Visual Abstractions for
Object-Based Parallel Computing

Etsuya Shibayama, Masashi Toyoda, Buntarou Shizuki, Shin Takahashi
Department of Mathematical and Computing Sciences
Tokyo Institute of Technology
2-12-1 Oookayama, Meguro-ku, Tokyo, 152-8552, JAPAN
{etsuya, toyoda, shizuki, shin}@is.titech.ac.jp

Abstract

We propose the notion of visual patterns, which describe various aspects of
object-based parallel and distributed computing, and have developed a visual sup-
porting environment for parallel programming based upon visual patterns. In this
paper, we show the power of visual patternsin design, programming, and debugging
processes.

1 Introduction

Object-oriented computing models inherently have visual natures: the essence of object-
orientation is to model anything and any behaviors in terms of a collection of inter-
related objects and interactions among them; such a collection naturally forms a general
graph structure that a diagrammatic representation is best fitted for human designers
and programmers to comprehend. In object-oriented software engineering community,
for instance, recent experiences in object-oriented analysis and design or OOA/OOD
(e.g., [RBPT91, Boo94]) proves the usefulness of various sorts of visual diagrams (e.g.,
class and object diagrams) that represent design of object-oriented software. Also in the
object-oriented programming community, JavaBeans and some other visual programming
environments are now coming to maturity. Concurrent, parallel, or distributed object-
based programming could not be the exceptions and neat visual representations of parallel
and distributed object-based programs/computations are desirable.

Just being visual is not sufficient, of course. In this paper, we propose new visual ab-
stractions, visual patterns, that describe various aspects of parallel and distributed object-
based design, programming, and debugging in a coherent manner. We also introduce a
prototype parallel visual programming environment KLIEG[TST*97b] that provides a
support for:

o an object-based visual parallel programming language KLIEG,

e visual patterns that keep information of software design and object layout on the
screen.

master

'

answers

Figure 1: A diagrammatic representation of concurrent objects

The major design issues of the KLIEG environment include the following:
e visual representations vs. textual representations;
o design, programming, and debugging in the large on a relatively small screen;
e a seamless integration of design, programming, and debugging processes.

In the sequel, in Section 2 we discuss the benefits of visual representations in object-
based parallel programming. Also in this section, we introduce the KLIEG language and
propose the new programming methodology, that is, pattern-oriented visual programming.
In Section 3 we briefly review a support for visual design patterns provided by the KLIEG
programming environment. In Section 4, we discuss scaling-up issues and introduce our
approach based upon distorted multi-focus zooming techniques. We compare our work
and related works in Section 5 and finally summaries the current status and the future
direction of our work in Section 6.

2 The Visual Language KLIEG and Pattern-Oriented
Visual Programming

2.1 Why Being Visual?

As was briefly mentioned in the previous chapter, diagrammatic representations of object-
oriented programs or designs are better fitted for human designers and programmers
than the corresponding textual representations. This reason is simple and obvious: any
forms of textual representations of general graphs or networks invented so far are not as
comprehensible as standard pictorial representations.

In Figure 1, for instance, a typical diagrammatic representation of a collection of inter-
related objects is illustrated. This figure represents a master-workers object network, in
which a single master object dispatches tasks to multiple worker objects and gathers the
results of the workers’ computations. Either procedural or declarative, a textual repre-
sentation of this sort of network is rather indirect and harder to understand. Notice that
visual approaches in object-orientation are completely different from those approaches

producer_consumer

pruduc:er consumer

I Dutg&

Figure 2: A producer-consumer pattern

based on (structured) flow-charts: with a little computer support for syntax-directed
editing and outline processing, syntax trees in a textual form (i.e., ordinary programs)
can be as comprehensible as those in a visual form.

2.2 Patterns in KLIEG

Based upon the observation in the previous subsection, we design a visual (i.e., picto-
rial) language KLIEG for object-based parallel computing. Programs in the language
KLIEG are depicted as visual data-flow diagrams and, in this respect, KLIEG is similar
to CODE[PJ92] and Pictorial Janus[KMK90]. One of the significant differences is that

KLIEG provides a support for visual patterns and pattern-oriented visual programming.

