
DEWS2003 2-B-01

Effective load-balancing of peer-to-peer systems

Anirban Mondal Kazuo Goda Masaru Kitsuregawa

Institute of Industrial Science
University of Tokyo, 4-6-1, Komaba, Meguro-ku,

Tokyo 153-8505, Japan
{anirban,kgoda,kitsure}@tkl.iis.u-tokyo.ac.jp

ABSTRACT
The growing popularity of peer-to-peer (P2P) systems has necessitated the need for managing huge volumes of data
efficiently to ensure acceptable user response times. Dynamically changing popularities of data items and skewed
user query patterns in P2P systems may cause some of the peers to become bottlenecks, thereby resulting in severe
load imbalance and consequently increased user response times. An effective load-balancing mechanism becomes a
necessity in such cases. Such load-balancing can be achieved by efficient online data migration/replication. While
much work has been done to harness the huge computing resources of P2P systems for high-performance computing
and scientific applications, issues concerning load-balancing with a view towards faster access to data for normal
users have not received adequate attention. Notably, the sheer size of P2P networks and the inherent dynamism of
the environment pose significant challenges to load-balancing. The main contributions of our proposal are three-fold.
First, we view a P2P system as comprising clusters of peers and present techniques for both intra-cluster and
inter-cluster load-balancing. Second, we analyze the trade-offs between the options of migration and replication and
formulate a strategy based on which the system decides at run-time which option to use. Third, we propose an
effective strategy aimed towards automatic self-evolving clusters of peers. Our performance evaluation demonstrates
that our proposed technique for inter-cluster load-balancing is indeed effective in improving the system performance
significantly. To our knowledge, this work is one of the earliest attempts at addressing load-balancing via both online
data migration and replication in P2P environments.

Keywords: Peer-to-peer systems, load-balancing, data migration, data replication.

1. INTRODUCTION
The emergence of larger, faster and more powerful com-
puter networks, which have the capability to connect
thousands of computers worldwide, has opened new as
well as exciting avenues for research in peer-to-peer (P2P)
computing. P2P systems [4, 5, 6] typically comprise a
tremendously large number of geographically distributed
and distributively owned computers and the objective of
such systems is to facilitate effective sharing of resources
across the entire P2P network.

While much work has been done to harness the huge
computing resources of P2P systems for high-performance
computing and scientific applications, issues concerning
load-balancing with a view towards faster access to data
for normal users have not received adequate attention.
Given the unprecedented growth of data in existing P2P
systems, efficient data management has become a ne-
cessity to provide acceptable response times to user re-
quests. Notably, a dependable1 and load-balanced P2P
system not only provides considerable savings in net-
work bandwidth, but also ensures that the benefit of
powerful networks extends well beyond e-commerce and

1By dependability, we mean high data availability.

scientific applications to individuals living in this world.
This is a revolution in itself and underlines the novelty
of a dependable P2P system.

In P2P systems, huge volumes of data are typically
declustered across a large number of peers. Incidentally,
since every user has the freedom to share any data with
other users, it is not possible to control the initial data
distribution. Moreover, given the inherent dynamism
of the P2P environment, no static data distribution can
be expected to guarantee good load-balancing. Chang-
ing popularities of various data items and skewed query
patterns may result in disparate number of disk accesses
at some of the hot peers, thereby causing severe load im-
balance throughout the system. The hot peers become
bottlenecks and this leads to increased user response
times, thus degrading system performance significantly.
Hence a load-balancing mechanism becomes a necessity
in such cases and such load-balancing can be achieved
by efficient online data migration/replication.

This paper proposes a dependable and load-balanced
P2P system. The main contributions of our proposal
are three-fold.

1. We view a P2P system as comprising clusters of

peers and present techniques for both intra-cluster
and inter-cluster load-balancing. Notably, load-
balancing facilitates reduced query response times.

2. We analyze the trade-offs between the options of
migration and replication and formulate a strat-
egy based on which the system decides at run-
time which option to use. Incidentally, analysis
of trade-offs between migration and replication is
expected to facilitate load-balancing.

3. We propose an effective strategy aimed towards
automatic self-evolving clusters of peers. This is
important since P2P environments are inherently
dynamic.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work, while Section 3 presents
an overview of our proposed system. The proposed
load-balancing strategy via migration/replication is pre-
sented in Section 4. Section 5 reports our performance
evaluation. Finally, we conclude in Section 6.

