
An Optimal Multimedia Object Allocation Solution in
Transcoding-Enabled Wide-Area Storage Systems

Wenyu Qu, Kazuo Goda, and Masaru Kitsuregawa
Institute of Industrial Science

The University of Tokyo
4-6-1 Komaba, Meguro-ku, Tokyo, Japan

ABSTRACT
Together with the information explosion era comes the prob-
lem of high energy consumption in data centers. Among
the various components of a data center, storage is one of
the biggest energy consumers. Many efforts have been put
on reducing energy consumptions of data centers/storage
systems, from server workflow management to storage data
allocation. However, most works focus on local storage sys-
tems and pay no attention to other structures of storage sys-
tems. With the exponential expanding on both the depth
and width of the Internet, wide-area storage systems at-
tract more and more attention as they are reliable, load-
balancing, and easy to collaborate. In this paper, we study
the energy consumption in wide-area storage systems by us-
ing multimedia objects as our special application area. We
develop a multimedia object distributing algorithm based on
the access pattern to multimedia objects and the topology of
storage systems. We also present an in-depth analysis that
provides valuable insight into the characteristics of multi-
media object distribution strategies and leads to precision
guarantees.

Keywords
Multimedia object, allocation, wide-area storage system.

1. INTRODUCTION
The far-reaching significance of the Internet and dramatic

advances in computer technology has resulted in a prolifer-
ation of applications that are server-centric. Data centers
are playing a key role in this new architecture since they are
commonly used to provide a wide variety of services, such
as Web hosting, application services, and so on.

Typically, data centers have very high power requirements.
The steady growth of data centers makes the problem of en-
ergy consumption much serious. According to EUN (Energy
User News) [18], today’s data centers have power require-
ments that range from 75 W/ft2 for typical service providers.
As Eric Schmidt, the CEO of Google, said, ”what matters

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

most to the computer designers at Google is not speed but
power, because data centers can consume as much electricity
as a city.” In the future, the power requirement is predicted
to increase to 200-300 W/ft2 . These increasing power re-
quirements are driving energy costs up as much as 25 percent
annually and making it a growing consideration in the TCO
(total cost of ownership) for a data center [17]. Besides and
maybe the most important, high energy consumption also
has negative environmental implication that has attracted
a large amount of attentions. Storage device is one of the
biggest components in data center and accounts for almost
27 percent of the total energy consumed by a data center
[17]. Currently, storage demand is growing by 60 percent
annually [21] and is expected to be 10 times as much as
they are today by 2008. This problem is exacerbated by the
availability of faster disks with higher power needs as well
as the increasing shift from tape backups to disk backups
for better performance.

There are many studies on power conservation of stor-
age systems [10, 25, 24, 22]. Some addressed the problem
for the workloads and the I/O subsystems in server envi-
ronments, including RAID configuration, number of disks,
striping unit, etc. Others focused on file allocation among
storage disks. In [23], energy was conserved by concentrat-
ing requires on some disks and leaving others idle for a longer
time. However, all these works are done for centralized
single-server storage systems. Wide-area storage systems
such as FarSite [1], Glacier [2], and OceanStore [11] rely on
data redundancy to ensure durable storage despite of node
failures. They have attracted considerable attentions from
data centers such as Google and Baidu in recent years for
their merits of being reliable, load-balancing, and easy to
collaborate. Although most experts are working on the syn-
chronicity and consistency of such kind of storage systems,
we don’t pay attention to these problems but concentrate on
the energy conservation problem instead, which is another
important problem to be solved.

In this paper, we address the problem of energy conserva-
tion by distributing requires among storage devices in wide-
area storage systems. We develop a multimedia object dis-
tribution algorithm that is fully dynamic (supporting any
system topologies and access patterns), efficient (processing
distribution and redistribution with very low computational
overhead), and optimal (producing solutions with small pro-
cessing latency and energy consumption). The contributions
of this paper are twofold. We not only devise a multimedia
object distribution algorithm for a wide-area storage sys-
tem by inserting the function of transcoding onto storage

318



servers, but also, in light of the concerns on energy con-
sumption from industrial park, optimize the overall effect
on both energy conservation and access latency. To the best
of our knowledge, none of previous works has addressed the
energy conservation problem of wide-area storage systems
for multimedia object applications.

The rest of the paper is organized as follows. Section 3
preliminarily describes the problem to be solved. Section 4
and Section 5 mathematically model and solve the described
problem and propose the distribution algorithms. Section 8
concludes the paper with directions for future work. Due to
the space limitation, we present our idea here but omit the
theoretical proof of the proposed theorem and experimental
results.

2. RELATED WORKS
Previous studies has shown that the aggregate effect of

storing multiple versions of the same multimedia object is
not the simple summation of that of storing individual ver-
sions of the multimedia object, but rather, depends on the
relationship among these versions according to the technol-
ogy of transcoding [9].

