
DEWS2008 B3-5

Finding Latent Neighbors for Query Recommendation: a

User-Controllable Scheme

Lin LI† and Masaru KITSUREGAWA††

† Department of Information and Communication Engineering, University of Tokyo, Japan

†† Institute of Industrial Science, University of Tokyo, Japan

Abstract Ambiguous queries and the large amount of unindexed information by search engines give rise to the

problem of finding latent neighbors for query recommendation. In this paper, we give our definition for latent

neighbors of a query, and then propose a novel two-phase algorithm to solve this problem, which takes the con-

nectivity of the query-URL bipartite graph as input. In addition, due to the subjectivity of similarity measures, a

user-controllable scheme is presented to bridge the gap between the determinacy of similarity values and the inde-

terminacy of users’ information needs. The experiment results from two mixtures of data collections demonstrate

the usefulness of our algorithm and the feasibility of our scheme.

Key words query recommendation, clustering, rank mechanism

1. Introduction

Today’s Web search engines provide friendly user inter-

faces which allow users to specify queries simply as lists of

terms. A main problem occurs for users because of this:

properly specifying their information needs by using only a

few terms in their queries. One reason is that the ambiguity

of short queries will retrieve web pages which are not what

users are searching for. On the other hand, users might fail

to choose terms at the appropriate level of representation for

their information needs, and worst, they are either unwilling

or unable to invest in the query construction.

The utilization of query expansion techniques has been in-

vestigated to help users formulate better queries. However,

these techniques just append terms to existing terms in the

query. While these techniques help recall, they generally

hurt precision at the top of the result lists. It is appeal-

ing to think that past queries may be a source of additional

evidence to help future users. For some users who are not

very familiar with a certain domain, we can suggest alter-

native queries that have been searched by previous similar

users from which they may gradually refine their queries, and

hence become expert users. Previous queries having common

terms with the input query are naturally recommended as

alternatives. However, it is possible that the queries can be

identical or phrased differently with different terms but for

the same information needs. As a concrete example, there

are two queries, “irs” and “file taxes online”. Although they

have no terms in common, Similarity between the two queries

can be induced from the the overlap of the two lists of search

results (URLs) returned to them. We notice that this ap-

proach still has its limitations: 1) two related queries may

output different URLs in the top search results; 2) the whole

URLs for a query stored in a search engine are too huge to ef-

fectively handle online searches; 3) even though it is possible

to quickly process the whole URLs, the Internet remains the

fastest growing new medium of all time [11]. Therefore, we

think of the problem: how to find such a latent relationship

between two queries that may not share common terms and

URLs, due to the limited, available information we have.

In addition, the fact which should not be neglected is

the subjectivity of the similarity. Query-to-query similar-

ity is not an absolutely invariant constant, especially for

broad-topic queries. For instance, the query “apple” is re-

lated to both fruits and computers. Whether fruit-related

or computer-related queries are recommended should con-

sider the context in which users submit the query. Thus, if

users are allowed to take part in the recommendation, the

context of the query will be expressly indicated. In this pa-

per, we propose a user-controllable scheme to solve these

difficulties. Our algorithm uses only the connectivity of a

query-URL bipartite graph as input, and ignores the con-

tents. It has two major steps: extracting affinity subgraphs

of queries from the bipartite graph and then hierarchically

clustering queries. The monotonicity of the successive merge

operations and flexibility in the Hierarchical Agglomerative

Clustering (HAC) make it possible for users to control the

searching process. The main contributions of this paper are

— 1 —

summarized as follows.

(1) We put forward a new problem of finding latent

neighbors for query recommendation (Section 2).

(2) A novel two-phase algorithm is proposed to solve

the problem, falling into graph theory and HAC techniques

(Section 3).

(3) Under our scheme, experiment results prove that

users can become an active partner from a passive acceptor

in the process of query recommendation (Section 4).

Discussions of the related work and the conclusion are sev-

erally addressed in Section 5 and Section 6, respectively.

2. Problem Statement

Our goal is to find latent neighbors from query-URL data.

In this section, we will describe the concept of latent neigh-

bors.

2. 1 Query-URL Data

The query-URL data inspire us to mining the latent neigh-

bors of a query. In tradition Information Retrieval, the sim-

ilarity between a pair of quires is apparently valued by the

query contents and other information resources like docu-

ment contents and user feedback. However, there are three

reasons that move us to the deeper consideration. First two

related queries may output different URLs. Second the whole

URLs for a query stored in a search engine are too huge to

handle effectively. The last reason is that no search engines

have already indexed all the information in the Internet until

now, as we described in Section introduction. We expect the

algorithm addressed here will preliminarily solve the mining

problem.