2. RELATED WORK
Existing P2P systems such as Pastry [8] and Chord [10]
emphasize specifically on query routing, while the work
in [3] proposes 3 types of routing indices (RIs), namely
compound RIs, hop-count RIs and exponential RIs to
facilitate search in P2P systems. In particular, peers
forward queries to their neighbours based on their own
RIs. As such these works do not specifically address
load-balancing.

Static load-balancing approaches [2] typically attempt
to perform an intelligent initial declustering of data.
Since static approaches are not adequate to deal with
dynamically changing user access patterns, several dy-
namic load-balancing techniques [1, 11, 12] have been
proposed. Notably, among these works, only the pro-
posals in [1, 11] focus specifically on scalability issues.
Incidentally, these works are not specifically aimed to-
wards P2P systems.

The proposal in [4] discusses the flocking mechanism
in the Condor system by means of which jobs submit-
ted in one Condor pool may access resources belong-
ing to another Condor pool. Gateway machines, one
in each pool, act as resource brokers between the two
pools and also coordinate job transfers. Note that the
approach in [4] uses job migration, while we use data
migration/replication. Moreover, a collaborative web
mirroring system (Backslash [9]), which is run by a set
of websites, has been proposed with a view towards en-
suring protection from flash crowds. Notably, the work
in [9] deals with load-balancing only in the context of
a static architecture. Moreover, the assumption in [9]
concerning global knowledge makes it inappropriate for
P2P systems.

3. SYSTEM OVERVIEW
This section discusses an overview of the proposed sys-
tem. At the very outset, we define distance between

two clusters as the communication time τ between the
cluster leaders and if τ is less than a pre-specified thresh-
old, the clusters are regarded as neighbours.(Since clus-
ter leaders will collaborate, their communication time
is critical.) Notably, most existing works define a peer’s
load as the number of requests directed at that peer, the
implicit assumption being that all requests are of equal
size, but this does not always hold good in practice. To
take varying request sizes into account, we define the
load of Pi, LPi , as follows.
LPi = Di × (CPUPi ÷ CPUTotal) where Di represents
the number of Megabytes retrieved 2 at peer Pi during a
given time interval Ti, CPUPi denotes the CPU power
of Pi and CPUTotal stands for the total CPU power of
the cluster in which Pi is located.

Proposed System Framework
In the interest of managing huge P2P systems effec-
tively, we view the system as comprising several clus-
ters, where peers are assigned to clusters such that the
clusters are mutually disjoint. In our proposed strategy,
every peer is assigned a unique identifier peer id and all
peers belonging to the same local area network (LAN)
are initially assigned to a single cluster. Every incom-
ing query is assigned a unique identifier Query id by the
peer Pi at which it arrives. Query id consists of peer id
and num (a distinct integer generated by Pi). Every
peer maintains its own access statistics i.e., the number
of disk accesses made for each of its data items only dur-
ing the last time interval. (Time is divided into equal
pre-defined intervals at design time.) This information
is used for detecting hotspots in a peer. Given the
inherent dynamism of P2P environments, a moment’s
thought shows that only the most recent access statis-
tics should be used to determine hotspots.

Each cluster is randomly assigned a leader. The job of
the cluster leaders is to coordinate the activities (e.g.,
load-balancing, searching) of the peers in their clusters.
Each cluster leader also maintains information concern-
ing the set of categories stored both in its own cluster
as well as in its neighbouring clusters. Category-related
update information is periodically exchanged between
neighbouring cluster leaders preferably by piggybacking
such information with other messages. This facilitates
effective pruning of the search space as it enables a clus-
ter leader to decide quickly whether its cluster members
contain the answer to a particular user query.

Any peer joining/leaving the system informs its respec-
tive cluster leader. In case a cluster leader itself decides
to leave the system, it chooses one of the lightly loaded
peers as the new cluster leader and sends a broadcast
message to all the cluster members informing them about
the new cluster leader. Moreover, it also transfers the
necessary cluster-related information to the new cluster
leader.

