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Abstract

Database updates disorganize data stored physically in
secondary storage, which is called structural deterioration
and causes performance degradation. Online Transaction
Processing(OLTP) is an essential data processing scheme
for e-finance, e-commerce and so on. Conventional re-
searches to improve OLTP performance lack a view from
the aspect of preventing performance degradation due to
structural deterioration. Recently, more and more busi-
ness operations and services are being digitized then 24-
hours-a-day operation of database is required. Needs for
techniques to monitor structural deterioration and prevent
performance degradation are increasing more and more.
In this paper, we analyze how structural deterioration ef-
fects performance degradation in OLTP workload by using
a benchmark. We also consider strategies of database muta-
tions which are adaptive to workload and prevent structural
deterioration from being accelerated.

1 Introduction

Online Transaction Processing (OLTP) is an essen-
tial data processing scheme to guarantee ACID proper-
ties of transactions for e-businesses such as e-finance, e-
commerce. Thus, higher performance of OLTP is required
still now. Besides, technologies to realize full-time database
operations are required because of rapid digitization of re-
cent business operations and services.

There are two aspects of OLTP speeding up: one is im-
provement of database structures and processing methods to
get higher performance, and the other is prevention of per-
formance degradation due to structural deterioration which
is the phenomenon that database structure becomes ineffi-
cient for accesses gradually or suddenly caused by accumu-
lated database updates.

From the former aspect, so far, many works to process

online transactions faster were researched: some of them
tried to optimize structure of database inside secondary
storage[1, 2], another one is aware of CPU instructions
and cache[3]. Parallelization[4] from various aspects, auto-
matic configuration and tuning of hardware composition or
database schema adjusting to workload characteristics [5, 6]
were also explored.

From the latter aspect, to remove or slow structural dete-
rioration is also essential approach, since much data mu-
tations involving record inserts, deletes, and updates are
executed continuously in OLTP workloads in general. In
order to remove structural deterioration, database adminis-
trator executes database reorganization that relocates data
in the secondary storage to recover performance. Database
reorganization is a heavy task that tends to occupy system
resources, especially IO resources of the secondary storage
which is likely to be a bottleneck of the system. There-
fore, online database reorganization methods[7, 8] were re-
searched to deconcentrate IO load of the reorganization or
to execute the reorganization in background not to effect on
foreground workloads as much as possible. However, the
methods to slow structural deterioration, which are espe-
cially well-adapted to various workloads dynamically, are
not still researched well.

In this paper, we analyze performance degradation of a
typical OLTP workload due to structural deterioration with
an experimental result by using a benchmark, and discuss
strategies which are adaptive to data access patterns to slow
structural deterioration. The strategies contributes to pre-
vention of OLTP performance from going down, and also
to reduction of the overall resource utilization for database
reorganization.

The rest of the paper is organized as follows: Sec-
tion 2 describes the relationship between OLTP workload
and structural deterioration. Next, we analyze performance
degradation of OLTP workload in Section 3. In Section 4,
we discuss strategies to slow structural deterioration. Re-
lated works are described in Section 5, and finally we con-



Figure 1. TPC-C tables and transactions

clude and describe future work in Section 6.

2 OLTP and Structural Deterioration

In this section, we describe characteristics of OLTP
workload, potential types of structural deteriorations, and
their impacts on OLTP performance.

2.1 Characteristics of OLTP Workload

To discuss relationships between OLTP workload and
structural deterioration in general fashion is not so easy, be-
cause characteristics of structural deterioration depends on
database structures and access patterns. In this paper we
analyze them with specific OLTP workload and database
system.

TPC-C benchmark[9] is the standard benchmark for
OLTP workload, which simulates the activity of a wholesale
supplier, and widely used today. There are five transactions
and nine tables defined in the specification. Figure 1 shows
each transaction accesses to which tables and how. Data
access patterns are not always approximated as random ac-
cesses. There are also sequences of transactions which ac-
cess certain tables in order of primary key, which we call
sequential record access. For example, records of order,
order-line, and new-order table are inserted and selected in
order of order ID (o id), which is a part of composite pri-
mary key in the tables. Locality of accesses tends to be high
in such tables. For example, while the records in order ta-
bles corresponding to the orders waiting to be delivered are
accessed frequently, the records corresponding to the deliv-
ered orders would not almost be accessed. Above charac-
teristics are expected to be true in other OLTP workloads in
the world.

