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Abstract—Persistent memory is an emerging memory de-
vice, which offers durable, relatively large memory space cost-
effectively. This technology potentially enables a new horizon
for a broad spectrum of data-intensive applications. Historically,
memory space has been deemed to be volatile for applica-
tion programs. Only very recently the processor industry has
introduced a variety of memory synchronization instructions
to ensure the durability of persistent memory. Yet, no known
programming practice yields how application programs can fully
exploit those instructions. This paper proposes pmmeter, a new
microbenchmarking tool that we have developed to measure the
primary performance of persistent memory. pmmeter allows for
clarifying the performance impact that the choice of synchroniza-
tion instructions incurs on a given sequence of memory access.
This paper presents our experiment to demonstrate that pmmeter
unveils the synchronization cost of Intel Optane DCPMM.

Index Terms—Persistent memory, performance measurement,
microbenchmarking tool

I. INTRODUCTION

Persistent memory (PMEM) is an emerging memory device,

which offers durable, relatively large memory space cost-

effectively. Traditionally, the data memory and storage space

in computer systems have been provided by two different

technologies: memory technology such as dynamic random

access memory (DRAM) providing volatile, relatively small,

fast and costly space, and storage technology such as hard

disks and NAND flash memory providing persistent, relatively

large, slow and cheap space. PMEM can be positioned as an

in-between technology and potentially enables a new horizon

for a broad spectrum of data-intensive applications. Recent

PMEM such as Intel Optane DCPMM [1] can be directly

connected to memory bus, and it can work if it were the

main memory device. This solution has the benefit of being

able to keep backward compatibility; existing applications can

transparently cost-effectively use large memory capacity, since

PMEM offers a much larger capacity than DRAM.

On another front, effectively and efficiently utilizing the

durability of PMEM for applications is nontrivial, even though

PMEM potentially offers unique opportunities for a broad

spectrum of data-intensive applications such as database sys-

tems and file systems [2]–[5]. Historically, memory space has

been deemed to be volatile for application programs. Only very

recently, the processor industry has introduced a variety of

memory synchronization instructions to ensure the durability

of PMEM. Yet, no known programming practice yields how

application programs can fully exploit those instructions. Ex-

ploring and establishing effective practices is a grand technical

challenge for computer systems.

This paper proposes pmmeter, a new microbenchmarking

tool that we have developed to measure the primary perfor-

mance of PMEM. pmmeter allows for clarifying the perfor-

mance impact that the choice of synchronization instructions

incurs on a given sequence of memory access. Our present

study has experimentally tested Intel Optane DCPMM, since

this is the only available commercial product in the market.

Intel Optane DCPMM is the earliest commercial device of

persistent memory backed by the 3D XPoint technology [6].

Unfortunately, this business has not been successful so far; In-

tel recently announced the decision to discontinue this product

business in August [7]. Shortly after, Kioxia announced the

launch of new-generation XL-FLASH devices as yet another

persistent memory technology [8]. Intel has proposed a new

bus technology, Compute Express Link (CXL) [9]. We believe

that the endeavor is continuing.

II. MICHROBENCHMARK DESIGN AND EXPERIMENT

pmmeter is a microbenchmarking tool that we have devel-

oped to measure the primary performance of basic memory

access operations on DRAM and PMEM. The unique feature

of pmmeter is in its capability to clarify the performance over-

head induced by implicit synchronization options (associated

with memory access instructions such as loads and stores)

and explicit synchronization instructions (such as barriers and

cache invalidation).

pmmeter imposes a synthetic workload on memory space

and reports performance metrics of its execution. The user is

allowed to configure the workload with a variety of options.

The major capability of pmmeter is summarized below. (1)

The workload may be executed on memory space organized on

DRAM and PMEM separately. pmmerter currently works on

Intel Optane DCPMM using the PMDK library; the memory

mode and the AppDirect mode are supported. The experiment

later presented in this paper only reports the result of the

AppDirect mode, since it allows us to observe the bare

performance of the device. (2) Data transfer is uni-directional.

Load (memory to processors) or store (processors to memory)

may be specified. (3) Memory access pattern may be chosen
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Fig. 1. Average throughput of single-threaded sequential 64-byte loads and stores (2x 32-byte load/store instructions). Throughput of sequential memory
access significantly varies with the choice of synchronization options both on DRAM and PMEM. bare and NT denote a default (temporal) instruction and
a non-temporal instruction respectively, whereas +F denote a FENCE instruction appended. Additionally, for stores, CLF, CLWB and CLFOPT denote
CLFLUSH, CLWB and CLFLUSHOPT instructions appended respectively.

from sequential and random. The sequential access simply

scans the specified memory space from beginning to end,

performing loads/stores. In contrast, if the random access is

chosen, pmmeter firstly generates an array structure on the

space so that each array member stores a reference to another;

pmmeter runs the array along with the reference to scatter

loads/stores within the space in a random manner. (4) Memory

block access size is 64 bytes and instruction unit size is 32

bytes, by default; in this case, each block access is composed

of two instructions. These sizes can be manually specified by

the user. (5) The temporality of instructions can be specified.

By default, the instruction is temporal. But it can be made non-

temporal. (6) The cache invalidation is not explicitly enforced

by default. One of CLFLUSH, CLWB and CLFLUSHOPT may

be appended to each memory access. (7) The barrier is not

explicitly enforced by default. FENCE may be appended to

each memory access. (8) The workload is single-threaded

by default. The workload can be made multi-threaded with

a specified number of threads. (9) The thread and memory

affinity can be optionally specified. For example, the execution

thread can be bound to a specific processing core or socket.

Similarly, the memory space can be bound to a specific socket.

pmmeter records timestamps by using special instructions

such as RDTSC while executing the workload, and then calcu-

lates the performance metrics from the recorded timestamps.

The reported performance metrics include a data transfer

throughput, an instruction throughput, and an average latency.

This paper reports a case study of performance measurement

that we conducted with pmmeter. A test machine had two

Intel Xeon Silver 4215 processors, each having eight cores

at 2.5GHz, with 384 GB of DRAM and 1538 GB of Intel

Optane DCPMM in total, running CentOS 7.7 with Linux

kernel 3.10. The target memory space was allocated to the

DRAM and PMEM modules connected to the first socket;

PMEM space was configured in the DAX mode. Fig. 1

presents that PMEM performed much slower than DRAM and

throughput of sequential memory access significantly varied

with the choice of synchronization options on DRAM and

PMEM. The figure summarizes the average throughput of

single-threaded sequential 64-byte loads and stores (2x 32-byte

load/store instructions). PMEM yielded 71.0% to 71.2% lower

throughput for loads and 69.6% to 79.8% lower throughput for

stores than DRAM. In addition, the explicit call of FENCE
yielded significant overheads, providing 13.1% to 87.2% rate

drops on DRAM and 16.3% to 74.6% rate drops on PMEM.

III. CONCLUSION

This paper has proposed pmmeter, a microbenchmarking

tool for PMEM. pmmeter allows for clarifying the perfor-

mance impact that the choice of synchronization instructions

incurs on a given sequence of memory access. The source

code of pmmeter is available at https://github.com/hyoshiok/

pmmeter. We would like to extend pmmeter to incorporate a

more variety of instruction combinations and to support new

PMEM devices other than Intel Optane DCPMM. We hope

that pmmeter helps those who want to deeply understand the

primary performance property of PMEM.
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