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ABSTRACT
Tackling large-scale and ill-conditioned problems is demanding
even for the covariance matrix adaptation evolution strategy
(CMA-ES), which is a state-of-the-art algorithm for black-box op-
timization. The coordinate selection is a technique that mitigates
the ill-conditionality of large-scale problems by updating param-
eters in partially selected coordinate spaces. This technique can
be applied to various CMA-ES variants and improves their perfor-
mance especially for ill-conditioned problems. However, it often
fails to improve the performance of well-conditioned problems, be-
cause it is difficult to choose appropriate coordinate spaces accord-
ing to the ill-conditionality of problems. We introduce a dynamic
partial update method for coordinate selection to solve the above
problem. We use the second-order partial derivatives of an objec-
tive function to estimate the condition number and select coordi-
nates so that the condition number of each pair does not exceed
the given allowable value. In this method, the number of clusters
becomes to be small for well-conditioned problems and large for
ill-conditioned cases. In particular, the selection does not execute
if the condition number of the full space is less than the allowable
value. We observe significant improvements in well-conditioned
problems and comparable performances in ill-conditioned cases in
numerical experiments.
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1 INTRODUCTION
Our world is full of optimization problems, e.g. searching for the
shortest path [1], designing a high-speed train [9], designing a jet
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engine [12], and so on. However, most of these problems are too
complex to formulate and solve analytically. Therefore, they have
been treated as black-box optimization (BBO) problems. In the BBO
scenario, it is impossible to know in advance all properties of objec-
tive functions such as the derivative, dependence among variables,
ill-conditionality, and multimodality [5]. Hence, it is necessary to
design algorithms that can adapt to the above properties.

The covariance matrix adaptation evolution strategy(CMA-ES)
[4] is known as an algorithm that can efficiently search for so-
lutions in black box optimization where the objective function is
a continuous function. The CMA-ES generates individuals on the
basis of a multivariate normal distribution, and searches for a so-
lution through optimization of the variables of the multivariate
normal distribution (a mean vector and a covariance matrix and
a step-size). The off-diagonal components of the covariance ma-
trix adapt to the dependence among variables, and the diagonal
components adapt to the scale of each variable axis.

One of the issues of the CMA-ES is a computational cost for
high-dimensional problems because it requires 𝑂 (𝑑3) time com-
plexity and 𝑂 (𝑑2) space complexity for the input dimension 𝑑 . To
tackle this, various approaches, such as sep-CMA [10], VD-CMA
[2], VkD-CMA [3], and LM-MA [8] have been proposed. In ad-
dition, it has been reported that when the objective function is
high-dimensional and ill-conditioned, the adaptation of the covari-
ance matrix to the ill-conditionality is inhibited and the function
evaluation to reach a solution increases significantly [7]. The co-
ordinate selection method[11] has been proposed as a solution to
this problem. In this method, several coordinates are randomly se-
lected for updating in each iteration, instead of updating all vari-
ables. Thereby, the number of conditions in the selected coordi-
nate space is reduced from the original function. They achieved
an improvement in performance for high-dimensional and ill-
conditioned problems. However, they performed worse than the
original algorithms on well-conditioned functions because select-
ing coordinates does not significantly reduce the number of condi-
tions for the well-conditioned function, since the number of con-
ditions can never be smaller than 1.

In this paper, we propose a dynamic partial update method for
CMA variants to solve the problem of the coordinate selection. Our
approach estimates the condition number by the finite difference
method during the optimization process and selects coordinates
with the constraint that the condition number of each cluster is
less than an acceptable condition number (hyperparameter). Our
approach prevents unnecessary coordinate selections in the opti-
mization of well-condition functions, and furthermore, selects ef-
fective coordinates for objective functions whose condition num-
ber changes depending on the input values. Experimental results
show that the proposed method improves on the coordinate selec-
tion method for well-conditioned functions, and achieves the same
level of performance for ill-conditioned cases.
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2 RELATEDWORK
2.1 The CMA-ES
The CMA-ES generates solution candidates with a multivariate
normal distribution N(𝒎, 𝜎2𝑪) and searches for an optimal value
by updating a mean vector 𝒎 (𝑡 ) , a covariance matrix 𝑪 (𝑡 ) and a
step-size 𝜎 . We describe a specific algorithm for minimizing an ob-
jective function 𝑓 (𝒙) ∈ R, 𝒙 ∈ R𝑑 below. First, we initialize all
variables. Determine the mean vector 𝒎 (0) ∈ R𝑑 , the covariance
matrix 𝑪 (0) ∈ R𝑑×𝑑 , and the step-size 𝜎 (0) ∈ R according to the
search region, respectively. We also denote the respective evolu-
tion paths 𝒑 (0)

𝒄 ∈ R𝑑 and 𝒑 (0)
𝝈 ∈ R𝑑 of the variance-covariance

matrix and the step-size as 0. Then, the following steps are re-
peated until the predetermined termination conditions are met.