2.2 Structural Deterioration of Database

Structural deterioration is the phenomenon that database
structure is mutated, which causes performance degradation
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Figure 2. B+tree structure of cluster table

by increasing the number of IO or response time per IO for
certain access patterns.

Several examples of structural deteriorations are: disor-
dering of pages, decrease of fill factor, fragmentation of
records, increase of the depth of B+tree, invalidation of
high-water mark, depletion of unallocated pages, and so on.
Disordering of pages and decrease of fill factor are com-
mon structural deteriorations in many database systems. As
for structure deteriorations listed above except for disor-
dering of pages, the number of IO is the important factor
for performance degradation. Disordering of pages and de-
creasing of fill factor are discussed in [10]. Disordering
of pages unlikely effects on OLTP performance. Since it
decreases performance of range scan especially for large
amount of records, which seldom occurs in OLTP workload,
and such access patterns do not defined in TPC-C specifi-
cation. Thus, we focus on decreasing of fill factor and its
effect on performance of OLTP workload.

3 Analysis of OLTP Performance Degrada-
tion caused by Structural Deterioration

In this section, we analyze performance degradation
of transactions caused by database structural deterioration
through experiments.

3.1 Target Database Structure

We used B+tree structure which typically constructs
cluster table or secondary index of relational database. The
structure is adopted as cluster table in MySQL[11] and also
as index-organized table in Oracle. In the following part
of the paper, MySQL InnoDB database engine is used for
experiments. Figure 2 shows the structure of the target
B+tree. The page size is fixed. Data records are stored in
leaf pages only and in order of cluster key logically for ar-
bitrary records or range to be accessed fast by specifying
cluster keys.

Page splits and merges occur by insert, update, and
delete of records. In general database systems, target fill
factor at time of data load, and threshold fill factor to be
merged are tunable, however, in MySQL InnoDB, data
records are loaded into leaf pages in the fill factor of 15/16,
and pages are merged if possible after a certain period of



time records are deleted. Record fragmentation in updates
does not be supported, instead, deletion and insertion are
used alternatively. Page splits are executed when an insert
or update will overflow the page. There are two cases: In
one case when the cluster key of inserted record just be-
fore the insert is the max in the page, and the cluster key
of the record to be inserted are larger than the previous one,
InnoDB deems the access pattern is sequential insert, then
the page are split at the rate of 15/16:1/16. In other cases,
the page are split by half-and-half. InnoDB engine distin-
guishes inserts on data load from normal inserts in the way
described above.

3.2 Environment

The experimental environment is described below. We
used PC running RedHat Linux, which consists of two Xeon
3.2GHz CPUs and 2GB Memory. The PC connects to a
JBOD disk array that contains Cheetah 10K 18GB [12] hard
disk drives via 1Gbps Fibre Channel. We used software
RAID0 which contained four disk drives and chunk size of
which was 64KB. We used the storage as a raw device and
allocated 4GB for database in it. We used MySQL 5.0 Inn-
oDB database engine and implemented an additional fea-
ture on the MySQL software in order to monitor IOPS (IO
per second) of each table/index for analysis. Page size was
the default 16KB.

3.3 Settings

We used TPC-C Rev. 5.6 for OLTP benchmark. All ta-
bles were cluster tables where each primary key were set as
composite cluster key. All variable-length strings were dealt
with as fixed-length strings, then all records were fixed-
length in the experiments. The number of warehouses was
16. Transaction mix was: new-order: 45%, payment: 45%,
order-status: 2%, delivery: 6%, stock-level: 2%. After data
was loaded, 100,000 transactions were executed in five pro-
cesses per warehouse, in 80 parallel totally, with the think
time of 0. Response time of transactions and distribution of
fill factor were measured.

3.4 Results

In this experiment, average throughput of transactions
is 1138 tpm (transactions per minute). Figure 3 shows the
response time of all transactions varying with time. We see
that the response time of new-order, payment, order-status,
and delivery increases from 2,000 elapsed second to 2,500
elapsed second approximately.

