochi Sheet performs dynamic approximate
string matching as the default search method, and allows the programmer to
provide search engines customized for the application as shown in Chapter 6.

7.2 Limitations

The focus size prediction technique can not predict a node size that is not in
the size history of the node. The user must manually resize the node when he
or she cannot find an acceptable size in the history. One solution is that the
system pre-calculates appropriate sizes according to application semantics.

The predictive focus selection technique is still a preliminary design and
implementation, though it works well in our applications presented in this
thesis. To introduce more application semantics as prediction keys, it is
necessary to implement more applications, such as an object-oriented design
tool, and to analyze requirements for automatic support.

Improvement of the user interface is also required. The size correction
interface is still indirect for the user. A correction interface for the predictive
focus selection is also necessary. It should allow the user to select a proper
layout from multiple candidates.

Hyper Mochi Sheet also has an implementation related limitation, though
it provides enough scalability for practical use. It is capable of visualizing
about 6,000 nodes with smooth animation (2 — 5 frame per seconds) us-
ing PC/AT (CPU: Pentium 133MHz MMX, Video Chip: Chips& Technology



CHAPTER 7. SUMMARY 91

65554, and Memory: 64MB). The frame rate of animation depends mainly
on how many nodes are visible and are resized at once. With more efficient
graphics hardware and larger memory, Hyper Mochi Sheet can apparently
display and interact with nested network containing up to 20,000 nodes. To
obtain more scalability, we should introduce indexing and filtering of nodes,
so that the system can load nodes to memory on demand.

7.3 Future Work

Extending the concept of Hyper Mochi Sheet to desktop environments is one
of the most interesting directions for future work. The hierarchical visualiza-
tion of a file system, and windows of executed applications would be seam-
lessly integrated in the desktop, using distortion views. Pull-down menus
in applications can be also integrated into Hyper Mochi Sheet as zooming
menus.

Applying Hyper Mochi Sheet to large (30 inches or more) and high res-
olution (with 3,000 or more pixels) screens is also an interesting direction.
Since the user cannot see overall screen space at once, new distortion view
algorithms will be required, so that the user can keep arbitrary sets of nodes
at hand, while displaying overall context on the screen.

7.4 Conclusion

Although multi-focus distortion views provide flexible layouts for editing mul-
tiple parts, it is complicated and time-consuming task to navigate and edit
structured information. The user’s most important task is management of
multiple foci during navigation for editing, in which the user creates a dis-
tortion view suitable for the next editing situation. We analyzed the general
problems of navigation for editing, and show that the most important is-
sue is trade-off between flexibility of distortion layouts and the number of
command invocations.

We have proposed a new GUI framework for distortion views, which au-
tomatically manages multiple foci, and reduces the number of command in-
vocation, keeping distortion layouts free and flexible. We implemented the
framework as a general GUI library, Hyper Mochi Sheet. We have also shown
that the application semantics can provide further support for navigation and



CHAPTER 7. SUMMARY

editing.

92



Bibliography

1]
2]

3]

Yahoo!. http://www.yahoo.com.

K. Arnold and J. Gosling. The Java Programming Language. Addison
Wesley, 1996.

Lyn Bartram and Tom Calvert. Evaluating the Role of Intelligent Sup-
port in User Interfaces to Supervisory Control Systems. In Proceedings
of the IEEE Conference on Systems, Man and Cybernetics, pages 717—
722, October 1994.

Lyn Bartram, Frank Henigman, and John Dill. The Intelligent Zoom as
Metaphor and Navigation Tool in a Multi-Screen Interface for Network
Control Systems. In Proceedings of the IEEE Conference on Systems,
Man and Cybernetics, pages 3122-3127, October 1995.

Lyn Bartram, Albert Ho, John Dill, and Frank Henigman. The Con-
tinuous Zoom: A Constrained Fisheye Technique for Viewing and Nav-
igating Large Information Space. In Proceedings of UIST 95, pages
207-215, November 1995.

Lyn Bartram, Russell Ovans, John Dill, Michael Dyck, Albert Ho, and
William S. Havens. Contextual Assistance in User Interfaces to Com-

plex, Time Critical Systems: The Intelligent Zoom. In Graphics Inter-
face °94, pages 216-224, 1994.

Benjamin B. Bederson and James D. Hollan. Pad++: A Zooming
Graphical Interface for Exploring Alternate Interface Physics. In Pro-
ceedings of UIST ’9/, pages 17-26, November 1994.

Benjamin B. Bederson, James D. Hollan, Ken Perlin, Jonathan Meyer,
David Bacon, and George Furnas. Pad++: A Zoomable Graphical

93



BIBLIOGRAPHY 94

[12]

[13]

[15]

[16]

[17]

Sketchpad For Exploring Alternate Interface Physics. Journal of Vi-
sual Languages and Computing, 7(1):3-31, March 1996.

