
Effective Load-balancing via Migration and

Replication in Spatial Grids

Anirban Mondal Kazuo Goda Masaru Kitsuregawa

Institute of Industrial Science
University of Tokyo, Japan

{anirban,kgoda,kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract. The unprecedented growth as well as the growing importance of available
spatial data at geographically distributed locations has made efficient networking of such
data a necessity for availability reasons. The emergence of grid computing coupled with
large and powerful computer networks, which have the capability to connect thousands
of geographically distributed computers worldwide, has opened a world of opportuni-
ties for such networking. This provides a strong motivation for designing a spatial grid
which supports fast data retrieval and allows its users to transparently access data of
any location from anywhere. However, several challenging issues need to be addressed
for the spatial grid to work efficiently in practice. In particular, mechanisms for efficient
search and effective load-balancing need to be in place. This paper focusses on dynamic
load-balancing in spatial grids via data migration/replication to prevent degradation in
system performance owing to severe load imbalance among the nodes. Notably, issues
concerning load-balancing are more complex in case of grids than for traditional do-
mains primarily because a grid usually spans across multiple administrative domains.
The main contributions of our proposal are as follows. First, we view a spatial grid as
comprising several clusters where each cluster is a local area network (LAN) and pro-
pose a novel inter-cluster load-balancing algorithm which uses migration/replication of
data. Second, we present a novel scalable technique for dynamic data placement that
not only improves data availability but also minimizes disruptions and downtime to the
system. Our performance study demonstrates the effectiveness of our proposed approach
in correcting workload skews, thereby facilitating improvement in system performance.
To our knowledge, this work is one of the earliest attempts at addressing load-balancing
via both online data migration and replication in grid environments.

1 Introduction

Spatial data occurs in several important and diverse applications associated with resource man-
agement, development planning, emergency planning and scientific research. Analysis of spatial
data facilitates risk management for insurance companies, helps real estate managers to locate
vacancies, enables policemen to understand crime patterns based on regions, makes it feasi-
ble for corporate organizations to develop insightful marketing strategies, capacitates effective
traffic planning and allows for better understanding of the Earth system as well as its pro-
cesses. Given the unprecedented growth as well as the growing importance of available spatial
data at geographically distributed locations and the tremendous increase in globalization, the
need for efficient networking of such data with a view towards increased data availability has
never been greater. Interestingly, the emergence of grid computing[6] coupled with large and
powerful computer networks, which have the capability to connect thousands of geographically
distributed computers worldwide, has opened a world of opportunities for such networking.
Grid computing relates to the massive integration and virtualization of geographically dis-
tributed computing resources, thereby enabling a grid user to see a unified image of a single
powerful virtual computer. Notably, grid computing has been becoming increasingly important
in recent years as a means of providing a feasible alternative to traditional supercomputing
environments.



Scientific applications that require virtual collaboration across the globe would also benefit
tremendously by deploying grids. For example, if Earth scientists could have better access
to data at geographical locations that are thousands of kilometres away from their current
location, their ability to compare and contrast data from distant locations would facilitate
optimal exploitation of the Earth’s resources. Given the current state-of-the-art, if a scientist
Mr. X at Finland is interested in spatial information concerning Tokyo, he would have to first
establish contact with his counterpart in Tokyo, after which he would probably be able to access
the data. However, we believe it would have been much better if Mr. X could just log in to a
system and access the relevant data concerning Tokyo. This provides a strong motivation for
designing a spatial grid which provides acceptable response times for user queries and allows its
users to access data of any location from anywhere without having to bother about the details
of the procedures that mediate his access to the data.

However, several challenging issues need to be addressed for the spatial grid to work effi-
ciently in practice. In particular, mechanisms for efficient search and effective load-balancing
need to be in place. This paper focusses on dynamic load-balancing in spatial grids via data
migration/replication to prevent degradation in system performance owing to severe load imbal-
ance among the nodes. Online load-balancing strategies are preferable for availability reasons.
Incidentally, issues concerning load-balancing are more complex in case of grids than for tradi-
tional domains primarily because a grid usually spans across several administrative domains.
The implication is that the data at each administrative domain are likely to be managed by dif-
ferent administrators, thereby possibly signifying different administrative policies for indexing,
load-balancing and detection of hotspots at different domains, thus exacerbating the problems
associated with load-balancing.