Incidentally, every peer typically needs to maintain some

2Notably, the number of Megabytes retrieved is a direct
quantification of disk I/O activity.

information (e.g., meta-data structures, node routing
tables) concerning their peers in order to facilitate fast
access to the data. We shall collectively refer to such
information as meta-information. In this regard, let us
now examine two possible design alternatives.

1. Significant meta-information maintenance:
The advantages of this approach are that the search
operation is expected to require less time and only
the peers containing the data items will be in-
volved in answering the query. However, a serious
drawback of this strategy is that the overhead re-
quired for keeping the meta-information updated
may become prohibitively high owing to the fol-
lowing reasons:

• A very large number of data items may be
added or updated or deleted within a very
short time interval.

• Nodes may enter or leave the system frequently,
thereby introducing significant amount of re-
dundancies to the meta-information or mak-
ing some of the meta-information obsolete.

• A data item may have been migrated or repli-
cated several times (possibly for load-balancing).

• The meta-information may become too large
to fit in the cache, thereby making disk ac-
cesses necessary.

2. Minimal meta-information maintenance: This
approach has the advantage of low overhead for
maintenance of meta-information, but the search
operation may require more time than in the for-
mer approach and peers not containing the queried
items may also become involved in the search.

Notably, it is important for P2P systems to be scalable
over time. The first approach is not scalable over time
since the meta-information keeps growing over time and
consequently, the maintenance overheads associated with
the meta-information also keep increasing. In contrast,
we expect the second approach to be extremely scalable
over time primarily owing to its low maintenance over-
heads. Hence we propose that each peer should only
maintain a minimal amount of meta-information. As
we shall see later, our proposed techniques only require
minimal amount of meta-information to be maintained
by each peer.

Automatic self-evolving clusters of peers
Peers may join or leave the system at any time, thereby
providing a strong motivation for an automatic self-
evolving strategy for peer clustering. Interestingly, the
number of peers in each cluster may differ significantly.
Consequently, some clusters may have very high num-
ber of peers, while some clusters may have very few
peers. Since a single peer may not be adequate to be
the leader of a huge cluster, we propose to split such
huge clusters. In such cases, the leader decides upon
the number N of clusters the current cluster should be

split into. The leader also selects N of the most lightly
loaded peers in the cluster as the respective leaders of
the new clusters and assigns peers to the new cluster
in a round-robin fashion, the objective being to ensure
that the new clusters have approximately equal number
of peers.

If a cluster Cs has very few peers, its leader sends mes-
sages to its neighbouring cluster leaders, asking for per-
mission to join those clusters. Cs’s neighbouring clus-
ter leaders make their decisions based on their current
number of peers and inform Cs’s leader about their de-
cisions. Cs’s leader compiles a list of the willing cluster
leaders and selects among them the cluster Cg that is
nearest to itself. In case there is more than one clus-
ter that is approximately the same distance from Cs’s
leader, the one with the least number of members is
selected. Cs’s members join Cg. Either Cg’s leader or
Cs’s leader becomes the leader of the combined clus-
ter, depending upon which cluster initially had a higher
number of peers. Any ties are resolved arbitrarily.

Efficient quality-oriented search with user
feedback
We define a peer as relevant to a query Q if it contains at
least a non-empty subset of the answers to Q. Moreover,
we define a cluster as being active with respect to Q if
at least one of its members is still processing Q.

Whenever a query Q arrives at a peer Pi, Q is assigned
one or more categories by Pi and Pi becomes the ini-
tiator of Q. Moreover, Pi keeps track of the leaders of
those clusters that are active with respect to Q. If Pi

is not relevant to Q, it sends Q to its cluster leader Ci.
If Ci determines from its category-related information
that Q is not relevant to any of its cluster members, it
forwards Q to members of set ξ. (Set ξ comprises only
those neighbouring cluster leaders of Ci whose members
store at least one of the categories associated with Q.
In case none of the neighbouring clusters have at least
one of Q’s categories, set ξ will consist of all the neigh-
bouring cluster leaders of Ci.) These cluster leaders, in
turn, will try to answer Q via their cluster members and
if their cluster members are not relevant to Q, the same
process continues.