Benjamin B. Bederson, James D. Hollan, Jason Stewart, David Rogers,
Allison Druin, and David Vick. A zooming web browser. In SPIE
Multimedia Computing and Networking, volume 2667, pages 260-271,
1996.

F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and P. S. Yu. Automatic
code generation from design patterns. IBM Systems Journal, 35(2),
1996. — Object technology.

M. Sheelagh T. Carpendale, David J. Cowperthwaite, and F. David
Fracchia. 3-Dimensional Pliable Surfaces: For the Effective Presenta-
tion of Visual Information. In Proceedings of UIST ’95, pages 217226,
November 1995.

Wayne Citrin and Carlos Santiago. Incorporating Fisheying into a Visual
Programming Environment. In Proc. 1996 IEEE Symposium on Visual
Languages, pages 20-27, 1996.

John Dill, Lyn Bartram, Albert Ho, and Frank Henigman. A Contin-
uously Variable Zoom for Navigating Large Hierarchical Networks. In
Proceedings of the IEEE Conference on Systems, Man and Cybernetics,
pages 386—390, October 1994.

Steven Feiner. Seeing the Forest for the Trees: Hierarchical Display of
Hypertext Structure. In Proceedings of the Conference on Office Infor-
mation Systems, pages 205-212. ACM, March 1988.

George W. Furnas. Generalized Fisheye Views. In Proceedings of ACM
CHI’86, pages 16-23. Association for Computing Machinery, 1986.

George W. Furnas and Benjamin B. Bederson. Space-scale Diagrams:
Understanding Multiscale Interfaces. In Proceedings of CHI’95 Human
Factors in Computing System, pages 234-241, 1995.

George W. Furnas and Xiaolong Zhang. Muse: A multiscale editor. In
Proceedings of UIST ’98, pages 107-116, November 1998.



BIBLIOGRAPHY 95

[18]

[19]

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns — Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

J. G. Hollands, T. T. Carey, M. L. Matthews, and C. A. McCann.
Presenting a Graphical Network: A Comparison of Performance Using
Fisheye and Scrolling Views. In Designing and Using Human-Computer
Interfaces and Knowledge Based Systems, pages 313-320, 1989.

Brian Scott Johnson. Treemaps: Visualizing Hierarchical and Categori-
cal Data. PhD thesis, University of Maryland, 1993.

Sussanne Jul and George W. Furnas. Critical Zones in Desert Fog: Aids
to Multiscale Navigation. In Proceedings of ULST 98, pages 97-106,
November 1998.

Naftali Kadmon and Eli Shlomi. A Polyfocal Projection for Statistical
Surfaces. The Cartographic Journal, 15(1), June 1978.

Karlis Kaugars, Juris Reinfelds, and Alvis Brazma. A Simple Algorithm
for Drawing Large Graphs on Small Screens. In Proceedings of Graph
Drawing '94, pages 278281, 1994.

T. Alan Keahey and Edward L. Robertson. Nonlinear Magnification
Fields. In Proceedings of the IEEE Symposium on Information Visual-
wzation, IEEE Visualization, October 1997.

Vijay A. Saraswat Kenneth M. Kahn. Complete Visualizations of Con-
current Programs and their Executions. In Proc. 1990 IEEE Workshop
on Visual Languages, October 1990.

Hideki Koike. Fractal Views: A Fractal-Based Method for Control-
ling Information Display. ACM Transactions on Information Systems,
13(3):305-323, 1995.

Hideki Koike and Masayuki Inoue. A Distortion-Oriented Approach for
Automatic Simplification of the 3D Scene based on the Scene Graph.
IS Technical Reports UEC-1S-1997-10, Graduate School of Information
Systems, University of Electro-Communications, 1997.



BIBLIOGRAPHY 96

28]

[31]

[32]

[33]

[34]

[35]

Yuichi Koike, Yasuyuki Maeda, and Yoshiyuki Koseki. Enhancing Iconic
Program Reusability with Object Sharing. In Proc. 1996 IEEE Sympo-
stum on Visual Languages, pages 288-295, 1996.

John Lamping and Ramana Rao. Laying out and Visualizing Large
Trees Using a Hyperbolic Space. In Proceedings of UIST ’94, pages
13-14, November 1994.

John Lamping and Ramana Rao. The Hyperbolic Browser: A Focus +
Context Technique for Visualizing Large Hierarchies. Journal of Visual
Languages and Computing, 7(1):33-55, March 1996.