2. 2 Definition

This new relationship described is discovered among

queries which may have common terms and URLs, or even

not, different from the concept of similar queries in the tra-

ditional Information Retrieval. To look into whether there

exists this latent relationship, an example is illustrated in

Figure 1(a). The number of common URLs between q1 and

q2 is equal to that between q2 and q3 (i.e., 1), while there is

no common URL between q1 and q3. We conclude that q1 is

similar to q2, and that q2 is similar to q3. It is straightfor-

ward that q1 is also similar to q3, and vice versa. We think

of some similarity between q1 and q3 which may be not the

same value as that between q1 and q2. This observation in-

spires us to form the concept of latent neighbors. Now we

give the definition in the context of graph theory:

Latent neighbors: Given a query graph like Figure 1(b),

its vertices correspond to queries only. Its edges connect

pairs of queries, and are weighted according to a distance

measure. Latent neighbors of a query refer to queries from

which there are paths to the targeted query. Under this defi-

Figure 1 Query-URL Bipartite Graph (a) and Query Graph (b)

nition, we generalize the concept of neighbors: the neighbors

of a query include adjacent (e.g., q1 and q2 in Figure 1(b))

and un-adjacent (e.g., q1 and q3 in Figure 1(b)) vertices.

Scores will be explained shortly. Both of the two kinds of

vertices in the graph are latent as neighbors. In particular,

we want to let users choose the nearer neighbors represented

as an ordering from the latent neighbors under their demand.

3. Proposed Algorithm

3. 1 Preliminary

3. 1. 1 Bipartite Graph Model

A bipartite graph, also called a bigraph, is a special graph

from which the set of vertices can be decomposed into two

disjoint sets such that no two vertices within the same set

are adjacent. In the mathematical definition, a simple undi-

rected graph G: =(Q ∪ U , E) is called bipartite if Q and

U are independent sets, where Q (U) is the vertex set and

E is the edge set of the graph. In this paper, we propose to

recommend queries based on the inter-relationship of their

corresponding URLs. The query-URL relationship can be

intuitively represented as a bipartite graph and hence, it is

used as our basic model where Q is a set of queries, U is a

set of URLs, as shown in Figure 1(a). An edge e connects a

query q and a URL u, if the URL u is returned by a search

engine on a query q. Here we focus on the side of queries

to recommend latent neighbors. As a by-product, related

web pages could be mined as well, by applying the proposed

algorithm on the side of the URLs with a relatively small

modification.

3. 1. 2 HAC Strategies

HAC does not require a prespecified number of clusters

because it treats each query as a singleton group at the be-

ginning, and then merges pairs of groups iteratively until

all groups have been merged into a single group that con-

tains all queries. Its output is a hierarchy, a structure that

is more informative than the unstructured set of clusters in

flat clustering. And most HAC algorithms find the optimal

HAC treats each query as a singleton group at the beginning,

and then merges pairs of groups iteratively until all groups

— 2 —

have been merged into a single group structured as a hier-

archy that contains all queries. Furthermore, HAC has an

interesting property that distance measures associated with

successive merge operations should be monotonic, if d1, d2,

· · ·, dk (the definition will be expressed soon) are successive

combination distances of an HAC strategy, then d1 <= d2 <=

· · · <= dk must hold. A non-monotonic HAC strategy contains

at least one inversion di >= di+1 and contradicts the funda-

mental assumption that the best possible merger is found at

each step. Urged by the monotonic property, we think that

queries which have the shortest distances will be merged first.

At each remaining step in the hierarchy, the next closest

pair of queries (or groups) should be merged. The sequence

of merge operations scores the relevance of two queries and

produces an ordering of neighbors for a specific query. The

higher relevance score means the nearer neighbor is.