Response time break down of each transaction are shown
in Figure 4–8. Phase I of new-order transaction in Figure
4 consists of select warehouse, select customer, select dis-
trict, and update district. Phase II consists of select item,
select stock, update stock, and insert order-line. In similar
way, Phase I of payment transaction in Figure 5 consists of
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transactions

update warehouse, select warehouse, update district, and
select district. Phase II consists of select customer. The
waiting time on locks is dominant in Phase I of both trans-
actions. Other break downs show the access time of order
table increases especially with time.

Figure 9 shows fill factor of each leaf page in order table
in order of cluster key after executing all transactions. Clus-
ter key of order table is the composite key that consists of
warehouse ID (w id), district ID (d id), and order ID (o id).
In the initial data load phase, 3,000 records per warehouse
per district, o ids of which are from 1 to 3,000 distinctly, are
loaded to order table at the fill factor of 15/16. In the trans-
action phase, each new-order transaction inserts a record
into order table. O id of the record is 1 plus that of just
previously inserted record, starting from 3,001 for each pair
of warehouse and district respectively. When a page split
occurs in this phase, the page is split into two pages which
fill factors are both 1/2 approximately. The insert into the
left page does not occur after the split, and the sequential
inserts continue in the right page. After that, the records in
the left page are updated but the size does not changed; Nei-
ther delete nor more inserts occur. After this access pattern
is repeated, the split pages in order table by transactions are
at the fill factor of 1/2 approximately.

Successive transactions access the records in order table
in order of o id. The first delivery transaction accesses the
record with o id of 2,101. That is, first 900 times of de-
livery transactions access the records which are loaded ini-
tially, after that, they access the records which are inserted
by the new-order transactions. Thus, required number of
IOs per delivery transaction on order table in the latter sit-
uation, should be approximately twice of that in the former
situation. We considered the phenomenon causes increase
of response time of the transactions that access order table.

Next, we changed the transaction mix, removing order-
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Figure 3. Response time of
TPC-C transactions
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Figure 4. Breakdown of new-
order transaction
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Figure 5. Breakdown of pay-
ment transaction
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Figure 6. Breakdown of deliv-
ery transaction
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Figure 7. Breakdown of order-
status transaction
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Figure 8. Breakdown of stock-
level transaction

status and stock-level that do not change any record: new-
order: 47%, payment: 47%, delivery: 6%. Transactions
were executed in several buffer cache size settings var-
ied from 16MB to 128MB, and IOPS were measured for
each table/index. The database before the transaction phase
started in all experiments was the completely same image
as the one in the previous experiment. Figure 10–13 show
IOPS in the transaction phase. Average transaction through-
put of each buffer setting is 1,241, 1,479, 2,018, 3,030 tpm
respectively.

Orders:PRI in Figures show the IOPS of order ta-
ble. In 16MB buffer cache setting in Figure 10, IOPS starts
at about 20, increasing dramatically in 1,500 elapsed sec-
ond approximately, and keeping about 35 after that. IOPS
on other tables and indexes are a bit decreased, because
the phenomenon that IOPS on order table was increased
decreases the throughput of whole transactions with de-
creasing IOPS. Response time of transactions are related to
each other closely due to concurrent resource accesses with
locks.

IOPS of order table are decreased in more than 64MB
buffer cache size setting. Especially, it is ignorable that the
impact of increase of IOPS in 128MB setting. We infer
that the records accessed by delivery transactions are still
on cache after some period of time they are inserted by new-
order transactions with large buffer cache. IOPS does not
increase in such a situation. In other experiment with more

than 192MB buffer cache, IOPS in order table was approx-
imately 0, almost all of hotspot data pages1 are cached in
main memory.

From above consideration, while hotspot data area can
settle completely on the buffer cache, decrease of fill factor
may not effect on performance degradation of transaction
directly. However, if the size of buffer cache is not so large
that all hotspot data cannot be cached, fill factor has large
impact. Decreasing of fill factor enlarges hotspot size, thus
it is still waste of main memory even if there is large buffer
cache. To prevent performance degradation of transactions,
keeping high fill factor is a good strategy.

The access pattern on customer, stock, and item table are
approximated as random record accesses and hotspots of
them are large, almost entire tables. Buffer cache hit ratio
on the tables are lower than those on other tables, thus IOPS
of them increase gradually as increasing buffer cache size
and throughput of transactions.