In [9], the authors proposed an algorithm on exploring
the aggregate effect of placing multiple versions of the same
multimedia object in transcoding-enabled storage devices.
However, the authors have not considered the case in which
multiple versions of the same multimedia object are placed in
many storages at the same time. In [26], the authors studied
the case of general objects, which can be viewed as single-
version multimedia objects. Thus, the problem addressed in
[26] can be viewed as a special case of ours when a multime-
dia object has only one version. From the following example,
we can see that the network performance will be greatly re-
duced if the solution proposed in [26] is applied to deal with
multimedia objects, i.e., view different versions of the same
multimedia object as different objects. Suppose that a mul-
timedia object has three versions (A1, A2, and A3) and the
relationship among these versions is shown in Figure 1−(b).
The number in the figure denotes the transcoding cost from
one version to another, which is defined as the delay for exe-
cuting the transcoding between two different versions of the
same multimedia object. Figure 1−(c) is a simple network
with four nodes among which node 0 is the server. Suppose
that the transmission cost on each edge for A1, A2, and A−3
are the same. The transmission cost on each link and the
access frequency from each node for each version are shown
in Figure 1−(b). For example, the transmission costs from
node 1 to node 0 for A1, A2, and A3 are all 0.6 and the access
frequencies for A1, A2, and A3 from node 2 are 2, 3, 0, re-
spectively. Based on the solution proposed in [26], A2 should
be cached at nodes 1, 2, 3 such that the maximal delay saving
is 2×0.6+3×(0.6+0.7)+1×(0.6+0.7+0.8) = 7.2. Obviously,
it is not optimal when we consider the relationship among
A1, A2, and A−3. Accordingly, the maximal delay saving is
1×0.6+2×(0.6+0.7)+0×(0.6+0.7+0.8)+2×(0.6−0.5)+
3× (0.6 + 0.7− 0.5) + 1× (0.6 + 0.7 + 0.8− 0.5) + 1× (0.6−
0.7) + 0× (0.6 + 0.7− 0.7) + 2× (0.6 + 0.7 + 0.8− 0.7) = 8.7
by caching A1 at nodes 1, 2, and 3, respectively.

In [9, 5, 3], the authors studied the object replacement
problem from different point of views. In [8], the authors
addressed the problem for content adaption. They presents
cooperative architectures and algorithms for discovery and
transcoding of multi-version content. In [27], the authors

addressed the problem of distributing computational load
caused by object transcoding throughout a hierarchical sys-
tem structure. In [28, 14, 26, 12], the authors studied the
problem of placing single-version multimedia objects for dif-
ferent kinds of network topologies from different point of
view. However, these solutions are not applicable for multi-
media objects since different versions of the same multimedia
object can not be simply views as different web objects. In
[9], the authors proposed an object replacement algorithm
by investigating the aggregate effect of placing multiple ver-
sions of the same multimedia object. Another aspect that
affects the performance of transcoding-enabled storage sys-
tems is the storage distribution placement, which has been
well studied [29, 19, 4, 16].

3. PROBLEM CHARACTERISTICS
The topology of a wide-area storage system is defined

as G = (V, E), where V = {vi, i = 1, 2, · · · } is the set of
storages and E is the set of links. A multimedia object A
may have a set of different versions Aversion = {Aj , j =
1, 2, · · · , m}, which are distributed in the storage systems,
and bAj is the size of Aj . Requests on multimedia objects
may come from different devices/users in various prefer-
ences on content presentation, which may divergent of sizes,
weight, input/output capabilities, network connectivity, and
computing power. As keeping all versions of a same multi-
media object in one storage could take too much space and is
not flexible in dealing with changing clients’ needs, servers in
the storage system are enabled the capability of transcoding
for transforming the multimedia object to proper versions
to meet the diverse needs.

The full object version is denoted as A1 whereas the least
detailed version which cannot be transcoded any more is
denoted as Am. D(Aj) is the set of all versions that can be
transcoded from Aj . If Ai can be transcoding from Aj(i 6= j)
, then we call Ai is a less detailed version than Aj and Aj

is a more detailed version than Ai. As shown in Fig. 1,
A1 is the full object version and A3 is the least detailed
version. D(A1) = {A2, A3}, D(A2) = {A3}, and D(A3) =
φ. The versions in D(Ai) (i = 1, 2) are less detailed versions
than A1 and A2, respectively, while Ai (i = 1, 2) are the
more detailed versions than the versions in D(Ai) (i = 1, 2),
respectively. A3 has two more detailed versions, i.e., A1 and
A2 and has not any less detailed version. That is, A3 can
not be transcoded any more. Let fvi(Aj) denote the access
frequency for Aj through vi per unit time. We use Bvi to
denote the version stored or to be placed at vi. Obviously, we
have Bvi ∈ Aversion. Fig. 1-(b) is a simple system with four
storages among which storage 0 has the original version of
the multimedia object. For example, the transmission costs
from storage 1 to storage 0 for A1, A2, and A3 are all 0.6
and the access frequencies for A1, A2, and A3 from storage
2 are 2, 3, 0, respectively.

Suppose that each storage receives a large number of re-
quirements on multimedia objects per time unit, which are
either satisfied by local versions of the multimedia objects
or have to be forwarded to other storages. The distribution
of multimedia objects in the system will certainly influence
the service efficiency of these requirements. Our first consid-
eration on the distribution problem is the energy consump-
tion of storages, which is decided by the system configura-
tions and file allocations. The multimedia object distribu-

319



Figure 1: Multimedia Object Allocation in Transcoding Enabled Storages

tion problem can be formulated as:

R1: select A∗version for V ∗ s.t. min
�
EA∗version→V ∗

�
(1)

where A∗version and V ∗ are subsets of Aversion and V respec-
tively, A∗version → V ∗ indicates a mapping between A∗version

and V ∗, and E is the total energy consumption of the sys-
tem based on the allocation strategy. Specifically, there are
two sub-problems to be solved. The first one aims at the
selection of A∗version and V ∗, whereas the second one tackles
the mapping A∗version → V ∗. On the other hand, the multi-
media object distribution problem can be formulated from
the clients’ view (i.e., the faster, the better) as follows:

R2: select A∗version for V ∗ s.t. min
�
LA∗version→V ∗

�
(2)

where L expresses the total access latency of the system
based on the allocation strategy.