The monotonic property is desirable, but not always true

of various HAC strategies. Which strategies then, hold this

property? Lance et al. [8], [9] answered our question that

single-linkage, complete-linkage strategies are monotonic by

definition. Moreover, they introduced a generalized recur-

rent formula including all special cases, defined as

dhk = αidhi + αjdhj + βdij + γ|dhi − dhj | , (1)

where the parameters αi, αj , β, and γ determine the na-

ture of the strategy. (h), (i), and (j) are three groups, con-

taining nh, ni,nj elements respectively with inter-group dis-

tances already defined as dhi, dhj , dij . They further assume

that the smallest of all distances still to be considered dij ,

so that (i) and (j) fuse to form a new group (k), with nk

(=ni+nj) elements. The strategy is necessarily monotonic

so long as αi+αj+β>=1 and γ=0. Furthermore, they derive a

flexible strategy by the quadruple constraint (αi+αj+β=1,

αi=αj = α, β, γ=0). This constraint suggests a set of mono-

tonic strategies such that as α increases from 0 to 1, the

hierarchy changes from an almost completely “chained” sys-

tem to one with increasingly intense clustering. A given set

of queries may now, by varying the parameters, be made to

appear as sharply clustered as a user may desire.

3. 2 Two-phase Algorithm

The advantages of HAC, however, come at the cost of lower

efficiency. Its complexity is at least quadratic in the num-

ber of queries because of the distance matrix of all pairs

of queries. Loading the entire matrix to the memory will

speed up the clustering process. Moreover, one observation

from our experiments suggests that the query-URL bipar-

tite graph is an unconnected graph which may be subdi-

vided into connected subgraphs, and the sizes of these sub-

graphs (clusters) are very skewed. These influence our al-

gorithm to partition the original graph before applying the

Table 1 Two-phase Algorithm

Input: query-URL data in the form of (query, URL), a HAC

strategy chosen by a user, and an input query.

Output: an ordering of latent neighbors of the input query.

Affinity Subgraph Extracting Phase(Off-Line):

1. If a query q appears with URL u, then place an edge in

graph G between the corresponding vertices in Q and U;

2. On the basic initialization of the disjoint-sets structure [2],

each vertex in G is in its own set;

3. The connected components are calculated based on the

edges in G, and update the disjoint-sets structure

when edge(q,u) is added into the graph;

4. Extract the connected components, also called affinity

subgraphs here;

Hierarchical Clustering Phase(On-Line):

5. Find the affinity subgraph containing the input query;

6. Apply the selected HAC strategy on this affinity subgraph;

7. The successive merge operations on the input query

naturally form an ordering of latent neighbors;

8. If the user is unsatisfied with these neighbors, selects

another HAC strategy; Go to 6;

Else end this searching process.

HAC stragegies. Thus we first extract connected components

(also called affinity subgraphs here) by the disjoint-sets data

structure [2], and then perform HAC only on the partition

containing the query nodes. The pseudo code is described in

Table 1.

The Off-Line part extracts all the connected components

(Line 2 ∼ 4) to form affinity subgraphs as shown in Fig-

ure 1(b), a kind of new subgraphs that we derive from the

original graph. It is not bipartite, and its nodes correspond

to queries only. The edges connect pairs of queries, and are

weighted according to a distance score measured by

d(qi, qj) = 1−
U(qi) ∩ U(qj)

U(qi) ∪ U(qj)
. (2)

where qi(qj)is a query, and U(qi) (U(qj)) is the set of URLs

returned by a search engine on query qi(qj). The value of the

defined distance between two queries lies in the range [0 · · ·

1]: 0 if they are exactly the same URLs, and 1 if they have

no URLs in common. The distance matrix for each affinity

subgraph consists of the distances of the pairs of queries.

Thus our first step has already completed the same clus-

tering task as studied in [1] which exactly used single-linkage

clustering to find connected components in the entire graph.

The severe termination condition, however, caused the skew-

ness of cluster sizes. Moreover, in the stage of query recom-

mendation, from a cluster that contains query q, this study

selected members that occurred most frequently in the whole

clickthrough records. But the frequency is not a good de-

scriptor of similarity because it does not consider the tar-

— 3 —

geted query. For some clusters with large sizes, choosing the

nearer neighbors from a large number of candidates becomes

an issue. The monotonic merge operations of HAC strategies

figure out a way to solve it. On the second phase, our HAC

strategies on each affinity subgraph (Line 6) are as follows.

Single-linkage clustering (HAC S):

dhk = MIN [d(qh, qk)].

Group-average clustering (HAC G):

dhk =

qh∈nh

qk∈nk
d(qh,qk)

nhnk
.

Flexible strategy (HAC F):

dhk = αdhi + αdhj + (1− 2α)dij .