The main contributions of our proposal are as follows.

– We view a spatial grid as comprising several clusters where each cluster is a local area
network (LAN) and propose a novel inter-cluster load-balancing algorithm which uses mi-
gration/replication of data.

– We present a novel scalable technique for dynamic data placement that not only improves
data availability but also minimizes disruptions and downtime to the system.

Our performance study demonstrates the effectiveness of our proposed approach in correcting
workload skews, thereby facilitating improvement in system performance. To our knowledge,
this work is one of the earliest attempts at addressing load-balancing via both online data
migration and replication in grid environments. The remainder of this paper is organized as
follows. Section 2 provides a brief overview of related work, while Section 3 presents an overview
of our proposed system framework. The search mechanism is briefly discussed in Section 4 and
issues concerning data movement are presented in Section 5. The proposed load-balancing
strategy is presented in Section 6, while Section 7 reports our performance evaluation. Finally,
we conclude in Section 8.

2 Related Work

Representative examples of important ongoing grid computing projects include the Earth Sys-
tems Grid (ESG)[7], the NASA Information Power Grid (IPG)[10], the Grid Physics Network
(GriPhyN)[14] and the European DataGrid[3]. While the ESG project aims at facilitating de-
tailed analysis of huge amounts of climate data by a geographically distributed community via
high bandwidth networks, the IPG project attempts to improve existing systems in NASA for
solving complex scientific problems efficiently. The GriPhyN project and the European Data-
Grid project both aim at employing grid systems for improving scientific research which require
efficient distributed handling of data in the petabyte range.

Existing works [2, 18] have noted the demanding I/O needs of grid applications. While the
proposal in [2] discusses the design of a data grid for data-intensive petabyte applications, the



work in [18] proposes the binding of execution and storage sites together into I/O communities
that participate in the wide area system. The proposal in [17] describes a data-movement system
(Kangaroo) which makes opportunistic use of resources (disks and networks), while hiding
network storage devices behind memory and disk buffers such that background processes handle
data movements. It aims at availability and reliability by sacrificing consistency guarantees.

Static load-balancing approaches [1, 11] typically attempt to perform an intelligent ini-
tial declustering of data. Incidentally, the tile technique [13] is a commonly used declustering
method for performing static load-balancing of spatial data. It works as follows. Assuming
that there are P nodes in the system, the universe is first decomposed into P partitions and
each of these P partitions is assigned to a different node. Then the universe is divided into T
rectangular tiles of equal size such that T ≥ P and each tile is mapped to a partition using a
hash function. Note that disjoint regions may be assigned to the same node.

However, dynamically changing user access patterns in grids implies that no single static
initial data placement can guarantee good load-balancing for different kinds of access patterns,
thereby necessitating dynamic approaches. Several dynamic load-balancing techniques [12, 16,
19], which adaptively balance the system load across the nodes during runtime, have been
proposed. However, none of these works are adequate for load-balancing in heterogeneous grid
environments since they do not take into account grid-specific issues such as heterogeneity.
A notable exception to these works is the Condor system [5] which uses job (process) migra-
tion for load-balancing purposes via a ‘flocking’ mechanism in which multiple Condor clusters
worldwide collaborate in load-sharing activities. However, process migration necessitates over-
heads (e.g., saving the status of a process) and can be expected to be extremely challenging,
especially when the movement happens to be across different operating systems, which is often
the case for grid environments. Note that our strategy differs from that of Condor since we
load-balance via data migration/replication as opposed to job (process) migration.