It is desirable to save much energy with a high perfor-
mance. To achieve this goal, we combined the above two
considerations into one multi-objective optimization prob-
lem. The major difficulty in this problem lies in the fact that
changing the location of one version of a multimedia object
may result in a redistribution of multimedia objects in this
storage and in the system. In particular, within the limi-
tation of the storage space, the distribution decision should
guarantee that the benefit of placing a new version in a
storage should be greater than the lost of removing other
versions from the storage to make room for the new one.
Another challenge is that the requirements to a multimedia
object may change over time. In this case, a good algorithm
should be able to adopt this change dynamically.

The working mechanism of the proposed system can be
briefly summarized as follows:

• There are n multi-disk storages in the storage system,
each of which has multiple power modes (including ac-
tive, idle, and standby), a time threshold, and a hit
threshold.

• Disks staying in the idle mode provide a shorter re-
sponse time to disk requests but consume much energy.
On the other hand, the standby mode consumes less
energy compared to higher speed modes but requires
for a longer response time and additional energy to
spinning the disk up. Modes shift according to the
time threshold. That is, if no request arrives on a disk
for a period longer than or equal to the time threshold,
the disk will transit its mode to a lower power mode.

• Files in the storage system are distributed based on
the optimization problem R1 in (1) and R2 in (2).
User requests are served by a dynamic programming-
based algorithm. Section 4 and 5 will provide detailed
descriptions.

• Files on disks are ordered by their popularity. The
most frequently accessed data are concentrated to a
subset of the disks so that other disks may become
idle longer and more often and can be set to low-power
modes to conserve energy. If the total hit frequency is
greater than or equal to the hit threshold, the least
popular data will be moved out and migrate to the
less popular disk.

4. MATHEMATICAL MODELING
Based on the analysis in Section 3, the distribution prob-

lem of multimedia objects in wide-area storage systems can
be modeled as an optimization problem as

R3: min
�
LA∗v→V ∗ , EA∗v→V ∗

	
where A∗v ⊂ Av, V ∗ ⊂ V.

(3)
In the following, we will first mathematically characterize
the optimization problem and then try to find out the opti-
mal solution of this problem.

4.1 Energy Consumption
The considered energy cost for a client request mainly

comes from two aspects, i.e., transmission cost and transcod-
ing cost. The transmission cost, denoted as Emvi,vj (Ak),
is defined as the energy consumption for transmitting Ak

from vj to vi, whereas the transcoding cost, denoted as
Ecvi(Ap, Aq), is defined as the energy consumption for transcod-
ing Ap into Aq. Let v+

i (Ap) be the nearest higher level stor-
age of vi (including vi) that contains a more detailed version
than Ap (including Ap) and Bvi be the exact version of A
on vi, the energy cost for a request on Ap that is received
from vi, denoted as Evi(Ap), can be expressed as the sum
of the transmission cost and transcoding cost as follows:

Evi(Ap) = Em
vi,v+

i (Ap)
(Ap) + Ec

v+
i

(B
v+

i (Ap)
, Ap). (4)

Fig. 2(a) illustrates an example where a request on A1

is received from v1. The denotation in the circle indicates
the version of object A that is available on this storage.
Since v1 is the nearest higher level storage of v1 (including
v1) that contains a more detailed version than A1 (includ-
ing A1) and the exact version of A on v1 is Bv1 = A1,
Em

vi,v+
i (Ap)

(Ap) = Emv1,v1(A1) = 0 due to the fact that

no transmission between two storages is needed. Also, since
Bv1 = A1, Ec

v+
i (Ap)

(B
v+

i (Ap)
, Ap) = Ecv1(A1, A1) = 0

due to the fact that no transcoding between two versions
is needed. Therefore, the access latency of this request is
Ev1(A1) = 0.

It is possible that a client request cannot be directly sat-
isfied on the current storage. Fig. 2(b) shows an example

320



Figure 2: Example 2

that the version on v1 is less detailed than the required ver-
sion. In this case, the client request can only be satisfied
on v+

1 (A1) = v2 and Em
vi,v+

i (Ap)
(Ap) = Emv1,v2(A1). Be-

sides, wince Bv2 = A1, we have Ec
v+

i (Ap)
(B

v+
i (Ap)

, Ap) =

Ecv2(A1, A1) = 0 and Ev1(A1) = Tmv1,v2(A1). Fig. 2(c)
expresses the case that the version on v1 is more detailed
than the required version. Thus, the request can be sat-
isfied on v1 by transcoding. I.e., v+

1 (A2) = v1, Bv1 = A1,
Em

vi,v+
i (Ap)

(Ap) = Tmv1,v1(A2) = 0, Ec
v+

i (Ap)
(B

v+
i (Ap)

, Ap)

= Ecv1(A1, A2), and Ev1(A2) = Tcv1(A1, A2).
Suppose that originally there is a version Bvi on vi, then,

the additional energy cost for accessing Ap if Bvi is removed
from vi, denoted as a.Evi(Ap), satisfies

a.Evi(Ap) = Em
vi,v+

i (Ap)
(Ap)

+Ec
v+

i (Ap)
(B

v+
i (Ap)

, Ap)− Ecvi(Bvi , Ap).
(5)