In the Appendix we give the proof that the HAC G holds

the monotonic property. Complete-linkage clustering is also

monotonic, but it is not suitable in this situation as shown

in Figure 1(a). d(q1, q2) = 0.75, d(q2, q3) = 0.667, and

d(q1, q3) = 1. The complete-linkage clustering considers

the distance between one group (query) and another group

(query) to be equal to the greatest distance from any mem-

ber of one group to any member of the other group, and

then finds the closest (shortest distance) pair of groups and

merges them into a single group. Therefore, q1 and q3 will

not be in the same group until all the queries are clustered

into a single group. But it is apparent that q3 is a latent

neighbor of q1 for there is a path from q1, q2, to q3.

We last specify the procedure of forming the recommended

ordering of latent neighbors (Line 7, 8). In HAC, an input

query and a candidate query will come together at a dis-

tance (dic) between the two groups which are being merged

and contain the two queries, respectively. At a distance

(di), the input query is merged with a group (query) the

first time, and the candidate query is at a distance(dc).

Then, the distance score between the two queries is equal

to |di − dic| + |dc − dic| which ranks each candidate (latent

neighbor) in the affinity subgraph that includes the input

query. The pseudo code of ranking is described in Table 2.

In each iteration, the two most similar clusters are merged

(Line 11 ∼ Line 13) and the rows and columns of the merger

cluster i in D are updated (Line 14 ∼ Line 18). Ties in HAC

are broken randomly. The clustering is stored as an N by 2

matrix in M , where N is the number of candidates. Row i

of M describes the merging of clusters at the step i of the

clustering. If a number j in the row is negative, then the

single page |j| is merged at this stage. If j is positive, the

merger is with the cluster formed at stage j of the algorithm.

I indicates which clusters are still available to be merged. H

stores the combination distances between merging clusters

Table 2 HAC-based Rank Mechanism

Input: N candidates from the affinity graph of the input

query, a HAC strategy chosen by a user

Output: An ordered list of related queries to the input query

Distance matrix

1. for k=1 to N

2. for l=1 to N

3. D[k][l] = dis(qk, ql)

Initialization

4. H[N] (for combination distances)

5. M [N][2] (for collecting merge sequences)

6. O[N] (for the ordered list)

7. for k=1 to N

8. I[k] = 1 (keeps track of active cluster)

Clustering

9. for k=1 to N

10. Begin Loop

11. (i, j) = argmin(i,j)l |=m,I[i]=I[j]=1D[i][j]

12. M .append(< i, j >)

13. H.append((i, j))

14. for h=1 to N

15. Begin Loop

16. dhk = α1D[h][i] + α2D[h][j] + βD[i][j] + γ|D[h][i] − D[h][j]|

17. D[i][h] = D[h][i] = dh(i,j)

18. End Loop

19. I[j] = 0 (deactivate cluster)

20. End Loop

Rank Mechanism

21. if M [i][j] == −iq

22. d[iq] = H[i] (the first merge for iq)

23. for cq=1 to N (cq |= iq)

24. Being Loop

25. if M [i][j] == −cq

26. d[cq] = H[i] (the first merge for cq)

27. if row i of M [N][2] are clusters that include cq and iq

28. d[(iq, cq)] = H[i]

29. O[cq] = |d[iq]− d[(iq, cq)]|+ |d[cq]− d[(iq, cq)]|

30. if O[cq] > 0.2, delete it

31. End Loop

32. Sort O[N] in increasing order

at the successive stages.

4. Experiments

4. 1 Data Sets

In the experiments, we used two data sets: Mixture1 and

Mixture2. The former is a mixture of Medline (1033 med-

ical abstracts and 30 queries), Cranfield (1400 aeronauti-

cal system abstracts and 225 queries), and Cisi (1460 in-

formation retrieval abstracts and 111 queries) collections 1 .

The latter is a mixture of 800 labelled queries of KDD cup

2005 dataset, and 100 queries selected from our previous

1 These document sets can be downloaded from ftp://

ftp.cs.cornel.edu/pub/smart.

— 4 —

experiments [10]. Given each of the total 900 queries, the

top 20 URLs of search results were offered by Google API

(http://code.google.com/apis/). We avoid significant pre-

processing of URLs and queries except for mapping the query

characters to lowercase. Clearly, however, even a minimal

amount of preprocessing could help the clustering much. For

instance, the query “costa & rica” contains a “&”, which dis-

tinguishes it from the semantically identical “costa rica”. We

want to underscore the nature of the proposed algorithm.