We specifically note that when any of the peers returns
results to the user, the search terminates only if the user
indicates that he/she is satisfied with the results, oth-
erwise the search continues. If the user is satisfied with
the results, Pi sends a message concerning termination
of Q to those cluster leaders that are active with respect
to Q and the active cluster leaders, in turn, broadcast
the message in their respective clusters to ensure the ter-
mination of Q. Interestingly, our proposed search algo-
rithm is quality-oriented. However, to prevent malicious
users from degrading system performance, a time-out
mechanism is used such that the query initiator will au-
tomatically send a message for termination of the query
after time tmax has elapsed, the value of tmax being de-
cided at design time. For our experiments, we have set

tmax to a large value of 1 hour primarily because se-
curity is not our primary focus in this paper. Figure 1
depicts the search algorithm, while Figure 2 shows how
user satisfaction is guaranteed.

Algorithm P2Psearch()
/* Q comes to one of the peers, say Pi */
if Pi is relevant to Q

Pi returns the results to the user
wait for user ()
if terminate message received then end

else
Pi sends Q to its cluster leader Ci

Ci decides the set of possible categories, χ, for Q
if Ci is relevant to Q

Ci propagates the results to the user
wait for user ()
if terminate message received then end

else
Ci broadcasts Q and χ to its cluster members
if any of the peers is relevant to Q

for each relevant peer
the results are propagated to the user
wait for user ()
if terminate message received then end

else
while (1)

Q and χ are sent to a set ξ of cluster leaders
Each member of ξ sends inform message to Pi

ξ’s members broadcast Q in their clusters
if any of the peers is relevant

for each relevant peer
the results are propagated to the user
wait for user ()
if terminate message received then break

endwhile
end

Figure 1: Search Algorithm

Algorithm wait for user ()
The results of query Q are received by the user
if user is satisfied with the results

user sends terminate message to the leaders of
active cluster leaders

end
Figure 2: Algorithm executed by user to ensure
the quality of search results

4. LOAD-BALANCING
This section discusses intra-cluster and inter-cluster load-
balancing via migration and replication of data. While
intra-cluster load-balancing refers to balancing the loads
within a particular cluster, inter-cluster load-balancing
attempts to ensure load-balancing among the clusters
i.e., to achieve load-balancing across the system as a
whole.

Migration vs Replication
Load-balancing can be achieved by transferring hot data
from heavily loaded peers to lightly loaded peers via
data migration or data replication. Note that unlike

replication, migration implies that once hot data have
been transferred to a destination peer, they will be deleted
at the source peer. Now let us study the trade-offs be-
tween migration and replication.

If replication is used, in spite of several replicas of a
specific data item Di, a specific replica may keep get-
ting accessed a disproportionately large number of times
because the search is completely decentralized, thereby
providing no absolute guarantee of load-balancing3. On
the other hand, replication increases data availability al-
beit at the cost of disk space. Hence, a periodic ‘cleanup’
of the replicas becomes necessary since the hot data yes-
terday may be cold today, thereby implying that the
replicas are no longer needed. Moreover, issues regard-
ing the replication of large data items need to be ex-
amined. In essence, our aim is to ensure that repli-
cation performed for short-term benefit does not cause
long-term degradation in system performance by caus-
ing undesirable wastage of valuable disk space at the
peers.

If migration is used, reasonable amount of load-balancing
can be guaranteed, but data availability may decrease
as the peer to which data have been migrated may leave
the system. Moreover, assuming data item D1 is being
accessed frequently at peer P1, it may be migrated to
another peer P2. The implication is that every query
for D1 at P1 will have to incur extra overhead (more
response time) in accessing the data from P2. More-
over, migration necessitates the maintenance of cache-
consistency. Assume some data item D1 is migrated
from peer P1 to peer P2. Since D1 was a hot data item,
P1’s cache may still be containing a copy of D1. So,
queries for D1 at P1 may be answered efficiently from
P1’s cache without D1 being actually present in P1’s
disk. However, any updates to D1 at P2’s disk will not
be propagated to P1’s cache.

Interestingly, sensitive data (e.g., financial data, credit
card numbers) are hardly ever shared in P2P systems.
Users typically share non-sensitive data (e.g., mp3s, video
files) and whether such files are obsolete or recent often
does not matter to the user. Hence, the question arises:
how important is it to maintain replica-consistency or
cache-consistency regularly? Also, variation in avail-
able disk space among peers has implications for migra-
tion/replication.