[Step 1.] Sample 𝜆 individuals 𝒙 (𝑡 ) ∈ R𝜆×𝑑 from a multivariate
normal distribution N(𝒎, 𝑪), 𝒎 ∈ R𝑑 , 𝑪 ∈ R𝑑×𝑑 as

𝒛 (𝑡 ) ∼ N(0, 𝑰 ), (1)

𝒚 (𝑡 ) = 𝒛 (𝑡 )
√
𝑪 (𝑡 ) , (2)

𝒙 (𝑡 ) = 𝒎 (𝑡 ) + 𝜎 (𝑡 )𝒚 (𝑡 ) . (3)

[Step 2.] For each individual of 𝒙 (𝑡 ) , compute objective values
from 𝑓 (𝒙𝑖 ), (𝑖 = 1, ..., 𝜆) and arrange 𝒙 (𝑡 ) , 𝒚 (𝑡 ) and 𝒛 (𝑡 ) in ascend-
ing order on the first axis.

[Step 3.]Compute 𝒅𝒚 (𝑡 ) and 𝒅𝒛 (𝑡 ) ∈ R𝑑 from the inner product
of weight𝒘 ∈ R𝜆 and, 𝒚 (𝑡 ) and 𝒛 (𝑡 ) as

𝒅𝒚 (𝑡 ) =
𝜆∑
𝑖

𝑤𝑖𝒚
(𝑡 )
𝒊 , (4)

𝒅𝒛 (𝑡 ) =
𝜆∑
𝑖

𝑤𝑖𝒛
(𝑡 )
𝒊 . (5)

Here𝒘 satisfies
1 < 𝜇 < 𝜆, 𝑤1 ≥ · · · ≥ 𝑤𝜇 > 0,

𝑤𝜇+1, · · · ,𝑤𝜆 = 0, ∥𝒘 ∥1 = 0.
(6)

[Step 4.] Update the evolution paths as

ℎ
(𝑡+1)
𝜎 =

{
1 ∥𝒑 (𝑡+1)

𝝈 ∥ < (1.4 + 2
𝑛+1 )𝜒𝑑

0 𝑒𝑙𝑠𝑒
, (7)

𝒑 (𝑡+1)
𝝈 = (1 − 𝑐𝜎 )𝒑 (𝑡 )

𝝈 +
√
𝑐𝜎 (2 − 𝑐𝜎 )𝜇𝑤𝒅𝒛, (8)

𝒑 (𝑡+1)
𝒄 = (1 − 𝑐𝑐 )𝒑 (𝑡 )

𝒄

+ ℎ
(𝑡+1)
𝜎

√
𝑐𝑐 (2 − 𝑐𝑐 )𝜇𝑤𝒅𝒚. (9)

Here 𝑐𝜎 ∈ R and 𝑐𝑐 ∈ R are the learning rate of evolution paths,
and 𝜇𝑤 = 1

∥𝒘 ∥ , 𝜒𝑑 = E[∥N (0, 𝑰 )∥] ≃
√
𝑑 (1 − 1

4𝑑 + 1
21𝑑2 ).

[Step 5.] Update the parameters as
𝒎 (𝑡+1) = 𝒎 (𝑡 ) + 𝜂𝑚𝜎 (𝑡 )𝒅𝒚 (𝑡 ) , (10)

𝜎 (𝑡+1) = 𝜎 (𝑡 ) exp

(
𝑐𝜎
𝑑𝜎

(
∥𝒑 (𝑡+1)

𝝈 ∥
𝜒𝑑

− 1

))
, (11)

𝑪 (𝑡+1) = 𝑪 (𝑡 ) + 𝜂𝑐1
(
𝑂𝑃 (𝒑 (𝑡+1)

𝒄 ) − 𝑪 (𝑡 )
)

+ 𝜂𝑐𝜇
𝜆∑
𝑖

𝑤𝑖

(
𝑂𝑃 (𝒚 (𝒕 )

𝒊 ) − 𝑪 (𝑡 )
)
, (12)

where 𝑂𝑃 (·) ∈ R𝑛×𝑛 denotes outer product of vectors. Here 𝜂𝑚 ∈
R, 𝜂𝑐1 ∈ R and 𝜂𝑐𝜇 ∈ R are the learning rates of the mean 𝒎,
rank-one update and rank-𝜇 update respectively, and 𝑑𝜎 ∈ R is the
decay rate of the step-size.