4. 2 Experiment1 on Mixture1 Data Set

To investigate the existence of the latent relationship and

the possibility of forming the affinity subgraph, a preliminary

experiment was carried out. On the first phase of our algo-

rithm, the three collections in Mixture1 showed differently.

In the Medline collection, no affinity subgraph of queries was

mined. The reason is that the related abstracts of any pair

of queries had not been overlapped during the initialization

of distance matrices. For the Cisi collection, the result was

exactly opposite to that of the Medline collection. A domi-

nating affinity subgraph included 76 queries of the total 111

queries, and the rest of the queries were unadjacent. Due to

page limitations, we only illustrate the results of the Cran-

field collection in Figure 2. The sizes of the extracted affinity

subgraphs in it were somewhat skewed, but were still good

for our task. On the second phase, the various HAC strate-

gies were operated on the Cranfield collection. See Figure 3

and Figure 4 to observe the results of an affinity subgraph

(cluster) pointed by an arrow in Figure 2. The structures

of the cluster changed in accordance with the variable α. In

brief, our preliminary experiment confirms the assumption

addressed in the beginning of this paragraph, and that the

user-controllable scheme is applicable with the help of the

parameters in Equation 1.

4. 3 Experiment2 on Mixture2 Data Set

In this section, we report three of our cluster results se-

lected from the different strategies we performed: “food his-

tory”, “piano moving”, and “aquarium”. Table 3, Table 4,

and Table 5 do not contain all latent neighbors, but a top

ranked selection. The relevance scores of queries in the brack-

ets to an input query are tied. “Mexican recipes” and “Irish

food recipes” were the nearest neighbors to the query “food

history”, for it is easy to understand that the food culture

involves the characteristics of the nationality. We further

checked the two returned lists of URLs on the two neigh-

bors, and found there was no overlap. However, they shared

common URLs with the query “food recipes”, which con-

nected them. (recalling that our algorithm only considers

the connectivity of a graph, the common term “recipes” is

useless here). This example verifies our assumption as well.

In Table 4, although the query “piano moving” shared the

Table 3 The top nearer neighbors of the query “food history”

HAC Strategy Query: food history

HAC F(>= 0.6), HAC S (Mexican recipes, Irish food recipes),

chicken recipe website, (food recipes,

all recipe.com)

HAC F(<= 0.5), HAC G Irish food recipes, Mexican recipes,

chicken recipe website,(food recipes,

all recipe.com)

Table 4 The top nearer neighbors of the query “piano moving”

HAC Strategy Query: piano moving

HAC F(>= 0.24), HAC S,

HAC G

(allied van line, united van line),

(moving, home moving)

HAC F(<= 0.23) united van line, allied van line, (mov-

ing, home moving)

Table 5 The top nearer neighbors of the query “aquarium”

HAC Strategy Query: aquarium

HAC S clearwater beach Florida, (tampa fla, city

tampa), st.petersburg

HAC F(=0.5) clearwater beach Florida, city tampa,

tampa fla, st.petersburg

HAC F(=0.1, 0.2) tampa fla, city tampa, tampa florida,

tampa bay florida,tampa fla

HAC F(=0.3) city tampa, tampa fla, (tampa florida,

tampa bay florida), st.petersburg

HAC F(=0.4) clearwater beach Florida, (tampa florida,

tampa bay florida), city tampa, tampa fla,

clearwater beach Florida, st.petersburg

HAC F(=0.6) clearwater beach Florida, st.petersburg,

city tampa, tampa fla

HAC F(=0.7, 0.8) (clearwater beach Florida, st.petersburg),

city tampa, tampa fla, (tampa florida,

tampa bay florida), (st petersburg, saint

petersburg)

HAC F(=0.9) (clearwater beach Florida, st.petersburg),

(city tampa, tampa fla), (tampa florida,

tampa bay florida), (st petersburg, saint

petersburg)

common term and URLs with “moving” and “home mov-

ing”, two companies with the home moving service were the

winners. Here we repeat that the winner is nondeterminis-

tic because of the different information needs of users. Our

approach, however, can bridge the gap between the deter-

minacy of similarity values and the indeterminacy of users’

needs. The last example in Table 5 showed changes of neigh-

bors through different HAC strategies. Under α = 0.3 the

top was “city tampa”, while “clearwater beach Florida” be-

came the nearest one by the single-linkage clustering. An-

other observation was that the clustering turned more in-

tense, and more pairs of neighbors were constructed, when

the value of α increased. Our future research will mine other

features of this new relationship.