Run-time decision-making
For both intra-cluster and inter-cluster load-balancing,
we propose that the run-time decision concerning mi-
gration/replication should be made as follows. Every
cluster leader monitors its peers’ availability over a pe-
riod of time. If the probability of a peer P1 leaving the
system is very low, hot data should be migrated to P1,
otherwise hot data should be replicated for availabil-
ity reasons. Note that migration/replication will only

3If the same query is issued from different peers, ran-
domness may guarantee a certain amount of load-
balancing.

be done subject to disk space constraints at the desti-
nation peer. Moreover, large data items shall only be
replicated (if necessary) at peers whose disk capacities
are much larger than that of the size of the large data
items.

Incidentally, available disk space may vary significantly
among peers. We adopt the following strategy.

• ‘Pushing’ non-hot data (via migration for large-
sized data and via replication for small-sized data)
to large capacity peers as much as possible.

• Replicating small-sized hot data at small capacity
peers (smaller search space expedites search oper-
ations).

• Large-sized hot data are migrated to large capac-
ity peers only if such peers have low probability of
leaving the system, otherwise they are replicated
at large capacity peers, an upperlimit being placed
on the number of replicas to save disk space.

In case of replication, each peer Pi keeps track of the
set D of data items replicated at itself. Periodically, Pi

checks the number of accesses Nk for the last time in-
terval on each item in D to ascertain which items are
still hot. Those items, for which Nk falls below a pre-
specified threshold, are deleted since those items may
not be hot anymore, thereby eliminating the need for
their replication. Note that the primary copy of these
replicas still remain at the peer which initiated the repli-
cation, thereby implying that the original data item is
not deleted. Periodic deletion of replicas results in more
available disk space and is important for providing sys-
tem scalability over time.

In contrast, for migration, peers do not distinguish be-
tween migrated data Dm that they contain and their
own data. Consequently, even if the number of accesses
to Dm is low, Dm will not be deleted since it does not
result in wastage of disk space. Moreover, since usually
non-sensitive data are shared in P2P systems, we pro-
pose that lazy replica updates (if necessary at all) via
piggybacking with other messages should be performed.
Notably, even after a data item has been migrated away
from a peer Pi, it may still remain in Pi’s cache. We
believe that no harm is practically done if the user re-
trieves obsolete non-sensitive data from a peer’s cache.
Hence, while migrating data, we do not specifically en-
force consistency between cache and disk, thereby min-
imizing cache-consistency maintenance overheads.

Intra-cluster load-balancing
In case of intra-cluster load-balancing, decisions con-
cerning when to trigger the load-balancing mechanism,
hotspot detection and the amount of data to be mi-
grated or replicated are critical to system performance.
We shall now analyze two possible approaches towards
such decision-making.

1. Centralized Decision-making: In this approach,
each peer periodically sends its workload statistics
to its cluster leader. Load-balancing is initiated
when the cluster leader detects a load imbalance
in the cluster.

2. Distributed Decision-making: Each peer checks
the loads in its neighbouring peers to determine
whether it is overloaded. In case it is overloaded,
it initiates load-balancing. A variant of the dis-
tributed approach is to divide the set of peers into
clusters such that each peer knows only about the
workload statistics of the peers in its own cluster.

A major drawback of the distributed approach is that
unlike the centralized approach, it does not take into ac-
count the workload statistics of the whole system, while
initiating load-balancing. Hence, it may result in some
unnecessary and unproductive migrations/replications
and this is clearly undesirable. However, in the dis-
tributed approach and its variants, if a peer wishes to
make the load-balancing decision based upon the cur-
rent loads of all the other peers, it has to acquire knowl-
edge about the current workload statistics of all the
other peers and this is clearly undesirable since it re-
sults in significant communication overhead. Keeping
these points in mind, we adopt a centralized approach
towards intra-cluster decision-making.

Intra-cluster load-balancing has been well researched in
the traditional domain [2, 7, 12], but for P2P systems,
we should also take into account varying available disk
capacities of peers. Our strategy is as follows. The
cluster leader (say Ci) periodically receives information
concerning loads Li and available disk space Di of the
peers and initially creates a list List by sorting the peers
based only on Li such that the first element of List is
the most heavily loaded peer. Assume there are n el-
ements in List. Among the last �n/2� peers in List,
the peers whose respective values of Di are less than
a pre-specified threshold are deleted from List. Then
load-balancing is performed by migrating or replicating
hot data from the first peer in List to the last peer, the
second peer to the second-last peer and so on. Data
are only moved (migrated or replicated) if the load dif-
ference between the peers under consideration exceed a
pre-specified threshold.