3 System Overview

This section discusses an overview of the proposed system. In the interest of amenability, we
envisage the spatial grid as comprising several clusters, where each cluster is a LAN. (Nodes are
assigned to clusters such that the clusters are mutually disjoint.) This facilitates the separation
of concerns between intra-cluster and inter-cluster load-balancing issues. Since intra-cluster
load-balancing [12, 19] has been well researched in the traditional domain, limitations in existing
works (from the grid perspective) are mostly in the realm of inter-cluster load-balancing. Hence,
we shall specifically focus on inter-cluster load-balancing.

At the very outset, we define distance between two clusters as the communication time
τ between the cluster leaders and if τ is less than a pre-specified threshold, the clusters are
regarded as neighbours. (Since cluster leaders will collaborate, their communication time is
critical.) Also, we define a node Pi as relevant to a query Q if it contains at least a non-empty
subset of the answers to Q, otherwise Pi is regarded as irrelevant w.r.t. Q. Additionally, we
define a cluster as being active with respect to Q if at least one of its members is still processing
Q. Moreover, we shall subsequently refer to migration/replication of data collectively as data
movement and the migrated/replicated data shall be designated as moved data. Notably, unlike
replication, migration implies that once hot data have been transferred to a destination node,
they will be deleted at the source node.

Most existing works define a node’s load as the number of requests directed to that node,
the implicit assumption being that all requests are of equal size, but this does not always hold
good in practice. To take varying request sizes as well as the variations in processing capacity
of different nodes into account, we define the load of node Pi, LPi , as follows.

LPi = Di × (CPUPi ÷ CPUTotal) (1)

Here, Di represents the number of disk I/Os at node Pi during a given time interval Ti, CPUPi

denotes the CPU power of Pi and CPUTotal stands for the total CPU power of the cluster



in which Pi is located. Also, we define the load of a cluster LCluster as
∑

LPi i.e, the sum of
the loads of its individual members. Our definition of load is in consonance with the inherent
heterogeneity of grid environments where nodes are likely to be typically heterogeneous in
terms of processing power and available disk space.

In our proposed strategy, each node in the grid is assigned a unique identifer node id and
every incoming query is assigned a unique identifier Query id by the node Pi at which it
arrives. Query id consists of node id and num (a distinct integer generated by Pi). Every node
keeps track of the Query ids that it has recently processed in order to ascertain whether it has
already processed a specific query before. Additionally, every node maintains its own access
statistics i.e., the number of disk accesses made for each of its data regions only during the
recent time intervals for hotspot detection purposes. (Time is divided into equal pre-defined
intervals at design time.) Notably, we use only recent access statistics to detect hotspots. We
leave issues concerning the optimal granularity at which statistics concerning data regions
should be maintained to further study.

Each cluster is randomly assigned a leader. The job of the cluster leaders is to coordinate
the activities (e.g., load-balancing, searching) of the nodes in their clusters. Each node keeps
track of the regions that it indexes and we shall refer to such information concerning data
regions as region-based information. A node may store data from multiple and disjoint1 regions
in space. Additionally, each cluster leader maintains region-based information concerning the
data stored both in its own cluster as well as in its neighbouring clusters. This facilitates
effective pruning of the search space as it enables a cluster leader to decide quickly whether
its cluster members contain the answer to a particular user query. Updates to region-based
information are periodically exchanged between neighbouring cluster leaders preferably via
piggybacking onto other messages.

4 Search mechanism for spatial grids

The sheer size of a grid and the huge volumes of data that it typically stores make scalability
a major issue from the grid perspective. A moment’s thought indicates that a centralized
approach to searching cannot be expected to be scalable enough for grid environments. Hence,
we propose a scalable distributed approach to searching in grids.

Whenever a query Q arrives at a node Pi, Pi becomes the initiator of Q. Moreover, Pi keeps
track of the leaders of those clusters that are active with respect to Q. If Pi is not relevant
to Q, it sends Q to its cluster leader Ci. If Ci determines from its region-based information
that Q is not relevant to any of its cluster members, it forwards Q to members of set ξ. Set ξ
comprises only those neighbouring cluster leaders of Ci whose members store at least one of the
regions associated with Q. In case none of the neighbouring clusters have any of Q’s regions,
set ξ will consist of all the neighbouring cluster leaders of Ci. These cluster leaders, in turn,
will try to answer Q via their cluster members and if their cluster members are not relevant to
Q, the same process continues.