Fig. 3(a) gives an example to the additional energy cost.
A client request on A2 is supposed to be received from
v1. As the exact version that is required can be found
on v1, we have Ev1(A2) = 0, which can be deduced from
a similar discussion to Fig. 2(a). If A2 is removed from
v1, all requests on A2 cannot be satisfied on v1 and ad-
ditional transmission cost may be necessary. For the case
shown in Fig. 3(b), the request can be satisfied directly
by the version stored on v2. v+

1 (A2) = v2, B
v+
1

(A2) = A2,

Em
vi,v+

i (Ap)
(Ap) = Emv1,v2(A2), Ec

v+
i (Ap)

(B
v+

i (Ap)
, Ap) =

Ecv2(A2, A2) = 0, and a.Ev1(A2) = Emv1,v2(A2). For the
case shown in Fig. 3(c), the request can be satisfied by a
more detailed version on v2. Thus, v+

1 (A2) = v2, B
v+
1

(A2) =

A1, Em
vi,v+

i (Ap)
(Ap) = Emv1,v2(A2), Ec

v+
i (Ap)

(B
v+

i (Ap)
, Ap)

= Ecv2(A1, A2), and a.Ev1(A2) = Emv1,v2(A2)+Ecv2(A1, A2).

Figure 3: Example 2

Equation 5 explains the affect of removing Ap from vi on
those versions that can be transcoded from Ap. Formally,
let fvi(Ap) be the access frequency for Ap on vi, the energy
saving of placing Ap on vi, denoted by s.evi(Ap), satisfies

s.evi(Ap) =
X

Ax∈D(Ap)

fvi(Ax) · a.Evi(Ax) (6)

where D(Ap) is the set of all versions that can be transcoded
from Ap.

4.2 Access Latency
As shown in Section 1, a storage vi has the form {RPMi, Ci,

Oi}, where the first element indicates the RPM (Rotation
Per Minute) of this storage, the second denotes the capacity

of the storage, and Oi corresponds to the set of the remain-
ing attributes of the storage. RPMi of vi is an important
parameter to the allocation problem in that a high RPM
value indicates a short access latency (including transcod-
ing latency and transmission latency) and a large amount
of energy consumption. Let Tcvi(Ap, A(q)) be the access
latency of vi for transcoding Ap into Aq, it is congruous
to our intuition that this function is a monotonously de-
creasing function on RPMi. Similarly, Tmvi,vj (Ap), the
transmission latency for transmitting Ap between vi and
vj , is a monotonously decreasing function on RPMi and
a monotonously increasing function on bAp . By a similar
deduction to a.Evi(Ap), the additional transmission latency
for accessing version Ap with respect to vi, which is defined
as the additional time cost of accessing Ap if Bvi is removed
from vi, satisfies

Tvi(Ap) = Tmvi,vj (Ap) + Tc(B
v+

i (Ap)
, Ap)− Tc(Bvi , Ap).

(7)
Consequently, the time saving of placing Ap at vi, denoted
by stvi(Ap), can be defined as

stvi(Ap) =
X

Ax∈D(Ap)

fvi(Ax) · Tvi(Ax) (8)

based on the fact that removing Ap from vi will affect those
versions that can be transcoded from Ap.

Taking into consider Ci, the limited capability of vi, some
objects will be evicted from vi to make room for placing
Ap at vi, which raises the cost loss defined as follows. Let
`.evi(Ap) and `.tvi(Ap) denote the energy cost and time loss
of placing Ap at vi, respectively. We apply the following
greedy heuristic to decide replacement candidates. Note
that the normalized energy loss (NEL, i.e., the energy loss
introduced by creating one unit of free space) of ejecting
Ap is s.evi(Ap)/bAp and the normalized time loss (NTL) is
stvi(Ap)/bAp . The objects in vi are ordered by the value
of NELs and NTLs and are selected sequentially, starting
from the object with the smallest value, until enough space
is created. The cost loss of placing a version Ap of a multi-
media object A at a storage vi, denoted by `vi(Ap), which
is a combination of `.evi(Ap) and `.tvi(Ap), is calculated by
all the selected candidates. For example, a convenient com-
bination of `vi(Ap) could be `.evi(Ap) + (1/theta)`.tvi(Ap)
where θ ≥ 0 is a weighting coefficient. Ap will be ejected
into vi only when `vi(Ap) is greater than the aggregation
cost loss of removing objects.

Figure 4: Example 3

In the example presented in Fig. 4, there are three objects
on the storage vi, each with a given cost loss and size. If
there is an object D to be placed in this storage and the
relevant parameters are known as `vi(D) = 11, bD = 3, the
normalized cost loss (denoted as NCL) of all candidates
should be calculated. By the definition of cost loss, we have
NCLvi(A) = 8.7/2 = 4.35, NCLvi(B) = 7.2/1.8 = 4, and
NCLvi(C) = 6.5/2.3 = 2.83. Although C represents the
minimum NCL value, its size is not large enough for making
room for D since bD = 3 > bC . Therefore, B should also be
removed from this storage. However, since the total cost loss
of B and D, `vi(B) + `vi(C) = 7.2 + 6.5 = 13.7, is greater
than that of D, `vi(D) = 11, i.e., the aggregate cost saving
of placing D by removing B and C is negative, D will not
be placed in vi.