Observe that Ci checks for load imbalance only at peri-
odic time intervals and not whenever any peer joins or
leaves the system. Any load imbalance caused by some
peers joining/leaving the system will be corrected by Ci

only at the next periodic time interval. Since peers may
join/leave the system frequently, we believe that per-
forming load-balancing every time a peer joins/leaves
will result in undesirable thrashing conditions. (Thrash-
ing implies that peers spend more time on load-balancing
than for doing useful work.)

Inter-cluster load-balancing
To prevent load imbalance among clusters, inter-cluster
load-balancing becomes a necessity. We propose that

such load-balancing should be performed only between
neighbouring clusters by means of collaboration between
the cluster leaders, the reason being that moving data
to distant clusters may incur too high a communication
overhead to justify the movement.

Cluster leaders periodically exchange load information
only with their neighbouring cluster leaders. If a cluster
leader α detects that its load exceeds the average loads
of the set β of its neighbouring cluster leaders by more
than 10% of the average load, it first ascertains the hot
data items that should be moved and sends a message
concerning each hot data item’s space requirement to
each cluster leader in β in order to offload some part of
its load to them. The leaders in β check the available
disk space in each of their cluster members and if their
disk space constraint is satisfied, they send a message
to α informing it about their total loads and their total
available disk space. α sorts the willing leaders of β in
List1 such that the first element of List1 is the least
loaded leader.

Assume the hot data items are numbered as h1, h2, h3,h4...
(h1 is the hottest element). Let the number of willing
peers in β and the number of hot data items be denoted
by b and h respectively. If b < h, h1 is assigned to the
first element in List1, h2 is assigned to the second ele-
ment and so on in a round-robin fashion till all the hot
items have been assigned. If b ≥ h, the assignment of
hot data to elements of List1 is done similarly, but in
this case some elements of List1 will not receive any hot
data. We shall subsequently refer to this technique as
L assign.

After the hot data arrives at the destination cluster’s
leader, the leader creates a sorted list List2 (in ascend-
ing order according to load) of its peers and assigns the
hot data to elements of List2 using the L assign algo-
rithm.

5. PERFORMANCE STUDY
This section reports the performance evaluation of our
proposed techniques. Note that we consider perfor-
mance issues associated only with inter-cluster load-
balancing since a significant body of research work per-
taining to efficient intra-cluster load-balancing algorithms
already exists. We specifically study the performance
of our proposed scheme with variations in the work-
load skew. For the sake of convenience, we shall hence-
forth refer to our proposed scheme of performing load-
balancing via migration/replication of data as LBMR
(load-balancing via migration/replication) and the pol-
icy of not performing any load-balancing as NLB (no
load-balancing).

5.1 Experimental setup
Our test environment comprises a set of PCs, each of
which is a 800 MHz Pentium-III processor running the
Solaris 8 operating system. Each PC has 128 MB of
main memory and total disk space of 18 GB. We have
used 4 PCs for our performance study.

Each cluster is modeled by a PC in our experiments
and the decision-making associated with a given cluster
is simulated as being performed by the cluster leader of
the given cluster. A moment’s thought indicates that
for our experiments, each cluster leader is representa-
tive of its entire cluster. The implication is that there
are 4 neighbouring clusters among which we attempt to
provide inter-cluster load-balancing. Note that this is
in accordance with our objective of focussing mainly on
inter-cluster load-balancing. Additionally, we simulated
a transfer rate of 1 MB/second among the respective
clusters.

Owing to space constraint arising from other users us-
ing the system, we were able to use only 10 GB4 of
disk space in each PC for the purpose of our experi-
ments. Moreover, owing to such constraints associated
with available disk space, the decision-making step in
our algorithm concerning the possible options of migra-
tion and replication always chose migration. Hence, our
experimental results primarily reflect the improvements
in system performance owing to migration only. How-
ever, in the near future, we also intend to study the im-
pact of replication since we expect that replication can
facilitate further improvement in system performance.