2.2.1 Basic Usage

A visual pattern in KLIEG is represented as an object data-flow diagram with abstract
objects, which are called holes and to be instantiated later with concrete objects. In the
KLIEG environment, a visual pattern can keep design and layout information. The detail
of this issue will be described in Section 3.

Figure 2 is the first and simple example of visual pattern, which represents the skeletal
structure of producer-consumer object network. This pattern has two holes, that is, pro-
ducer and consumer. In KLIEG, a recessed rectangle like producer or consumer represents
a hole, which is to be instantiated with a concrete object. In this figure, the producer hole
has an output port Outs and the consumer has an input port Ins. In general, an input
port is depicted recessed and an output port raised. These two ports are called output
and input stream ports, meaning that they transmit and accept, respectively, streams of
messages. The arrow connecting these two ports represents a communication channel or
message stream.

The KLIEG environment provides a support for definitions and use of visual patterns.
For definitions of visual patterns, an editing interface similar to an draw editor is avail-
able. More advanced editing features including zooming supports will be introduced in
Sections 3 and 4. For use of visual patterns, a drag-and-drop interface is provided. Holes
of a pattern are instantiated with objects by dropping the icons representing the objects.

In Figure 3, the holes of producer are instantiated with two objects naturals and sum
by dropping their icons onto the holes (Exactly speaking, each hole is instantiated with

sum

marod sun)| drag&drop

naturals producer_consumer
Mats ﬁ'
2 iducer Consum naturals sum
N Mats- E’JJ
pruducer consumer -

Figure 3: Hole Instantiations by drag-and-dropping objects

a copy of the object). In KLIEG, a raised round rectangle like naturals or sum is an
iconic representation of an object, which depicts its signature or interface, i.e., the names
and sorts of its ports. The intended behavior of this network is that, upon reception of
the value N, naturals transmits 1,2,..., N to sum, which in turn computes the value of
14+2+4---+ N and finally puts it on the port Sum.

In this case, naturals has two ports N and Nats. N is an input port that accepts just a
single message in its lifetime. This sort of port is called input singleton port and depicted
as a recessed round rectangle. Similarly, Sum is an output port that transmits just a
single message. This sort of port is called output singleton port and depicted as a raised
round rectangle.

As illustrated in Figure 3, the output stream port Nats of naturals and the input
stream port Summands of sum are automatically connected via a message stream upon
instantiation. This connection is made by matching Nats and Summands with Outs and
Ins, respectively. In contrast, N and Sum cannot match any ports in the pattern. In
general, the dropped object can have more ports than the hole to which it is dropped.

The KLIEG environment calculates the most probable matching among ports of the
object and the hole using the following information of each port:

o whether singleton or stream;
e whether input or output;
e the types of messages received/transmitted on the port;

o the geometry within a hole or an object.

The first two are obvious: a singleton port only matches another singleton port, and so
on. The third information is exploited by the type inference algorithm that is similar to
the mode analysis algorithm[UM94] for an parallel logic programming language FGHC
(Flat Guarded Horn Clauses). The last information is conducted only when the other
three are not sufficient for resolution of ambiguities since it is heuristic information and
thus error-prone.

In case of Figure 3, the first two information is sufficient to get the correct result, i.e.,
Outs of producer and Ins of consumer correspond to Nats of naturals and Summands of
sum, respectively. Notice that the name of a port is ignored in this matching process.

4

sum_of

producer_consumer

sum_of

W o).

haturals sum

2)

Figure 4: The interface and implementation of sum_of

master_worker
master

Figure 5: A base pattern for master-workers

2.2.2 Hierarchical Constructions

Even with a pictorial representation, a large and flat object network is rarely comprehen-
sible. To overcome this difficulty, the KLIEG language/environment provides a means for
hierarchical constructions of patterns and object networks.

Firstly, an object in KLIEG can be defined hierarchically. Figure 4 illustrates a simple
example: the small round rectangle sum_of represents the interface of an object sum_of;
the rest of the figure represents its body or implementation. That is, an object sum_of
consists of two objects naturals and sum that are embedded in the producer_consumer
pattern. Notice that this picture is regarded as a rewriting rule and so the KLIEG language
processor reduces the interface of an object in a program into its implementation. Notice
also that the KLIEG allows the programmer to describe visual conditional rewriting rules
that are as expressive as clauses of a committed-choice parallel logic language Moded
FGHC[UM94].