321



4.3 Problem Formulation
Now we begin to formulate the problem of placing multi-

media objects in wide-area storage systems. Let v1, v2, · · · , vn

be a sequence of storages. Suppose that v1 has the full object
version of the requested multimedia object and vn is the stor-
age on which the client issued the request. v2, v3, · · · , vn−1
are the intermediate storages on the path from v1 to vn. The
energy saving of placing Bvi at vi, denoted by Sevi(Bvi), is
given by

Sevi(Bvi) =
X

Ax∈D(Bvi
)

�
fvi(Ap)− f

v−i (Ax)
(Ax)

�
·s.evi(Ax),

(9)
where v−i (Ax) is the nearest lower level storage of vi that has
a less detailed version than Ax. The time saving of placing
Bvi at vi, denoted by Stvi(Bvi), is given by

Stvi(Bvi)
X

Ax∈D(Bvi
)

�
fvi(Ap)− f

v−i (Ax)
(Ax)

�
· stvi(Ax).

(10)
The energy loss of placing Bi at vi, denoted by Levi(Bi), is
given by

Levi(Bvi) =
X

Ax∈D(Bvi
)

`.evi(Ax) (11)

and the time loss of placing Bi at vi, denoted by Ltvi(Bi),
is given by

Ltvi(Bi) =
X

Ax∈D(Bvi
)

`.tvi(Ax). (12)

For simplicity, we use 1, 2, · · · , n−1, n to denote v1, v2, · · · ,
vn−1, vn in the following analysis, respectively. Let vi, v2, · · · ,
vk be a set of k storages such that 1 ≤ v1 ≤ v2 ≤ · · · ≤ vk ≤
n. Fe(n : v1, v2, · · · , vk), which is the aggregate energy
profit of placing multiple versions of a multimedia object at
v1, v2, · · · , vk, is defined as

Fe(n : v1, v2, · · · , vk) =

kX
i=1

(Sevi(Bvi)− Levi(Bvi)) . (13)

Similarly, Ft(n : v1, v2, · · · , vk), which is the aggregate time
profit of placing multiple versions of a multimedia object at
v1, v2, · · · , vk, is defined as

Ft(n : v1, v2, · · · , vk) =

kX
i=1

(Stvi(Bvi)− Ltvi(Bvi)) . (14)

If k = 0, we define

Fe(n : φ) = Ft(n : φ) = 0. (15)

Thus, the objective is to find k∗ and v1, v2, · · · , vk∗ that
maximizes Fe(n : v1, v2, · · · , vk) and Ft(n : v1, v2, · · · , vk)
which is referred to as an n-optimization problem.

5. DYNAMIC PROGRAMMING-BASED AL-
GORITHM

Actually, the n-optimization problem to maximize Fe(n :
v1, v2, · · · , vk) and Ft(n : v1, v2, · · · , vk) is a multi-objective
optimization problem as follows:

max
k,v1,v2,··· ,vk

{Fe(n : vi), F t(n : vi)| i = 1, · · · , k} . (16)

By the weighting coefficient method, this problem can be
transformed into a single-objective problem as follows:

max
k,v1,v2,··· ,vk

F (n, θ : vi| i = 1, · · · , k)

=

�
Fe(n : vi) +

1

θ
F t(n : vi)

���� i = 1, · · · , k

�
(17)

where θ ≥ 0 is a weighting coefficient. Obviously, when θ is
small, the second item of the objective function is domina-
tive. Then the gained solution emphasizes the requirement
of reducing energy consumption. With the increase of θ’s
value, the effect of the first item increases; thus, a quick
reply to the client request is the dominative objective.

In the following, we develop a dynamic programming based
algorithm inspired by [4] to solve the problem formulated in
the previous section. The following theorem shows that an
optimal solution for the whole problem must contain optimal
solutions to some subproblems.

Theorem 1. Suppose that {v1, v2, · · · , vI} is an optimal
solution to the n-optimization problem and {u1, u2, · · · , ul}
is an optimal solution to the (vI − 1)-optimization problem,
then {u1, u2, · · · , ul, vI} is also an optimal solution to the
n-optimization problem.

Proof. On one hand, by the definitions in (13), (14), and
(17), we have

F (n, θ : u1, u2, · · · , ul, vI)
= Fe(n : u1, u2, · · · , ul, vI)

+
1

θ
F t(n : u1, u2, · · · , ul, vI)

= Fe(vI − 1 : u1, u2, · · · , ul)

+
1

θ
F t(vI − 1 : u1, u2, · · · , ul)

+ [SevI (BvI )− LevI (BvI )]

+
1

θ
[StvI (BvI )− LtvI (BvI )]

= F (vI − 1, θ : u1, u2, · · · , ul)
+ [SevI (BvI )− LevI (BvI )]

+
1

θ
[StvI (BvI )− LtvI (BvI )]

(18)

Since {u1, u2, · · · , ul} is an optimal solution to the (vI−1)-
optimization problem, it is obvious that

F (vI − 1, θ : u1, u2, · · · , ul) ≥ F (vI − 1, θ : v1, v2, · · · , vI−1)
(19)

Therefore, we have

F (n, θ : u1, u2, · · · , ul, vI)
≥ F (vI − 1, θ : v1, v2, · · · , vI−1)

+ [SevI (BvI )− LevI (BvI )]

+
1

θ
[StvI (BvI )− LtvI (BvI )]

= F (n, θ : v1, v2, · · · , vI−1, vI).

(20)

On the other hand, since {v1, v2, · · · , vI} is an optimal so-
lution to the n-optimization problem, it is obvious that

F (n, θ : u1, u2, · · · , ul, vI) ≤ F (n, θ : v1, v2, · · · , vI−1, vI).
(21)

Therefore, we have

F (n, θ : u1, u2, · · · , ul, vI) = F (n, θ : v1, v2, · · · , vI−1, vI). (22)

Hence, the theorem is proven.