Y. K. Leung. Human-Computer Interface Techniques for Map Based
Diagrams. In G. Salvendy and M. J. Smith, editors, Designing and Using
Human-Computer Interfaces and Knowledge Based Systems, pages 361
368. Elsevier Science Publishers, 1989.

Y. K. Leung and M. D. Apperley. Review and Taxonomy of Distortion-
Oriented Presentation Techniques. ACM Transactions on Computer-
Human Interaction, 1(2):126-160, June 1994.

Jock D. Mackinlay, George G. Robertson, and Stuart K. Card. The Per-
spective Wall: Detail and Context Smoothly Integrated. In Proceedings
of ACM CHI'91, pages 173-179, 1991.

Toshiyuki Masui. An Efficient Text Input Method for Pen-based Com-
puters. In Proceedings of ACM CHI’98, pages 328-335, April 1998.

Kazuo Misue and Kozo Sugiyama. Multi-viewpoint perspective display
methods: Formulation and application to compound graphs. In Hu-
man Aspects in Computing: Design and Use of Interactive Systems and
Information Management, pages 834-838. Elsevier Science Publishers,
1991.

Kazuo Misue and Kozo Sugiyama. How Does D-ABDUCTOR Support
Human Thinking Processes? In Proceedings of CG International ’94,
1994.

Kazuo Misue and Kozo Sugiyama. Evaluation of a Thinking Support
System from Operational Points of View. In Symbiosis of Human and
Artifact. Elsevier Science Publishers, 1995.



BIBLIOGRAPHY 97

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Deborah A. Mitta. A Fisheye Presentation Strategy: Aircraft Mainte-
nance Data. In Human-Computer Interaction — INTERACT 90, pages
875-880, 1990.

Brad A. Myers. Amulet Project Home Page. http://www. cs.cmu.edu/”
amulet /.

Keng Ng, Jeff Kramer, Jeff Magee, and Naranker Dulay. A Visual Ap-
proach to Distributed Programming. In A. Zaky and T. Lewis, editors,
Tools and Environments for Parallel and Distributed Systems, chapter 1,
pages 7-31. Kluwer Academic Publishers, February 1996. (ISBN: 0-7923-
9675-8).

Emanuel G. Noik. Exploring Large Hyperdocuments: Fisheye Views of
Nested Networks. In ACM Conference on Hypertext and Hypermedia,
pages 14-18, 1993.

Emanuel G. Noik. Layout-independent Fisheye Views of Nested Graphs.
In Proc. 1993 IEEE Symposium on Visual Languages, pages 336-341,
1993.

Emanuel G. Noik. Dynamic Fisheye Views: Combining Dynamic
Queries and Mapping with Database Views. PhD thesis, Department
of Computer Science, University of Tronto, 1996.

Ken Perlin and David Fox. Pad: An Alternative Approach to the Com-
puter Interface. In SIGGRAPH 93 Conference Proceedings, pages 5764,
1993.

P.Newton and J.C.Browne. The CODE 2.0 Graphical Parallel Program-
ming Language. In Proc. ACM Int. Conf. on Supercomputing, July 1992.

Ramana Rao and Stuart K. Card. The Table Lens: Merging Graphical
and Symbolic Representations in an Interactive Focus+Context Visual-
ization for Tabular Information. In Proceedings of ACM CHI’9/, pages
318-322, 1994.

George G. Robertson and Jock D. Mackinlay. The Document Lens. In
Proceedings of UIST ’93, pages 101-108, November 1993.



BIBLIOGRAPHY 98

[48]

[49]

[50]

[51]

[53]

[54]

[55]

Manojit Sarkar and Marc H. Brown. Graphical Fisheye Views of Graphs.
In Proceedings of ACM CHI’92, pages 83-91, 1992.

Manojit Sarkar, Scott S. Snibbe, Oren J. Tversky, and Steven P. Reiss.
Streching the Rubber Sheet: A Metaphor for Viewing Large Layouts
on Small Screens. In Proceedings of UIST 93, pages 81-91, November
1993.

Doug Schaffer, Zhengping Zuo, Saul Greenberg, Lyn Bartram, John Dill,
Shelli Dubs, and Mark Roseman. Navigating Hierarchically Clustered
Networks through Fisheye and Full-Zoom Methods. ACM Transactions
on Computer-Human Interaction, 3(2):162-188, June 1996.

Stefan Schiffer and Joachim Hans Frohlich. Visual Programing and Soft-
ware Engineering with Vista. In Adele Goldberg Margaret Burnett and
Ted Lewis, editors, Visual object-oriented programming: concepts and
environments, chapter 10, pages 199-227. Manning Publications Co.,
1995.