Secondly, a visual pattern can be defined in a hierarchical manner. That is, by drop-
ping a pattern onto a hole of another pattern, the hole can be instantiated with the former
pattern. For instance, a master-workers network illustrated in Figure 1 can hierarchically

be defined in KLIEG as follows:

1. Defining the fundamental structure of the master-workers pattern
Figure 5 depicts the basic structure of the master_worker pattern, which has two
holes, i.e., master and workers, and two arrows representing the communication
channels between master and workers.

2. Defining the master and workers patterns

master
generator combiner

Caomhb ..

Frobs =
ans =

Figure 6: A master pattern

workers

q L I U I angffg W |

Figure 7: A workers pattern

The master and workers parts in Figure 5 should have their own micro-architectures
that are best described in terms of visual patterns. Figures 6 and 7 illustrate master
and workers patterns in KLIEG, respectively. Since the master-workers pattern is a
canonical example throughout this paper, we resume explanations of Figures 6 and
7, later.

3. Dropping patterns onto holes
By dropping master and workers patterns in Figures 6 and 7 onto the corresponding
holes of the master_worker pattern in Figure 5, we get the master_worker pattern in
Figure 8.

The master pattern in Figure 6 has three holes generator, dispatcher, and combiner. Gen-
erator plays a role of generating tasks that will be delivered to workers. This part heavily
depends on the problems to be solved and should often be replaced. Dispatcher receives
tasks from generator and deliver each of them to an appropriate worker. Also it receives
the computing results of workers and send them to combiner. By replacing dispatcher and
combiner, the load balancing policy and the way to combine the partial results, respec-
tively, can be changed. The workers pattern is defined as a replication network, that is,
workers includes a sequence of holes that are instantiated with copies of the same object.
Therefore, once a single worker hole is instantiated with an object, the other worker holes
are automatically instantiated with its copies. The ellipsis “---” in the sequence of worker
holes means that the length of the sequence is not yet determined. It is determined in
run-time by the number of messages received at the special port Wks, which is called a

master_worker
master
generator combiner

Comb j

Figure 8: A master-workers pattern

map port.

Similar to Figure 3, a hierarchically constructed pattern can be used by dropping
objects onto its holes. Figure 9 is an object network that is constructed of the master-
workers pattern and that computes the answers of the N-queens problem.

2.3 Pattern-Oriented Visual Programming

The KLIEG environment introduces a new programming methodology, that is, pattern-
oriented visual programming, which is carried out as follows:

1. Designers search for visual patterns in the pattern libraries. If any patterns appro-
priate for the application cannot be found, this step would be skipped.

2. They construct new patterns that are suitable for describing the software archi-
tecture of the application from existing patterns or from scratch in a hierarchical
manner.

3. Programmers define and/or search for objects with which holes of the patterns shall
be instantiated.

In other words, the software architecture of the application is first defined and components
of the architecture will be introduced later as replaceable elements in pattern-oriented
visual programming. Also the architecture can be incrementally modified by replacing
component patterns (e.g., master and workers patterns in Section 2.2.2). Notice that the
designers in the first two stages are expected more experienced in design and programming
than those programmers in the last stage.

nqueensByMasterWorker
niaster_worker

master

ngueens_gen Pass_answers

Figure 9: An N-queens program

3 Visual Design Patterns

Recently design patterns|GHJV95, Pre94] have been considered essential in design of flex-
ible and reusable object-oriented software. The notion of design pattern is also important
in object-based parallel and distributed programming.

The KLIEG environment provides a support for visual design patterns. In this section,
we describe issues on supporting design patterns in object-based visual parallel program-
ming environments.

3.1 Design Patterns in an Instance-Based Programming Envi-
ronment

In our understanding, the significance of design patterns is its supports for flexible and
reusable object-oriented software, that is, software that satisfies the following conditions:

e the software is constructed as a collection of objects;

e in order to change some aspects or behaviors of the software, it is sufficient to replace
a small number of objects with those of the same roles.