By repeating [Step 1.] above to [Step 5.], the mean vector 𝒎
converges to the solution, the step-size 𝜎 converges to 0, and the
covariance matrix 𝑪 converges to 0, then the multivariate normal
distribution converges to the delta function and the optimal solu-
tion is obtained.

2.2 The Coordinate Selection
The coordinate selection is a technic to mitigate the condition
number, which indicates the ill-conditionality of an objective func-
tion and is determined by a ratio of max. and min. eigenvalues
of the Hessian of the objective function. In this method, they up-
date only the parameters in a randomly selected coordinate space
at each iteration and regard the variables in the coordinates that
are not selected as numerical constants. Therefore, the condition
number at the generation is recalculated from the Hessian of the
selected coordinate space. In the Ellipsoid function case, the ex-
pected value of the condition number in a randomly selected co-
ordinate space with 100 axes is approximately 7.7 × 105 which is
about 25% less than the original value 106.

Despite the success of the ill-conditioned function, the coordi-
nate selection degrades the performance of well-conditioned func-
tions like the Sphere function and the Chain-Rosenbrock function.
Selecting coordinates does not reduce the number of conditions for
the well-conditioned function, since the number of conditions can
never be smaller than 1 (e.g. the original condition number of the
Sphere function is 1).

3 PROPOSAL
In this section, we propose the dynamic partial update for CMA
variants by selecting coordinates on the basis of the approximated
second derivative of the objective function. Coordinate selection
can improve performance on ill-conditioned problems. However,
for well-conditioned problems, coordinate selection reduces per-
formance because it limits the number of variables to be updated
during a single iteration. Therefore, we replace the strategy of ran-
domly selecting coordinates at each iteration with a strategy of se-
lecting such that the condition number in the selected coordinate
space is less than an acceptable number.

3.1 Approximation of the condition number
We approximate the condition number of the objective function by
the second-order partial derivative. While the condition number is
originally obtained by the eigenvalues of the Hessian of the ob-
jective function, we approximate it by the absolute value of the
second-order partial derivative obtained by the finite difference
method as follows,

𝜕2 𝑓
𝜕𝑚2

𝑖
≈ 𝑓 (𝑚1,...,𝑚𝑖+ℎ,...,𝑚𝑑 )−2𝑓 (𝒎)+𝑓 (𝑚1,...,𝑚𝑖−ℎ,...,𝑚𝑑 )

ℎ2 , (13)

where 𝑚 is the mean vector of a CMA and ℎ is a small step-size,
which is a different term from a variable of a CMA. The computa-
tional cost to obtain a value is a function evaluation of 3𝑑 for the
input dimension 𝑑 . This cost is not small enough to ignore if we
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Table 1: Benchmark functions. R is an orthogonal matrix generated randomly.

Name Definition
Sphere 𝑓𝑠𝑝ℎ (𝒙) =

∑𝑑
𝑖=1 𝑥

2
𝑖

Ellipsoid 𝑓𝑒𝑙𝑙 (𝒙) =
∑𝑑
𝑖=1 (1000

𝑖−1
𝑑−1 𝑥𝑖 )2

Rot Ellipsoid 𝑓𝑒𝑙𝑙𝑟𝑜𝑡 (𝒙) = 𝑓𝑒𝑙𝑙 (𝑹𝒙)
Chain-Rosenbrock 𝑓𝑐𝑟𝑜𝑠 (𝒙) =

∑𝑑−1
𝑖=1 [102 (𝑥2𝑖 − 𝑥𝑖+1)2 + (𝑥𝑖 − 1)2]

Star-Rosenbrock 𝑓𝑠𝑟𝑜𝑠 (𝒙) =
∑𝑑
𝑖=2

(
100(𝑥1 − 𝑥2𝑖 )

2 + (1 − 𝑥𝑖 )2
)

Figure 1: Trajectories of original sep-CMA, LM-MA, and VD-CMA (solid lines), the ones with the random coor-
dinate selection (dotted lines), and the ones with the dynamic partial update (dashed lines). The solid black and
cyan lines overlap each other in (a). The dashed black and cyan lines overlap each other in (a). The dashed black
and cyan lines overlap each other in (b).

acquire the value each time the mean vector is updated. We con-
sider the rate of change in the partial derivatives of each coordinate
to mitigate the cost. If the derivative contains only a constant or
low-depend variable, the rate is small, and therefore it is not neces-
sarily computed every generation. In the implementation, for co-
ordinates of which the rate of change is greater than 50%, we com-
pute the derivatives every generation; otherwise, compute when
the generation is a multiple of the number of dimensions.