Buntarou Shizuki, Masashi Toyoda, Etsuya Shibayama, and Shin Taka-
hashi. Visual Patterns + Multi-Focus Fisheye View: An Automatic Scal-
able Visualization Technique of Data-Flow Visual Program Execution.
In Proc. 1998 IEEE Symposium on Visual Languages, pages 270-277,
September 1998.

Buntarou Shizuki, Masashi Toyoda, Shin Takahashi, and Etsuya
Shibayama. A Visual Parallel Programming Environment KLIEG:
Reuse of Program Components and Visualization of Program Execu-
tion by Process Network Pattern. In Workshop on Interactive Systems
and Software’96, pages 81-90, December 1996. in Japanese.

Ben Shneiderman. Dynamic Queries for Visual Information Seeking.
IEEE Software, pages 70-77, November 1994.

Robert Spence and Mark Apperley. Data-base navigation: An Office En-
vironment for the Professional. Behaviour and Information Technology,
1(1):43-54, 1982.

Michael Spenke, Christian Beilken, and Thomas Berlage. FOCUS: The
Interactive Table for Product Comparison and Selection. In Proceedings
of UIST 96, pages 41-50, November 1996.



BIBLIOGRAPHY 99

[57] M. A. D. Storey and H. A. Miiller. Graph Layout Adjustment Strategies.
In Proceedings of Graph Drawing 1995, pages 487-499, September 1995.

[58] M. A. D. Storey, K. Wong, F. D. Fracchia, and H. A. Miiller. On
Integrating Visualization Techniques for Effective Software Exploration.

In Proceedings of the IEEE Symposium on Information Visualization,
IEEE Visualization, October 1997.

[59] B. Stroustrup. The C++ Programming Language Second Edition.
Addison-Wesley, 1991. ISBN 0-201-53992-6.

[60] Kozo Sugiyama and Kazuo Misue. “Good” Graphic Interface for “Good”
Idea Organizers. In Human-Computer Interaction — INTERACT’ 90,
pages 521-526, 1990.

[61] Kozo Sugiyama and Kazuo Misue. Visualization of Structural Informa-
tion: Automatic Drawing of Compound Digraphs. IEEE Transactions
on Systems, Man, and Cybernetics, 21(4):876-892, July/August 1991.

[62] Jiro Tanaka. Visual Programming System for Parallel Logic Languages.
In The NSF/ICOT Workshop on Parallel Logic Programming and its
Program Environments, pages 175-186. the University of Oregon, 1994.

[63] Masashi Toyoda, Toshiyuki Masui, and Etsuya Shibayama. HishiMochi:
A Dynamic Search System with Nonlinear Zooming. In Workshop on
Interactive Systems and Software 98, pages 143-152, December 1998.
in Japanese.

[64] Masashi Toyoda and Etsuya Shibayama. Hyper Mochi Sheet: A Pre-
dictive Focusing Interface for Navigating and Editing Nested Networks
through a Multi-focus Distortion-Oriented View. In Proceedings of ACM
CHI’99, May 1999. Accepted and to be published.

[65] Masashi Toyoda, Buntarou Shizuki, Shin Takahashi, Satoshi Matsuoka,
and Etsuya Shibayama. Supporting Design Patterns in a Visual Parallel
Data-flow Programming Environment. In Proc. 1997 IEEE Symposium
on Visual Languages, pages 76—-83, September 1997.

[66] Masashi Toyoda, Buntarou Shizuki, Shin Takahashi, and Etsuya
Shibayama. KLIEG: A Visual Parallel Programming Environment Using
Process Network Patterns as Flexible Reuse Units. In Technical Report



BIBLIOGRAPHY 100

[67]

of IEICE. COMPY95-91, 5595-46 (1996-03), pages 25-30. The Institute
of Electronics, Information and Communication Engineers, March 1996.

Masashi Toyoda, Buntarou Shizuki, Shin Takahashi, and Etsuya
Shibayama. Mochi Sheet: Integration of Zooming and Layout Editing.
In Proceedings of Interaction '97, pages 79-86. Information Processing
Society of Japan, February 1997. in Japanese.

Masashi Toyoda, Shin Takahashi, and Etsuya Shibayama. Mochi Sheet:
A Zooming Interface witch Supports Efficient Editing of Large Visual
Programs. Transactions of Information Processing Society of Japan,
39(5):1395-1402, 5 1998. in Japanese.

Kazunori Ueda and Morita Masao. Moded Flat GHC and Its Message-
Oriented Implementation Technique. New Generation Computing,
13(1):3-43, 1994.

Guido Wirtz. Modularization and Process Replication in a Visual Par-
allel Programming Language. In Proc. 1994 IEEE Symposium on Visual
Languages, pages 72-79, 1994.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