Notice that our understanding is rather instance-oriented or puts more emphasis on run-
time structures of software. Some people might prefer more class-oriented views or to
pay more attentions on the program structures. Often in practice, both instance-oriented
and class-oriented views are used in software development processes:

e in the modeling stage, first the application domain is modeled as a collection of
inter-related objects;

e in the design and coding stages, the program is created as a collection of class
descriptions;

e in the debugging stage, the debugger is used to capture ill-behaved objects.

One of our goals is to design a seamlessly integrated visual programming environment in
which all the stages above shall share the same notions and same visual abstractions.

In general, concreteness, directness, and explicitness are important features of visual
languages and thus instance-oriented approaches are more promising. In this paper, we
show that our instance-oriented approach can be reasonable. For the purpose, we first
reconsider the notion of design patterns from the instance-oriented point of view. In this
respect, essentially what design patterns provide are:

e coding techniques to make some objects easily replaceable so as to cope with changes
of specifications;

e design information including descriptions of design spaces and design decisions.

The coding techniques provided by design patterns could be replaced with language mech-
anisms and /or environment supports, though they might be necessary for C++ program-
mers. The hole mechanism of KLIEG is sufficiently expressive and it can make objects
and patterns replaceable (i.e., to make software flexible). No more coding techniques are
necessary.

The real issue in this section is to provide a support for design information by pro-
gramming languages/environments. Design patterns are merely documents and therefore
design information is rarely available in run-time systems or programming environments.
Furthermore, a significant number of people consider that programming environment sup-
ports for design patterns are almost useless .

Given a specification change, the design information that we consider significant are
those about:

e which objects shall be changed or replaced?
e what are their alternatives?
e how they behave?

The first piece of information is obviously important. If reasonable alternatives are already
available, the second information is useful. Otherwise, the programmer(s) should learn
the roles of the objects to be replaced and implement new alternatives. In this worst case,
the last information is useful.

In our approach, these pieces of information are respectively supported by the following
manner:

'For instance, J. Vlissides listed ten misconceptions of patterns in [V1i97] and the fourth one was
“Patterns need tool or methodological support to be effective.”

e a visual pattern can have multiple aspects, each of which has its own layout infor-
mation; by selecting an appropriate aspect, the objects to be replaced are displayed
with emphasis.

e a hole in a visual pattern can keep more than one object, i.e., multiple implemen-
tations; each object in a hole may be regarded as default, sample, or alternative
implementation;

o the KLIEG tracer visualizes a computation using the layout information of a visual
pattern provided by its creator using the KLIEG editor.

3.2 A Support for Multiple Aspects

A hierarchically constructed pattern can become large and may have more than one aspect
or behavior to be changed. For instance, it is desirable for the master_worker pattern in
Figure 8 to have the following aspects:

e the problem to be solved;
o the load balancing policy;

e the way to combine the computed results by the workers.

These three aspects are almost orthogonal, though in practice they can be inter-related.

The KLIEG editor provides a multi-focus distorted zooming interface, called Mochi
Sheet[TST*97a], similar to the continuous zoom[BHDHI5] in order effectively to display
each aspect of a pattern. Figure 10 illustrates two aspects of the master-workers pattern.
In the left diagram, holes related to the problem to be solved, i.e., generator and a worker,
are magnified and other holes are shrunken. In this manner, holes and objects that should
be instantiated and replaced are visually emphasized and so design information concerning
“which objects shall be changed?” are effectively provided. In the right diagram, the
objects related to “the way to combine computed results by the workers” are emphasized.

The zooming interface is tightly embedded into the KLIEG editor. On one hand, the
designer of a visual pattern can freely change the size and position of any visuals in the
pattern and register any layout as a new aspect. On the other hand, a user of the pattern
can choose any registered aspect with a dialog box. A change of the aspect is smoothly
animated like morphing.

3.3 A Support for Multiple Implementations

In KLIEG, more than one object can be dropped onto a single hole of a visual pattern,
or the hole can keep more than one object at a time. This mechanism is useful for the
designer of a visual pattern to provide several kinds of implementations including:

o the default implementation that the user most likely to use;
o sample implementations that tell the user the role of the hole;

o alternative implementations that the user can choose and customize for building
applications.