Before presenting the dynamic programming-based algo-
rithm, we give the following definition. Define F ∗n,θ to be
the maximum aggregate profit of F (n, θ : v1, v2, · · · , vk) ob-
tained by solving the n-optimization problem and In,θ the
maximum index in the optimal solution. If the optimal so-
lution is an empty set, define In,θ = −1.

Obviously, we have I0,θ = −1 and F ∗0,θ = 0. From Theo-
rem 1, it can be seen that if Ir,θ > 0, Fi,θ satisfies

FIr,θ = FIr−1,θ +
�
SevIr

(BvIr
)− LevIr

(BvIr
)
�

+
1

θ

�
StvIr

(BvIr
)− LtvIr

(BvIr
)
� (23)

Therefore, we can check all possible locations of Ir (0 ≤
r ≤ n) and select the one that maximizes F (r, θ : v1, v2, · · · ,

322



vk). So we have8>>><>>>:
F ∗0,θ = 0

F ∗r,θ = max
1≤vi≤r

�
0, F ∗vi−1,θ + [Sevi(Bvi)− Levi(Bvi)]

+
1

θ
[Stvi(Bvi)− Ltvi(Bvi)]

�
and8>><>>:

I0,θ = −1

Ir,θ =

8><>:
−1 if F ∗r,θ = 0
v if F ∗r,θ = F ∗v−1,θ + [Sev(Bv)− Lev(Bv)]

+
1

θ
[Stv(Bv)− Ltv(Bv)] .

The original problem can be solved using a dynamic pro-
gramming based algorithm with the recurrences above. The-
orem 1 ensures the correctness.

In the following, we present an analysis of the algorithm
above. Let gvi,θ(Bvi) be the aggregate profit of placing Bvi

at storage vi, i.e.,

gvi,θ(Bvi) = Sevi(Bvi)− Levi(Bvi)

+
1

θ
[Stvi(Bvi)− Ltvi(Bvi)]

=
X

Ax∈D(Bvi
)

h�
fvi(Ap) − f

v−i (Ax)
(Ax)

�
Φ(vi, θ)−Ψ(vi, θ)

i
,

where Φ(vi, θ) = s.evi(Ax) + 1
θ
stvi(Ax), and Ψ(vi, θ) =

`.evi(Ax) + 1
θ
`.tvi(Ax) and hvi,θ(Bvi) be the local profit of

placing Bvi at storage vi, i.e.,

hvi,θ(Bvi) =
X

Ax∈D(Bvi
)

�
fvi(Ap) · Φ(vi, θ)−Ψ(vi, θ)

�
,

The following theorem describes an important property of
the algorithm.

Theorem 2. Suppose that {v1, v2, · · · , vI} is an optimal
solution to the n-optimization problem, then we have

hvi,θ(Bvi) ≥ 0 ∀ 1 ≤ i ≤ k

Proof. From the definition of gvi,θ(Bvi) and hvi,θ(Bvi),
it is ready to see that gvi,θ(Bvi) ≤ hvi,θ(Bvi). Suppose that
there exists r such that hvr,θ(Bvr ) < 0, then we have

F (n, θ : v1, v2, · · · , vI)
= F (vr − 1, θ : v1, v2, · · · , vr−1) + gvr,θ(Bvr )

+F (n− vr, θ : vr+1, vr+2, · · · , vI)
≤ F (vr − 1, θ : v1, v2, · · · , vr−1) + hvr,θ(Bvr )

+F (n− vr, θ : vr+1, vr+2, · · · , vI)
< F (vr − 1, θ : v1, v2, · · · , vr−1)

+F (n− vr, θ : vr+1, vr+2, · · · , vI)
≤ F (n, θ : v1, · · · , vr−1, vr+1, · · · , vI)

(24)

which contradicts the fact that {v1, · · · , vr−1, vr+1, · · · , vI}
is an optimal solution to the n-optimization problem. Hence,
the theorem is proven.

Theorem 2 shows that we should only consider the stor-
ages where the local profit is beneficial.

6. SIMULATION MODEL
In this section, we describe the simulation model used

for performance evaluation. We have performed extensive
simulation experiments to compare the results of our model
with those of existing models. We generated the simulation
model from the empirical results presented in [6, 15, 13],
which are considered to be reasonable.

The network topology was randomly generated by the Tier
program [13]. We have conducted experiments for many

topologies with different parameters and found that the per-
formance of our model was relatively insensitive to topology
changes. Here, we list only the experimental results for one
topology due to space limitations. Table 1 shows the char-
acteristics of this topology and the workload model, the pa-
rameters and their values used in our simulation.

We describe storage size as the total relative size of all
objects available. We assume for our experiments that the
object sizes follow a Pareto distribution. We also assume
that each multimedia object has five versions and that the
transcoding graph is as shown in Figure 5. The sizes of each
version are assumed to be 100 percent, 80 percent, 60 per-
cent, 40 percent, and 20 percent of the original object size.
The transcoding cost is determined as the quotient of the ob-
ject size to the transcoding rate. In our experiments, each
storage randomly generates the requests, and the average re-
quest rate of each storage follows the distribution of U(1, 9),
where U(x, y) represents a uniform distribution between x
and y. The access frequencies of the objects maintained by a
given storage follow a Zipf-like distribution [15, 20]. Specifi-
cally, the probability of a request for an object O in storage
S is proportional to 1/(iα · jα), where S is the i-th most
popular storage and O is the j-th popular object in S. The
delay between storage follows an exponential distribution,
where the average delay is 0.23 seconds.