Once the initiator node Pi of a query Q has received the results of Q, Pi sends a message
concerning termination of Q to those cluster leaders that are active with respect to Q and the
active cluster leaders, in turn, broadcast the message in their respective clusters to ensure the
termination of Q. However, in case of communication link failure, the termination message may
not reach some nodes which will continue the processing of a query needlessly. To prevent such
wastage of computing power, we adopt a time-out mechanism such that any query executing at
a specific node for more than Tmax

2 units of time should be timed-out. Interestingly, this also
helps to a certain extent in preventing malicious users from degrading system performance by
sending out arbitrary queries.

1 This is similar to existing work [12].
2 The value of Tmax is application-dependent and is decided at design time.



5 Data movement in grids

This section discusses issues concerning data movement in grids. Since intra-cluster data move-
ments have been well researched, any existing approach [12, 19] may be adopted. For our pur-
poses, we adopt the approach that we had proposed in [12]. Hence, in this paper, we deal
primarily with inter-cluster data movements in grids.

Migration vs Replication

Now let us study the trade-offs between migration and replication. If replication is used, in
spite of the existence of several replicas of a specific data item Di, a specific replica may keep
getting accessed a disproportionately large number of times because the search is completely
decentralized, thereby providing no absolute guarantee of load-balancing3. However, replication
increases data availability albeit at the cost of disk space. In contrast, migration ensures reason-
able amount of load-balancing and prevents wastage in disk space albeit at the cost of possible
decreased data availability since the node to which data have been migrated may encounter
failure (e.g., communication link failure, machine failure). For predicting the availability of a
given node, every cluster leader monitors its nodes’ availability over a period of time. If the
probability of failure of a node Pi is very low, hot data should be migrated to Pi, otherwise
hot data should be replicated for availability reasons. In essence, we propose that decisions
concerning migration/replication should be taken during run-time since both migration and
replication have their own inherent advantages and disadvantages.

Dealing with heterogeneity of clusters

Clusters in grid environments are highly likely to be heterogeneous in terms of processing
power4, available disk space, administrative policies (e.g., security, data access) and data man-
agement techniques (e.g., indexing, hotspot detection, load-balancing) since grids usually span
across several administrative domains. Heterogeneity across clusters has significant implications
for inter-cluster data movements.

Variations in indexing mechanisms: Spatial data being typically huge, it is almost al-
ways true that indexing mechanisms are used to facilitate speedy retrieval of such data. When
moving data across clusters, the indexes associated with the data also need to be moved. How-
ever, variations in indexing mechanisms across clusters precludes the possibility of migrating
the indexes across clusters. For example, when data are moved from a node X (which uses
an R-tree [8] for indexing) to a node Y (where indexing is performed by a UB-tree [15]), the
indexes of the relevant data cannot be moved directly from X to Y. Moreover, it may not be
possible to integrate the moved data smoothly into Y’s index structure.

We address this problem by extracting data from the index at the source node and transfer-
ring the data to the destination node. At the destination node, there are two different indexes,
one for organizing the dedicated data at that node and another for the moved data. Note that
at the destination node, the moved data are indexed by the indexing mechanism of the desti-
nation node itself, irrespective of the indexing mechanism at the source node of the data. This
is important because the destination node may not have the indexing software that was being
used to index the data at its source node. Interestingly, moving data as opposed to moving
indexes also solves problems associated with porting. In retrospect, it is clear that in practice,
we cannot impose our grid-related policies on any cluster, thereby indicating that our policies
should be aimed at supplementing a given cluster’s policies as opposed to interfering with them.

Variations in available disk space: Given the implications of significant variations in
available disk space of different nodes in a grid, we adopt the following strategy.
3 If the same query is issued from different nodes, randomness may guarantee a certain amount of

load-balancing.
4 Just to recapitulate, our definition of load takes into consideration variations in processing power.