4 Discussion

In this section, we consider strategies of database muta-
tion to slow structural deterioration, adjusting to access pat-

1In this case, the leaf pages in order table where the records have been
inserted by new-order transactions, which still does not delivered by deliv-
ery transactions
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Figure 11. IOPS (32MB buffer cache)
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Figure 12. IOPS (64MB buffer cache)
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Figure 13. IOPS (128MB buffer cache)

terns which appear in OLTP workload analyzed in section 3
and similar ones.

Even if the system has small buffer cache size and de-
crease of fill factor may impact on performance of transac-
tions, the structural deterioration can be deferred by rising
fill factor at page split.

MySQL 5.0 InnoDB engine detects sequential inserts at
each page. The detection method works effectively at the
end of table only, where the record to be inserted has the
largest cluster key in the table. In this analysis, the com-
posite key was defined in order table and sequential inserts
occurred intermediately, the detection method did not work
well, then fill factor became about a half and performance
of transactions were degraded.

We can handling this issue by improving the method that
detects sequential insert. We assume there is a record to be
inserted into a page, and there is also the record just pre-
viously inserted into the page. If two records are adjacent,
where there is no record in the page whose cluster key is
between the cluster keys of the records, the system regards
the inserts as sequential inserts and predicts that near-future
inserts into the page are also continuous sequential inserts.
The cluster key of the record inserted lastly must be stored

at each page for this functionality. It can be implemented
by storing the offset of inserted record in the page header.

When the sequential insert overflows the page, the page
must be split. If the sequential insert is ascending order
and there are (1) records in the page whose cluster keys are
larger than the record to be inserted, the records must be
stored in the right page by split. The left page has the in-
serted record and (2) records whose cluster keys are smaller
than that of the inserted record. If there do not exist such
records described as (1), the page can be split at any fill
factor. When the sequential insert is the descending order,
corresponding operations must be executed.

This method can detect sequential insert at any position
correctly and has a opportunity to tune the fill factor of each
page to be high adjusting access patterns, which are rep-
resented as the throughput of inserts, deletes, and updates
in each page or each range, and the rate of sequential ac-
cesses of them, etc. This has effect of not only decreasing
the number of page split but also keeping performance of
transactions to be high. For example in this analysis, only
sequential inserts change the amount of data of order table,
thus 100% fill factor can be applied when the splits can be
allowed with any fill factor in the situation satisfying above



conditions.

5 Related Work

Many works such as [7, 13, 8, 14, 10] considered struc-
tural deterioration of database and reorganization. These
works mainly focus on monitoring of structural deteriora-
tion and method of database reorganization to execute fast
in the background without effect on foreground workload.
This paper considers the strategies slowing structural dete-
rioration in mutation of database structures, which is com-
plementary approach with making database reorganization
method be sophisticated.

Johnson et al.[1] presented the fact that the merge of
pages does not required where data population is growing,
assuming random access to B+trees. This paper considered
split strategies to reduce the number of splits and keep fill
factor to be high.

Lomet [2] proposed a method which provides highly
concurrent access to B+trees. To almost of variants of
B+trees like this, we expect our idea can be applied.

For database monitoring, several works such as [15, 16,
17] are done. Information of current database state, espe-
cially, fill factor distribution of each table and index in real
time may be useful for the fill factor control method we con-
sidered.

Recent approaches about physical design of database
[6, 18, 5] aim to autonomic database systems analyzing
workload pattern and deciding physical design parameters
suitably. These methods are tend to be used for static phys-
ical structure, and are complementary with our strategies
which is used for dynamic structural mutation.

6 Conclusion

This paper analyzed the impact of structural deteriora-
tion on OLTP performance degradation through the several
experiments. The impact is that decrease of fill factor in a
table can enlarge IOPS of accessing the records in the ta-
ble and response time of involved transactions. Using this
knowledge, we considered the page split strategies in order
to keep high fill factor in structural mutation of B+tree im-
plemented as a table/index of database, being adaptive to
database access pattern.

In future work, a suitable model of database access pat-
tern and a method extracting it online should be constructed,
then the considered ideas above should be evaluated.
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