For our experiments, we have used real mp3s with the
objective of ensuring that our experiments are in con-
sonance with real-life scenarios as far as possible. We
used the Kazaa P2P application software for download-
ing the real mp3s.5 The Kazaa application software can
be downloaded from http://www.kazaa.com. The sizes
of the respective mp3s used in our experiments ranged
from 1.8 MB to 3.5 MB. In all of our experiments, the
system checks the load situation periodically.

In order to model skewed workloads, we have used the
well-known Zipf distribution to decide the number of
queries to be directed to each cluster. Note that this
is only an approximate manner of generating skewed
workloads since the actual load imposed on a peer de-
pends not only upon the number of queries directed to
the peer, but also on the individual sizes of the respec-
tive queries. We modified the value of the zipf factor
to obtain variations in workload skew. A value of 0.1
for the zipf factor implies a heavily skewed workload,
while a value of 0.9 indicates extremely low skew in the
workload.

5.2 Performance of our proposed scheme
Now let us investigate the effectiveness of our proposed
scheme in improving the system performance. For this
purpose, an experiment was performed using 50000 queries,
each query being a request for one of the real mp3 files
that we had earlier downloaded. A Zipf distribution
was used over 4 buckets to decide the number of queries
that were to be directed to each of the 4 clusters, the

4Each PC stored approximately 10 GB of mp3 files.
5To the best of our knowledge, none of the real mp3s,
which we had downloaded, violates any existing copy-
right laws.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 500 1000 1500 2000 2500

El
ap

se
d

tim
e

[s
ec

]

Intervals

NLB
LBMR

(a) Time Line

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500

IO
 tr

an
sf

er
 [M

B]

Intervals

NLB
LBMR

(b) Throughput of ‘hot’ node

Figure 3: Performance of our proposed scheme

value of the zipf factor being set at 0.1, which indicates
a highly skewed workload. Figures 3 and 4 depict the
experimental results.

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4

IO
 T

ra
ns

fe
r [

M
B×

10
3]

Cluster

NLB
LBMR

Figure 4: Load-balancing

Figure 3a displays a time line indicating the progress of
the queries over time by presenting the wall-clock exe-
cution times of queries as a function of the time inter-
vals during which the queries were executed. Figure 3b
presents the throughput of the hot node as a function
of the time intervals pertaining to the query executions.
From Figure 3, we observe that initially during certain
intervals, the performance of LBMR is worse than that
of NLB. This slight degradation in performance occurs
owing to migration-related disturbances. However, once
the migration has been completed, LBMR significantly
outperforms NLB. This is possible because of the im-
provement in the throughput of the hot node as demon-
strated by Figure 3b. Since for parallel systems, re-
sponse time of user queries is dictated by the hot node,
such improvements in throughput of the the hot node
is extremely desirable. Notably, such improvement in
throughput is made possible due to the reduction in the
load of the hot node as a result of the effective load-
balancing provided by LBMR.

Figure 4 manifests the load-balancing capabilities of
LBMR by indicating the respective loads at the 4 clus-
ters during the entire time interval when the experiment
was conducted. Just to recapitulate, we have used the
number of Megabytes retrieved as a measure of load.
Figure 4 indicates that LBMR is capable of distribut-

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 0.1 0.5 0.9 1

Ex
ec

ut
io

n
tim

e
[s

ec
]

Zipf factor

NLB
LBMR

Figure 5: Variation in workload skew

ing the load more evenly than NLB (especially, reducing
the loads of the hot cluster, namely, cluster 1). In sum-
mary, LBMR is effective in correcting the degradation in
system performance owing to the overloading of certain
clusters by a skewed query distribution.

5.3 Variations in Workload Skew
Now we shall examine the performance of LBMR for
varying skews in the workload. For this purpose, we
distributed a set of 50000 queries (each query is a re-
quest for an mp3 file) into 4 buckets (corresponding to
4 clusters) using zipf factors of 0.5 and 0.9 to model
medium-skewed workload and low-skewed workload re-
spectively.