10

master_worker master_worker

master master
generator
pass_answers
generator outs 2‘

Aps

& Master [‘

Figure 10: Two aspects of the master-workers pattern

The user of the pattern, on the other hand, can choose an appropriate implementation
of a hole via a dialog box. If the default implementation is general enough, what a novice
user normally does is just to choose it. With a sample implementation, the user can learn
the basic role of the hole, possibly with a help of the KLIEG tracer that visualizes the
behavior of the implementation. If a number of alternative implementations cover most
areas of the design space, it is sufficient to choose the most eligible one.

Notice that the KLIEG environment has not yet succeeded to effectively provide trade-
off information among those alternatives in a visual manner. Currently written documents
are the only solution to this problem?.

3.4 Visualizing Program Behaviors

The KLIEG tracer visualizes and animates program execution. Figure 11 is a snapshot
of the KLIEG tracer, which are currently executing the N-queens program defined in
Figure 9. This picture automatically generated by the tracer is more or less similar to
Figure 9: the relative positions and sizes of pass_answers, dispatcher, and a number of
nqueen_worker are almost the same. Notice that in this figure the generator has already
finished its work and becomes a small rectangle on the top left of the master rectangle.
The KLIEG tracer utilizes the layout information of visual patterns during visual-
ization. In case of Figure 11, for instance, this picture is generated with the layout
information of master_worker pattern provided by its designer and without any optional
information. This visualization technique using layout information of the visual program
is similar to the one employed by Pictorial Janus[KMK90]. In addition, the KLIEG tracer

?We have a plan to extend Mochi Sheet to support hyper links.

11

Files Options

main A
process
ter worker

pass_answers

Quts}

dispatcher

Probs Comb}
 wksp| [Ansh

ngueens_worker nqueens orker ueens_worker
Probs b Probs } Probs ¢ aee
Ans} /

Continue ‘ Redraw ‘ Shon ‘ Step

Ans} Ans}

Figure 11: The KLIEG tracer

has a unique feature: it is integrated with the KLIEG editor. The tracer also supports
multiple aspects of a visual pattern and the user can interactively change its aspect dur-
ing execution. For the purposes, the tracer also uses a multi-focus distorted zooming
algorithm.

4 Scaling-up Issues

For a long time, visual languages have been considered only useful for toy problems or
end users’ programming. However, recent advancements of visual technologies can make
visual languages more practical. The KLIEG environment provides zooming interfaces
for the user to manipulate dataflow diagrams that are too large to fit in a single computer
display of a typical resolution (e.g., 1024 x 768). In this section, we demonstrate how the
zooming interfaces are incorporated into the KLIEG environment.

On one hand, a snapshot of a computation depicted by the KLIEG tracer is usually
much larger than its corresponding source program. Even if a source program is small,
the number of objects created during the execution can be large. Therefore, the KLIEG
tracer should provide a sophisticated browsing interface so that only the portions in
considerations and their related contexts be displayed. Notice that not only visual but
also textual tracers/debuggers developed so far rarely provide such sophisticated browsing
interfaces.

On the other hand, the KLIEG editor should support not only browsing but also
editing. The zooming interfaces with editing are an important research area that most

12

Files Options

main A
process
master_worker
masier

ngueens _worker
ngueenWorker

| |
hguedns_vrorker
u Probs }

~a

o /

=4] -

Continue ‘ Radraw ‘ s ‘ Step

Figure 12: A zooming image of the KLIEG tracer

people do not notice.

4.1 The Zooming Interface of the KLIEG Tracer

During execution of a KLIEG program with the tracer, the user can magnify any por-
tions of the object dataflow diagram generated by the program execution. For instance,
by magnifying the nqueen_gen and the leftmost nqueen_worker in Figure 11, the user
can get the image like Figure 12. The KLIEG tracer employs the continuous zoom
algorithm[BHDH95] and semantic zooming for this purpose.