Figure 5: Transcoding Graph for Simulation

The transmission cost between storages is calculated by
the access delay. For simplicity, the delay caused by send-
ing the request and the relevant response for that request
is proportional to the size of the requested object. The
transcoding cost is calculated by the transcoding delay from
one version to another during the processing of accessing.
Similarly, the transmission energy cost and the transcoding
cost are calculated by the computational ability of the stor-
age that are proportional to the size of the requested object.
Here, we consider the average object sizes for calculating
both the transmission cost and the transcoding cost.

In addition to the model presented in Section 4.3, we also
consider the mirror placement model for comparison pur-
poses. In this model, each storage save the same objects.
The performance metrics employed in the simulation include
delay-saving ratio (DSR) 1, average access latency (AAL),
request response ratio (RRR) 2, average hit ratio (OHR)3,
and exit hit ratio (EHR)4. In the following figures, TMP

1DSR is defined as the fraction of communication and server
delays which is saved by satisfying the references from the
storage instead of the server
2RRR is defined as the ratio of the access latency of the
target object to its size .
3OHR is defined as the ratio of the number of requests sat-
isfied by the storages as a whole to the total number of re-
quests (including those requests that are served by transcod-
ing in the storages).
4EHR is defined as the ratio of the number of requests sat-
isfied by the storages as a whole to the total number of
requests

323



Table 1: Parameters Used in Our Simulation
Parameter Value

Number of WAN Nodes 500
Number of MAN Nodes 500

Delay of WAN Links
Exponential Distribution

p(x) = θ−1e−x/θ (θ = 0.48 Sec)

Delay of MAN Links
Exponential Distribution

p(x) = θ−1e−x/θ (θ = 0.58 Sec)

Number of Web Objects 1000 objects per server

Web Object Size Distribution
Pareto Distribution

p(x) = aba

a−1
(a = 1.2, b = 8596)

Web Object Access Frequency
Zipf-Like Distribution

1
iα (α = 0.7)

Relative Size Per Storage device 4%
Average Request Rate Per Storage U(1, 9) requests per second

Transcoding Rate 25KB/Sec

shows the results for the model proposed in Section 4.3 and
MP shows the results for mirror placement.

7. PERFORMANCE EVALUATION
7.1 Impact of Storage Size

In this experiment set, we compare the performance of
different models across a wide range of storage sizes, from
30 percent to 80 percent.

Figures 6, 7, 8 show the simulation results for DSR, AAL,
and RRR. We can see that our model outperforms the MP
model since our model considers placing multimedia objects
in storages in a coordinated way, whereas MP considers plac-
ing multimedia objects only at a single storage. Clearly, the
lower the AAL or the RRR, the better the performance. As
we can see, all models provide steady performance improve-
ment as the storage size increases. We can also see that
CMOTP significantly improves both AAL and RRR com-
pared to MP , since our model determines the optimal loca-
tions for placing multimedia objects in a coordinated way,
while the MP places multimedia objects at each storage.

30 35 40 45 50 55 60 70 80
0

10

20

30

40

50

60

70

D
S

R
 (

%
)

Storage Size (%)

MP
TMP

Figure 6: Simulation Results for DSR

Figures 9 and 10 show the results of AHR and EHR as
a function of the relative storage size for different models.
By computing the optimal locations, we can see that the
results for our model can greatly outperform the MP model.
We can also see that OHR steadily improves as the relative

30 35 40 45 50 55 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Storage (%)

A
A

L 
(S

ec
on

d)

MP
TMP

Figure 7: Simulation Results for AAL

storage size increases, which conforms to the fact that more
requests will be satisfied by the storage as the storage size
becomes larger.

7.2 Impact of Object Access Frequency
This experiment set examines the impact of object access

frequency distribution on the performance of different mod-
els. Figures 11, 12, 13 show the performance results of DSR,
RRR, and AHR for the values of Zipf parameter α from 0.1
to 0.9, respectively. We can see that CMOTP consistently
provides the best performance over a wide range of object
access frequency distributions.

8. CONCLUDING REMARKS
This paper presented an energy-sensitive multimedia ob-

ject distribution algorithm for wide-area transcoding-enabled
storage systems. We proved that our technique provides op-
timal answers with small space and computational overhead.
While our current focus is on storage systems that has only
three modes (i.e., active, idle, and standby), we plan to in-
vestigate situations where storages with tunable RPM [7].
Further, it has been observed [23]that the energy consump-
tion of storages can be reduced if requirement statistics are
available in advance. The design of such “workload-aware”
multimedia object distribution methods in storage systems
constitutes an interesting topic. Finally, we would like to ex-

324



30 35 40 45 50 55 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Storage Size (%)

R
R

R
 (

se
co

nd
/M

B
)

TMP
MP

Figure 8: Simulation Results for RRR

30 35 40 45 50 55 60 70 80
0

10

20

30

40

50

60

70

80

90

100

Storage Size (%)

A
H

R
 (

%
)

TMP
MP

Figure 9: Simulation Results for OHR

plore the applicability of our distribution strategy for track-
ing the dynamically changing requirements of multimedia
objects.

9. REFERENCES
[1] M. C. G. C. R. C. J. D. J. H. J. L. M. T. A. Adya,

W.J. Bolosky and R. Watterhofer. Farsite: Federated,
acailable, and reliable storage for an incompletely
trusted environment. In OSDI02 Conference
Proceedings.