— 5 —

28

27

225

219218

217

204

203

202

201
186

184
166

157

152

151

150

118

99

84

73
71

53

41

30

29

19

72

68

153

95

94

77

76
75

62

70

156 155

127

54

40

3938

215

1

69

51

47
46
45

22
174

79

67

65

8

7

159

117

116

74

158

11

5

165

44

10
25

26

23

48

224

221

220

209

162

16155

164

126

125

37

87

66

52

50

9

61

21

93

213

212

211

210

198
148

147

121

120

145

144

199

187 149

139

110

119

100

195

194

122

146

138

109

43

90

13

208

207

206

196

97
96

56

130
115

113

57
2

83

4
85

191 190

185 111

64

189

182

181

179

176

171

91

34

33

81

89

170

169

168

42

167

163

154

106 105

114

101

98

86
80

63

59

58

35

32

18

17

16

15

14

172

60

49

178

177

78

180

88

188

108

107

102

223

222
193

192

112

183

92

214

104

175

124

123

129

128

137

136

135

134
132

133

131

143

142

141

140

200

160

Figure 2 Affinity Subgraphs from the Cranfield collection

Figure 3 Flexible Strategy on the Cranfield collection: α = 0.02, 0.25, 0.5, 0.75 in (a), (b),

(c), (d), respectively

5. Related Work

The idea of exploiting the collaborative knowledge of users,

embodied as a set of search queries, is not new. Glance et

al. [5] introduced a software agent that collected queries from

previous users, constructed a query graph, and recommended

— 6 —

Figure 4 (a) Single-linkage and (b) Group-Average Strategy on the Cranfield collection

related queries. Query clustering is a less explored problem

than web page clustering, but it is a principle alternative for

query recommendation. Wen et al. [14] suggested that clus-

tering similar queries could provide effective assistance for

human editors in discovering new FAQs. Hansen et al. [6] dis-

tilled the search-related navigation information from proxy

logs for clustering queries. Traditional studies [6], [12], [14]

deemed that the similarity between two queries is determined

by the query or web page contents, the overlap of search re-

sult lists retrieved by a search engine or clicked search results

by searchers, and so on.

On the other hand, the query-URL relationship can be

represented by a bipartite graph as modelled in Section 3.1.

From a graph theoretical point of view, SimRank [7] mea-

sured the object-to-object relationship by scoring recursively

the similarity of their related objects. Sun et al. [13] em-

ployed random walk with restarts and graph partitioning to

solve two problems, neighborhood formation and anomaly

detection. Beeferman et al. [1] viewed the click through data

as a bipartite graph, and utilized an iterative, agglomerative

clustering algorithm to the vertices of this graph for cluster-

ing queries, and URLs respectively. Our problem is also close

to the co-clustering problem in a more general way [3], [4].

The above studies either select several members from a

cluster the query belongs to, or compute the query-to-query

similarities to return the queries with higher scores to a spe-

cific query. Though the latter is more reasonable that the

former, our algorithm is separated from them. Users are

able to dynamically manage the structure of HAC, and thus

find the latent neighbors of a query in terms of their current

information needs.

6. Conclusion

In this paper, latent neighbors of a query are defined

as queries between which and the target query there ex-

ists paths connecting them. We propose a user-controllable

scheme to solve the problem of finding such neighbors from

query-URL data set. It is realized by an algorithm that

has two major steps. Under the first phase, we extract a

set of query clusters from the given bipartite graph. Under

the second phase, a flexible HAC strategy plus single-linkage

and group-average clusterings are employed to each affinity

subgraph. Our results are very encouraging: many similar

queries without sharing any common terms and URLs have

been grouped. In addition, under the flexible strategy in

HAC, users are able to pick up different neighbors through a

parameter adjustment. This study demonstrates the useful-

ness of graph connectivity and the feasibility of our scheme

to help users optimally represent their information needs for

search engines.

Our work is still ongoing, and there is certainly room for

further improvement: 1) the interface of the query recom-

mendation should be visualized, pushing our work into ap-

plication stage; 2) a user study will be put into practice to

evaluate the performance of our scheme; 3) using large data

sets will further test the scalability and efficiency of our al-

gorithm.