Although solely the continuous zoom algorithm usually works well, it sometimes fails.
A typical example is a SPMD (single program, multiple data streams) computation, in
which a number of objects of the same type work together in parallel. Their behaviors
are essentially the same but they may have different data. If the number of the parallel
objects becomes large (e.g., > 100), the continuous zoom algorithm allocates each object
an equally small area like Figure 13, or otherwise it allocates sufficiently large spaces
for a small number of fixed objects. The point is that the continuous zoom algorithm
is designed as domain-independent and does not assume any domain specific knowledge.
It cannot well handle a large number of similar objects (or nodes) that share the same
parent node in the hierarchy.

Since SPMD computations often appear in practical settings, the KLIEG language and
tracer provides a special support for them using domain specific information. First, the
KLIEG language provides the notion of replication pattern which represents a number of
objects of the same type. An example usage of a replication pattern is already introduced
in the workers pattern in Figure 7. Second, the KLIEG tracer provides a special browsing

13

Figure 13: Normal zooming of a replication pattern

[TIITEEN

may

proc :I proc roc proc
Inp Oul Inp Oul . . . In p Oul Inp Oul |

nmr:|

Figure 14: Semantic zooming of a replication pattern

facility for replication patterns. Namely, any object in a replication pattern can selectively
be magnified and the details of the others can be omitted simultaneously. Omitted objects
might be represented as “---” and they still can be accessible by moving the foci by mouse
operations. Figure 14 illustrates an example of semantic zooming provided by the KLIEG
tracer. This figure and the previous one depict the same snapshot of a computation with
different zooming techniques.

The reason why an object dataflow diagram representing a snapshot of a computation
can significantly be larger than the source program is that sub-diagrams occurring in the
source program can be copied many times during execution. Significant parts of these

copy processes can often be represented by replication patterns.

4.2 The Zooming Interface of the KLIEG Editor

A KLIEG program consists of one or more modules, each of which is a collection of
object and pattern definitions. For instance, Figure 15 illustrates a program consisting of
modules whose names are gsort, append, and primes. Each module have small rectangles
representing object interfaces, object implementations. In order to edit a program which
is under development, the user first magnifies the portions that are soon to be edited
and/or referenced. Figure 16 is a typical layout example, in which the gsort module is
magnified.

During an editing session, any visuals might be created or deleted. This means that
the default position of each node might be changed frequently during an editing session.
Without some reasonable constraints, re-computation of the layout would take a long
time and it would be difficult to achieve interactive responses.

Mochi Sheet [TST*97a] that provides the zooming interface of the KLIEG editor
assumes a simple constraints based on griding for rapid re-computation of the layout.
This is the reason why modules and definitions in Figures 15 and 16 are regularly aligned.
We consider that the griding constraint of Mochi Sheet is reasonable compromise between

14

[] [] n
qgsort
qeort gsort
wlFerite qSOﬂ_Il | qsort _iter -

putiin PaItition partition partition
| —

main main
-—' m
append primes

append onnend append interval interval interval

[TTF [REF gy —— /=
EJ J |:| filter filter filter filter
—

- H —J ! !
st~ ligtt U2 ist2 | Gie gis sifts
on | | | o bl | | — =

_ Primes primes
main main — s/

_J I:l main main

R | m— |

Figure 15: An initial image of the KLIEG editor

qst-)rt

qgsort

qsort_iter
T
L] MW]]
partition partition partition pattition
Iy PN 8)5 LT I
UL S LR U oy | T
main main
gsort
_)
£‘1313-‘“1d|) primes

Figure 16: Magnifying a module

15

freedom of the layout and interactive responses.

After each editing session, a typical user changes the layout of the program to her or
his most familiar one. To support user’s preferences of the default layout, Mochi Sheet
provides a resize operation so that the previous layout can be quickly recovered by simple
mouse operations. In addition, the history of the layouts are kept in the system and any
of them can be also recovered by mouse operations.

5 Related Work

Until now, a lot of visual parallel programming languages have been proposed including
CODE[PJ92] and Pictorial Janus[KMK90]. However, most of them do not provide any
mechanism for replaceable objects or processes. Therefore, it is difficult (or impossible)
to explicitly define reusable software architectures nor replaceable components in these
languages.

VISTA[SF94] is one of the exceptions and provides the notion of public processor.
Although public processors in VISTA are replaced with other compatible processors, no
design information is available in the VISTA programming environment. In this respect,
KLIEG provides a deeper support for pattern-oriented visual programming.