[2] A. M. A. Haeberlen and P. Druschel. Glacier: Highly
durable, decentralized storage despite massive
correlated failures. In NSDI05 Conference Proceedings.

[3] K. R. A. Singh, A. Trivedi and P. Shenoy. Ptc :
Proxies that transcode and cache. in heterogeneous

30 35 40 45 50 55 60 70 80
0

10

20

30

40

50

60

70

80

Storage Size (%)

E
H

R
 (

%
)

TMP
MP

Figure 10: Simulation Results for ASL

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

Zipf Parameter

D
S

R
 (

%
)

MP
TMP

Figure 11: Simulation Results for DSR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

Zipf Parameter
A

H
R

 (
%

)

TMP
MP

Figure 12: Simulation Results for RRR

web client environments. WWW, 7(1):7–28.
[4] G. F. I. X. D. B. Li, M. J. Golin and K. Sohraby. On

the optimal placement of web proxies in the internet.
In INFOCOM99 Conference Proceedings, pages
1282–1290.

[5] S. J. L. B. Shen and S. Basu. Caching strategies in
transcoding-enabled proxy systems for streaming
media distribution networks. IEEE Trans. on
Multimedia, 6(2):375–386.

[6] P. Barford and M. Crovella. Generating representative
web workloads for network and server performance
evaluation. In ACM SIGMETRICS’98 Conference
Proceedings, pages 151–160.

[7] R. Bianchini and R. Rajamony. Power and energy
management for server systems. IEEE Computer,

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Zipf Parameter

R
R

R
 (

S
ec

on
d/

M
B

)

TMP
MP

Figure 13: Simulation Results for OHR

325



37(11):68–74.
[8] M. C. R. L. P. S. Y. C. Canali, V. Cardellini.

Cooperative architectures and algorithms for discovery
and transcoding of multi-version contents. In WCW
2003 Conference Proceedings.

[9] C. Chang and M. Chen. On exploring aggregate effect
for efficient cache replacement in transcoding proxies.
IEEE TPDS, 14(6):611–624.

[10] E. P. E. V. Carrera and R. Bianchini. Conserving disk
energy in network servers. In ICS03 Conference
Proceedings, pages 86–97.

[11] Y. C. S. C. P. E. D. G. R. G. S. R. H. W. W. W.
C. W. J. Kubiatowicz, D. Bindel and B. Zhao.
Oceanstore: An architecture for global-scale persistent
storage. In ASPLOS-IX Conference Proceedings.

[12] B. L. J. Xu and D. L. Li. Placement problems for
transparent data replication proxy services. IEEE
Journal on Selected Areas in Communications,
20(7):1383–1398.

[13] M. B. D. K. L. Calvert and E. W. Zegura. Modelling
internet topology. IEEE Comm. Magazine,
35(6):160–163.

[14] F. C. K. Li, H. Shen and S. Zheng. Optimal methods
for coordinated en-route web caching for tree
networks. ACM TOIT, 5(3):480–507.

[15] L. F. G. P. L. Breslau, P. Cao and S. Shenker. Web
caching and zip-like distributions: Evidence and
implications. In IEEE INFOCOM’99 Conference
Proceedings, pages 126–134.

[16] K. Li and H. Shen. Optimal proxy placement for
coordinated en-route transcoding proxy caching.
IEICE Trans. on IS, E87-D(12):2689–2696.

[17] B. Moore. More power needed. Energy User News.
[18] B. Moore. Taking the data center power and cooling

challenge. Energy User News.
[19] D. R. P. Krishnan and Y. Shavitt. The cache location

problem. IEEE/ACM TON, 8(5):568–582.
[20] V. N. Padmanabhan and L. Qiu. The content and

access dynamics of a busy site: Findings and
implications. In ACM SIGCOMM’00 Conference
Proceedings, pages 111–123.

[21] E. Pinheiro and R. Bianchini. Energy conservation
techniques for disk array-based servers. In ICS04
Conference Proceedings, pages 68–78.

[22] C. F. D. Z. L. Y. Z. Q. Zhu, F. M David and P. Cao.
Power-aware storage cache management. IEEE Trans.
on Computers, 54(5):587–602.

[23] L. T. Y. Z. K. K. Q. Zhu, Z. Chen and J. Wilkes.
Hibernator: Helping disk arrays sleep through the
winter. In SOSP05 Conference Proceedings, pages
177–190.

[24] A. S. H. F. N. V. S. Gurumurthi, J. Zhang and M. J.
Irwin. Interplay of energy and performance for disk
arrays running transaction processing workloads. In
ISPASS2003 Conference Proceedings, pages 123–132.

[25] M. K. S. Gurumurthi, A. Sivasubramaniam and
H. Franke. Drpm: Dynamic speed conrol for power
management in server class disks. In ISCA03
Conference Proceedings, pages 169–179.

[26] X. Tang and S. T. Chanson. Coordinated en-route
web caching. IEEE TC, 51(6):595–607.

[27] P. Y. V. Cardellini and Y. Huang. Collaborative proxy
system for distributed web content transcoding. In
ACM ICIKM 200 Conference Proceedings, pages
520–527.

[28] D. D. X. Jia, D. Li and J. Cao. On optimal replication
of data object at hierarchical and transparent web
proxies. IEEE TPDS, 16(8):1–13.

[29] X. H. W. W. X. Jia, D. Li and D. Du. Placement of
web-server proxies with consideration of read and
update cost on the internet. The Computer Journal,

46(4):378–390.

326