3.2 Dynamic partial update
Wedivide the set of coordinates into some clusterswith constraints
that the condition number is less than an acceptable condition

number 1 + 𝛼 . The condition number of each cluster has approx-
imated the ratio of maximum and minimum second-order partial
derivatives.

[Step 1.] Estimate the second-order partial derivatives of each
axis of the objective function by the finite difference method and
obtain a vector 𝒃 = (𝑏1, ..., 𝑏𝑑 ) whose elements are the absolute
values of the second-order partial derivatives in dimension 𝑑 .

[Step 2.] Find the smallest element 𝑏𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝒃), and extract
the element satisfying 𝑏𝑖 ≤ 𝑏𝑚𝑖𝑛 (1 + 𝛼) from the second-order
partial differential vector 𝒃 obtained in Step 1. Replace the vector
𝒃 by removing the above-extracted elements.

[Step 3.] If the number of elements in 𝒃 is 0, terminate the clus-
tering; otherwise, repeat Step 2.
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Figure 2: Result of sep-CMA with the dynamic par-
tial update on Chain-Rosenbrock function. Each tra-
jectory shows the number of clusters (red line) and the
approximated condition number (blue line).

4 EXPERIMENTS
In this section, we confirm the performance of the dynamic partial
update method. We apply our method to sep-CMA, LM-MA, and
VD-CMA and compared it with the original algorithms and with
the ones with the random coordinate selection. Table 1 shows the
definition of the benchmark functions for the experiments. The
initial values for all functions are𝑚 (0) = 𝑈 (−5, 5),𝐶 (0) = 𝐼 , 𝜎 (0) =
1.0, 𝜆 = 4 + 3⌊ln (𝑑)⌋, the target value of the objective function is
10−10, themaximumnumber of evaluation is 𝜆×107 as in study [6].
The number of selecting coordinates for the random coordinate
selection is set as 100. The acceptable condition number 𝛼 for the
proposed method is set as 𝛼 = 0.5.

Figure 1 shows the evolutionary trajectories of each algorithm.
The red, black, and cyan lines show sep-CMA, LM-MA, and VD-
CMA respectively. The solid, dotted, and dashed lines show the
original algorithms, the ones with the random coordinate selec-
tion, and the ones with the dynamic partial update (proposed
method) respectively.

Figure 1 (a) shows our method reduces unnecessary function
evaluations on the well-conditioned function compared to the ran-
dom coordinate selection. In the sphere function case, the second-
order partial derivative is 2 for all coordinates. Therefore, our
method does not divide the set of coordinates and runs the same
flow of original algorithms with the additional cost of occasionally
computing the derivative.

Figure 1 (b) and (d) show our approach adapts to the ill-
conditionality of the functions and improves the performance
greatly. The Chain-Rosenbrock function is often recognized as the
well-conditioned function while the Ellipsoid function is famous
for its ill-conditionality. However, Figure 2 shows the condition
number of the Chain-Rosenbrock function changes drastically ac-
cording to the optimization steps (the blue line). The actual second-
order partial derivative is obtained by the definition as follows,

𝜕2 𝑓

𝜕𝑥2𝑖
=

{
202 + 400(3𝑥2𝑖 − 𝑥𝑖+1) , 1 ≤ 𝑖 ≤ 𝑑 − 1
200 , 𝑑 = 𝑛

. (14)

This formula also shows that the value varies greatly depending on
the value of the input. The red line in Figure 2 shows the number of

clusters and the value changes depending on the condition number
of the objective function.

Figure 1 (e) shows that none of the approaches reached the
target value on the Star-Rosenbrock function. Our approach per-
formed as well as the original CMA variants, although less than
the ones with the random coordinate selection. This function has
a dependency of the first variable on all other variables. Therefore,
the random coordinate selection, in which the first variable is as-
signed to clusters on the other coordinates with equal frequency,
would have been most appropriate.

5 CONCLUSION
In this paper, we proposed a dynamic partial update method for
CMA variants in which the number of coordinates to be selected
adapts to the ill-conditionality of the objective function. This
method has solved the problem of poor performance of conven-
tional coordinate selection for well-conditional functions. We con-
firmed that the proposed method improves the performance of ob-
jective functions such as the Chain-Rosenbrock function, whose
condition number varies depending on the search points.
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