For scaling up, VIPR recently introduced a fisheye zooming interface[CS96]. Still,
however, it supports only a single-focus zooming. In our experiences, multi-focus zooming
is better suited in editing and debugging object-based visual parallel programs partly
because, in editing and debugging, we often would like to see the sender and the receiver
objects simultaneously. Also, since KLIEG provides a support for multiple aspects of a
visual pattern, a single-focus zooming interface is insufficient for our purpose.

6 Conclusion

Currently, visual patterns in KLIEG can have the following information of object-oriented
parallel software:

o Design pattern information for parallel and distributed software;
e Layout information of objects for software visualization.

Visual patterns and supports for pattern-oriented visual programming in KLIEG integrate
the design and coding stages of program development in a seamless manner. That is, both
a program and its design information are represented as the same collection of visual
patterns and visual objects. There are no essential differences between them.

Layout information in visual patterns are useful in particular in visual debugging. The
KLIEG tracer animates a computation by generating successive images, each of which is
a snapshot of the computation, using the layout information of visual patterns provided
by their designer(s). In this manner, almost the same pictorial images are available not
only in the design and coding states but also in the debugging stage. This sort of seamless
integration is important in visual programming environments.

16

Our future work includes pattern-directed compilation technologies. For instance,

since the master-workers pattern introduced in this paper implements a typical load bal-
ancing schema, it seems promising to attach to the pattern optional information (e.g.,
information for analysis and code translation) for the compiler. That is, if the compiler
can recognize the master-workers pattern in a program, it might be possible to gener-
ate better codes. For the purposes, we also have to consider visual representations of

compile-time metalevel architectures.

References

[BHDHO5]

[Boo94]

[CS96]

[GHIV95]

[KMEKO0]

[PJ92]

[Predq]

[RBP*91]

[SF94]

[TST*97a]

Lyn Bartram, Albert Ho, John Dill, and Frank Henigman. The Continuous
Zoom: A Constrained Fisheye Technique for Viewing and Navigating Large
Information Space. In Proceedings of UIST °95, pages 207-215, November
1995.

Grady Booch. Object-Oriented Analysis and Design with Applications, Second
Fdition. The Benjamin/Cummings Publishing, 1994.

Wayne Citrin and Carlos Santiago. Incorporating fisheying into a visual pro-
gramming environment. In Proc. 1996 IEEFE Symposium on Visual Languages,

pages 20-27, 1996.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns — Flements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

Vijay A. Saraswat Kenneth M. Kahn. Complete Visualizations of Concurrent
Programs and their Executions. In Proc. 1990 IEEE Workshop on Visual
Languages, October 1990.

P.Newton and J.C.Browne. The CODE 2.0 Graphical Parallel Programming
Language. In Proc. ACM Int. Conf. on Supercomputing, July 1992.

Wolfgang Pree. Design Patterns for Object-Oriented Software Development.
Addison-Wesley, 1994.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
Oriented Modeling and Design. Prentice-Hall, 1991.

Stefan Schiffer and Joachim Hans Frohlich. Concepts and Architecture of
Vista - a Multiparadigm Programming Environment. In Proc. 1994 IFFE
Symposium on Visual Languages, 1994.

M. Toyoda, B. Shizuki, S. Takahashi, , and E. Shibayama. Mochi sheet:
Integration of zooming and layout editing. In Proceedings of Interaction’97,
pages 79-86. Information Processing Society of Japan, February 1997. (In
Japanese).

17

[TST*97b] M. Toyoda, B. Shizuki, S. Takahashi, S. Matsuoka, and E. Shibayama. Sup-

[UMOA4]

[V1i97]

porting design patterns in a visual parallel data-flow programming environ-
ment. In IEEE Symposium on Visual Languages. IEEE, September 1997.

Kazunori Ueda and Morita Masao. Moded Flat GHC and Its Message-
Oriented Implementation Technique. New Generation Computing, 13(1):3-43,
1994.

John Vlissides. Patterns: The top 10 misconceptions. Object Magazine, 1997.
http://www.sigs.com/publications/docs/objm/9703/9703.vlissides.html.

18

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