Figure 5 depicts the wall-clock completion time of all
the queries when the zipf factor was varied. Interest-
ingly, the gain in execution time is significantly more in
the case of highly skewed workloads. This gain keeps
diminishing as the query skew diminishes, till at some
point, there is no significant gain at all. This occurs be-
cause as the workload skew decreases, the need for load-
balancing also reduces owing to the query pattern itself
contributing to load-balancing. Note that at a value
of 0.9 for the zipf factor, there is no significant differ-
ence in performance between LBMR and NLB since the
workload in this case was too lowly skewed to necessi-
tate migrations. Incidentally, LBMR performs slightly
worse than NLB for lowly skewed workloads primarily
owing to overheads incurred in making the decision that

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4

IO
 T

ra
ns

fe
r [

M
B×

10
3]

Cluster

NLB
LBMR

(a) Zipf factor=0.5

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4

IO
 T

ra
ns

fe
r [

M
B×

10
3]

Cluster

NLB
LBMR

(b) Zipf factor=0.9

Figure 6: Load-balancing for medium and lowly skewed workloads

the skew is too low to necessitate migrations. However,
we believe this is a small price to pay as compared to
the big gain achieved by LBMR in the case of highly
skewed workloads.

Figure 6 manifests the load-balancing capabilities of
LBMR in case of medium and lowly skewed workloads.
Figure 6a demonstrates that LBMR performs reason-
ably well for medium-skewed workloads, especially in
reducing the load of the hot cluster. From Figure 6b,
we observe that the performance of LBMR and NLB is
comparable since no migrations were performed.

The performance study indicates that LBMR provides
significant improvement in system performance for heav-
ily skewed workloads. In case of medium-skewed work-
loads, LBMR remains effective, while for lowly skewed
workloads, the load-balancing performed by LBMR is
not worse than that of NLB. In essence, LBMR is sensi-
tive to changing workload distributions and adapts very
well indeed.

6. CONCLUSION
The sheer size of P2P systems and the dynamic environ-
ments in which they are deployed makes efficient data
management in such systems a challenging problem.
Dynamically changing popularities of data items and
skewed user query patterns necessitate a load-balancing
mechanism to facilitate reduced response times for user
queries. In order to make huge P2P systems manage-
able, we have viewed a P2P system as comprising clus-
ters of peers and addressed both intra-cluster and inter-
cluster load-balancing via migration and replication. More-
over, we have also proposed a technique for automatic
clustering of peers. To our knowledge, this work is one
of the earliest attempts at addressing load-balancing via
both online data migration and replication in P2P en-
vironments.

To this end, we believe that our contributions have ad-
dressed some of the relevant issues associated with load-
balancing in P2P systems. In the near future, we wish to
extend this work by performing a detailed performance
evaluation with the objective of identifying possible av-
enues for improving our proposed LBMR scheme.

7. REFERENCES
[1] Y. Breitbart, R. Vingralek, and G. Weikum. Load

control in scalable distributed file structures.
Distributed and Parallel Databases, 4(4):319–354,
1996.

[2] G. Copeland, W. Alexander, E. Boughter, and
T. Keller. Data placement in Bubba. SIGMOD
Record ACM, 17(3):99–108, 1988.

[3] A. Crespo and H. G. Molina. Routing indices for
Peer-to-peer systems. Proc. ICDCS, 2002.

[4] D. H. J Epema, M. Livny, R. V. Dantzig,
X. Evers, and J. Pruyne. A worldwide flock of
Condors : Load sharing among workstation
clusters. Journal on Future Generations of
Computer Systems, 12, 1996.

[5] Gnutella. http://www.gnutella.com/.

[6] Kazaa. http://www.kazaa.com/.

[7] A. Mondal, M. Kitsuregawa, B.C. Ooi, and K.L.
Tan. R-tree-based data migration and self-tuning
strategies in shared-nothing spatial databases.
Proc. ACM GIS, 2001.

[8] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location and routing for
large-scale peer-to-peer systems. Proc.
IFIP/ACM, 2001.

[9] T. Stading, P. Maniatis, and M. Baker. Peer-to
peer caching schemes to address flash crowds.
Proc. IPTPS, 2002.

[10] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet
applications. Proc. ACM SIGCOMM, 2001.

[11] R. Vingralek, Y. Breitbart, and G. Weikum.
SNOWBALL: Scalable storage on networks of
workstations with balanced load. Distributed and
Parallel Databases, pages 117–156, 1998.

[12] Gerhard Weikum, Peter Zabback, and Peter
Scheuermann. Dynamic file allocation in disk
arrays. In Proc. ACM SIGMOD, pages 406–415,
1991.