– ‘Pushing’ non-hot data (via migration for large-sized data and via replication for small-sized
data) to large capacity nodes as much as possible.

– Replicating small-sized hot data at small capacity nodes (smaller search space expedites
search operations).

– Large-sized hot data are migrated to large capacity nodes only if such nodes have low
probability of failure, otherwise they are replicated at large capacity nodes, an upperlimit
being placed on the number of replicas to save disk space.

Consistency issues

Interestingly, the spatial attributes of spatial data are relatively static, while updates on the
non-spatial attributes are possible. For example, the spatial coordinates of a hotel should remain
the same, but the number of available rooms (a non-spatial attribute) may be updated. In
such cases, strict consistency is not absolutely critical. Our data movement technique sacrifices
both replica consistency as well as disk-cache coherence to provide improved data availability.
Notably, this is in consonance with prominent grid data efforts [2, 9, 17] which have noted the
static nature of many scientific datasets.

In our lazy replica consistency maintenance scheme, every data item δi has a single primary
copy at node Pi and possibly some replicas. Each node keeps track of migrated/replicated data
at itself and also maintains information concerning the primary source5 and the immediate
source of the migrated/replicated data. Any update to δi can only be performed on the primary
copy and then the update is propagated to other nodes in a lazy manner via piggybacking
techniques. In case a user desires to access fresh data, his/her query will be directed to the node
which stores the primary copy of the requested data. Additionally, each node periodically checks
the number of accesses Nk (during the recent time intervals) for the moved data that it stores to
ascertain which items are still hot and the moved items, for which Nk falls below a pre-specified
threshold, are deleted unless a given moved item is a primary copy. Such periodic ‘cleanup’ of
moved data results in more available disk space and is important from the perspective of system
scalability over time.

Suppose a data item δi has been moved from a node Pi to a node Pj . If a copy of δi exists
in Pi’s cache, it is allowed to remain in Pi’s cache. Queries for δi are answered from Pi’s cache
even though δi does not exist in Pi’s disk. Notably, this is very different from work in traditional
domains. When δi becomes cold, it will automatically get discarded by the caching scheme. If
subsequently, δi is updated at Pj , Pj informs Pi via a piggy-backed message concerning the
update and the cached copy of δi at Pi is flushed. Since Pj may not inform Pi immediately
about the update, some queries accessing the cached copy of δi at Pi may read obsolete data.
Thus, we sacrifice disk-cache coherence to some extent to provide faster response times to the
users.

6 Load-balancing

This section discusses load-balancing via migration and replication of data from heavily loaded
nodes to lightly loaded nodes. While intra-cluster load-balancing [12, 19] refers to balancing the
loads within a particular cluster, inter-cluster load-balancing attempts to ensure load-balancing
among the clusters i.e., to achieve load-balancing across the system as a whole.

Intra-cluster load-balancing

Intra-cluster load-balancing has been well researched in the traditional domain, but for grid
systems, we should also take into account varying available disk capacities of nodes within a

5 Primary source refers to the node which contains the primary copy of the data.



cluster. Our strategy is as follows. The cluster leader (say Ci) periodically receives information
concerning loads Li and available disk space Di of the nodes and initially creates a list List
by sorting the nodes (in descending order) based only on Li such that the first element of List
is the most heavily loaded node. Assume there are n elements in List. Among the last �n/2�
nodes in List, the nodes whose respective values of Di are less than a pre-specified threshold
are deleted from List. Then load-balancing is performed by migrating or replicating hot data
from the first node in List to the last node, the second node to the second-last node and so
on. Data are only moved if the load difference between the nodes under consideration exceed a
pre-specified threshold. Note that this is similar to our previous work [12] except that in this
case, we also take variations in available disk space into consideration. For decisions concerning
the initiation of data movement, the amount of data to move, determination of the data to
move (based on hotspot detection mechanism), identification of the source and destination
nodes, we adopt the same approach as in [12].