Appendix

Proof. In [8] a strategy with the constraint (αi+αj+β >=

1 and γ=0) has monotonicity. For Group-average clustering,

the condition nk = ni + nj gives:

dhk =

qh∈nh

qk∈nk
d(qh,qk)

nhnk

=

qh∈nh

qi∈ni
d(qh,qi)+

qh∈nh

qj∈nj
d(qh,qj)

nh(ni+nj)

= nhni

nh(ni+nj)
× (

qh∈nh

qi∈ni
d(qh,qi)

nhni
)+

nhnj

nh(ni+nj)
(

qh∈nh

qj∈nj
d(qh,qj)

nhnj
)

= ni

ni+nj
dhi +

nj

ni+nj
dhj

= ni

ni+nj
dhi +

nj

ni+nj
dhj + 0dij + 0|dhi − dhj | ,

where

αi + αj + β =
ni

ni + nj

+
nj

ni + nj

+ 0 = 1 and γ = 0 ,

satisfies the constraint of monotonicity.

— 7 —

References

[1] D. Beeferman and A. L. Berger. Agglomerative clustering

of a search engine query log. In Proc. of the Sixth ACM

SIGKDD Int’l Conf. on Knowledge discovery and data min-

ing (KDD’00), pages 407–416, Boston, MA, USA, 2000.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.

Introduction to Algorithms. McGraw-Hill, 1990.

[3] I. S. Dhillon. Co-clustering documents and words using bi-

partite spectral graph partitioning. In Proc. of the Seventh

ACM SIGKDD Int’l Conf. on Knowledge Discovery and

Data Mining (KDD’01), pages 269–274, San Francisco, CA,

USA, 2001.

[4] I. S. Dhillon, S. Mallela, and D. S. Modha. Information-

theoretic co-clustering. In Proc. of the Ninth ACM

SIGKDD Int’l Conf. on Knowledge Discovery and Data

Mining (KDD’03), pages 89–98, Washington, DC, USA,

2003.

[5] N. S. Glance. Community search assistant. In Proc. of the

2001 Int’l Conf. on Intelligent User Interfaces (IUI’01),

pages 91–96, Santa Fe, NM, USA, 2001.

[6] M. Hansen and E. Shriver. Using navigation data to im-

prove IR functions in the context of web search. In Proc.

of the 2001 ACM CIKM Int’l Conf. on Information and

Knowledge Management (CIKM’01), pages 135–142, At-

lanta, Georgia, USA, 2001.

[7] G. Jeh and J. Widom. Simrank: a measure of structural-

context similarity. In Proc. of the Eighth ACM SIGKDD

Int’l Conf. on Knowledge Discovery and Data Mining

(KDD’02), pages 538–543, Edmonton, Alberta, Canada,

2002.

[8] G. N. Lance and W. T. Williams. A generalized sorting

strategy for computer classifications. Nature, 212:218, 1966.

[9] G. N. Lance and W. T. Williams. A general theory of clas-

sificatory sorting strategies: 1. hierarchical systems. The

Computer Journal, 9:373–380, 1967.

[10] L. Li, Z. Yang, B. Wang, and M. Kitsuregawa. Dynamic

adaptation strategies for long-term and short-term user pro-

file to personalize search. In Proc. of the joint Conf. of

the 9th Asia-Pacific Web Conf. and the 8th Int’l Conf. on

Web-Age Information Management, Huang Shan, China, to

appear, 2007.

[11] Lyman, Peter, and H. R. Varian. “How Much Informa-

tion?” Retrieved from http://www.sims.berkeley.edu/how-

much-info-2003 on 2006.

[12] S. Otsuka and M. Kitsuregawa. Clustering of search engine

keywords using access logs. In Proc. of Database and Ex-

pert Systems Applications, Int’l Conf. (DEXA’06), pages

842–852, Kraków, Poland, 2006.

[13] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. Neighbor-

hood formation and anomaly detection in bipartite graphs.

In Proc. of the 5th IEEE Int’l Conf. on Data Mining

(ICDM’05), pages 418–425, Houston, Texas, USA, 2005.

[14] J.-R. Wen, J.-Y. Nie, and H. Zhang. Clustering user queries

of a search engine. In Proc. of the Tenth Int’l World Wide

Web Conf. (WWW’01), pages 162–168, Hong Kong, China,

2001.

— 8 —