Inter-cluster load-balancing

To prevent load imbalance among clusters, inter-cluster load-balancing becomes a necessity.
We propose that such load-balancing should be performed only between neighbouring clusters
by means of collaboration between the cluster leaders, the reason being that moving data to
distant clusters may incur too high a communication overhead to justify the movement.

Cluster leaders periodically exchange load information only with their neighbouring cluster
leaders. If a cluster leader α detects that its load exceeds the average loads of the set β of its
neighbouring cluster leaders by more than 10% of the average load, it first ascertains the hot
data regions that should be moved and sends a message concerning each hot region’s space
requirement to each cluster leader in β in order to offload some part of its load to them. The
leaders in β check the available disk space in each of their cluster members and if their disk
space constraint is satisfied, they send a message to α informing it about their total loads and
their total available disk space. α sorts the willing leaders of β in List1 such that the first
element of List1 is the least loaded leader.

The number of hot data regions to be moved depends upon load imbalance i.e, if the load
imbalance is severe, more data regions need to be moved, while in case of lesser load imbalance,
lesser data regions are moved. Assume the hot data regions to be moved are numbered as
h1, h2, h3,h4... (h1 is the hottest element). Let the number of willing nodes in β and the number
of hot data regions to be moved be denoted by b and h respectively. If b < h, h1 is assigned
to the first element in List1, h2 is assigned to the second element and so on in a round-robin
fashion till all the hot regions have been assigned. If b ≥ h, the assignment of hot data to
elements of List1 is done similarly, but in this case some elements of List1 will not receive any
hot data. After the hot data arrives at the destination cluster’s leader, the leader creates a
sorted list List2 (in ascending order according to load) of its nodes and assigns the hot data
to elements of List2 in the manner described above.

7 Performance Study

This section reports the performance evaluation of our proposed inter-cluster load-balancing
technique via data migration6. In the near future, we also intend to study the impact of
replication since we expect that replication can improve system performance further. Note
that we consider performance issues associated only with inter-cluster load-balancing since a
significant body of research work pertaining to efficient intra-cluster load-balancing algorithms
already exists. We specifically study the performance of our proposed scheme with variations
in the workload skew.
6 Owing to constraints concerning available disk space, we could not investigate replication in our

performance study.



Our test environment comprises a cluster of 16 SUN workstations, each of which is a 143
MHz Sun UltraSparc I processor (256 MB RAM) running Solaris 2.5.1 operating system. These
are connected by high speed switch (200 Mbyte/s), the APnet. Each cluster is modeled by a
workstation node in our experiments. Hence, throughout this section, we shall be using the
term ‘cluster’ to refer to such a workstation node. From this perspective, such a workstation
node may be viewed as the cluster leader which is representative of its entire cluster. The
implication is that there are 16 neighbouring clusters among which we attempt to provide
inter-cluster load-balancing. Additionally, to model inter-cluster communication in a wide area
network environment, we simulated a transfer rate of 1 MB/second among the respective
clusters.

0

100

200

300

0 30 60 90

T
im

e
 (

se
c
o
n
d
s)

Number of Window Queries (103)

TM
DILBM

(a) Time Line

0

50000

100000

150000

200000

0 30 60 90

D
is

k
 I

/O

Number of Window Queries (103)

TM
DILBM

(b) Disk I/O of hot cluster

0

5000

10000

15000

20000

0 4 8 12 16

L
o

a
d

Cluster

 

TM
DILBM

(c) Load-balancing

Fig. 1. Performance of our proposed scheme

0

50

100

150

200

250

0.1 0.5 0.9

T
im

e
 (

se
c
o
n
d
s)

Zipf factor

TM
DILBM

(a) Total Execution Time

0

50000

100000

150000

200000

0.1 0.5 0.9

D
is

k
 I

/O

Zipf factor

TM
DILBM

(b) Total Disk I/O of hot cluster

0

4000

8000

12000

0 4 8 12 16

L
o

a
d

Cluster

 

TM
DILBM

(c) Load distribution(Zipf fac-
tor=0.5)

Fig. 2. Effect of varying skew in the queries

We implemented an R-tree on each of the clusters to organize the data allocated to each
cluster. For all our experiments, we assumed that one R-tree node fits in a disk page (page
size = 4096 bytes). Hence, R-tree node capacity is the same as page size in our case. The
height of each of the R-trees at each node was 3 and the fan-out was 64. We have used the



tile technique [13] as reference7. We divided the universal space into 48 tiles and the tiles were
assigned to the 16 clusters. We shall henceforth refer to this approach as TM (tile method).
Also, we shall refer to our proposed strategy as DILBM (dynamic inter-cluster load-balancing
via migration). A real dataset (Greece Roads [4]) was enlarged and used for our experiments.
The enlargement was done by translating and mapping the data. Each cluster contained more
than 200000 spatial data rectangles. In order to model skewed workloads, we have used the
well-known Zipf distribution to decide the number of queries to be directed to each cluster.
Note that this is only an approximate manner of generating skewed workloads since queries
may vary in selectivity.

7.1 Performance of our proposed scheme

Now let us investigate the effectiveness of our proposed scheme in improving the system per-
formance. For this purpose, an experiment was performed using 90000 spatial select (window)
queries, the value of the zipf factor being set at 0.1, which indicates a highly skewed workload.

Figure 1a displays a time line indicating the progress of the queries over time by presenting
the wall-clock execution times of queries as a function of the time intervals during which the
queries were executed, while Figure 1b presents the disk I/O of the hot cluster for the same ex-
periment. Figure 1a indicates that initially during certain intervals, the performance of DILBM
is slightly worse than that of TM. This occurs owing to migration-related overheads and dis-
turbances. However, once the migration has been completed, DILBM significantly outperforms
TM. This is possible because of the reduction in the load of the hot cluster as demonstrated in
Figure 1b. Such reduction occurs as a result of the effective load-balancing provided by DILBM
as depicted in Figure 1c, which indicates that DILBM is capable of distributing the load more
evenly than TM (especially reducing the load of the hot cluster, namely cluster 1).

7.2 Variations in Workload Skew

Now we shall examine the performance of DILBM for varying skews in the workload. For this
purpose, we used zipf factors of 0.5 and 0.9 to model medium-skewed workload and low-skewed
workload respectively.

Figure 2a depicts the wall-clock completion time of all the queries when the zipf factor was
varied, while Figure 2b shows the total disk I/Os incurred by the hot cluster during the same
experiment. Interestingly, the gain in execution time is significantly more in the case of highly
skewed workloads. This gain keeps diminishing as the query skew diminishes, till at some point,
there is no significant gain at all. This occurs because as the workload skew decreases, the need
for load-balancing also reduces owing to the query pattern itself contributing to load-balancing.
Note that at a value of 0.9 for the zipf factor, there is no significant difference in performance
between DILBM and TM since the workload in this case was too lowly skewed to necessitate
migrations. Incidentally, DILBM performs slightly worse than TM for lowly skewed workloads
primarily owing to overheads incurred in making the decision that the skew is too low to
necessitate migrations. However, we believe this is a small price to pay as compared to the
big gain achieved by DILBM in the case of highly skewed workloads. Figure 2c demonstrates
that DILBM performs reasonably well for medium-skewed workloads, especially in reducing
the load of the hot cluster. In essence, DILBM is sensitive to changing workload distributions
and adapts very well indeed.

8 Conclusion

Huge amounts of available spatial data at geographically distributed locations coupled with the
growth of powerful computer networks provides a strong motivation for designing a spatial grid.
7 Just to recapitulate, the tile technique is a commonly used technique for declustering spatial data

and supports static load-balancing.



Efficient search and load-balancing mechanisms are essential for the grid to work efficiently in
practice. Incidentally, issues concerning indexing and load-balancing are more complex in case
of grids than in case of traditional domains primarily because a grid usually spans across several
administrative domains. We have proposed a dynamic strategy for inter-cluster load-balancing
in spatial grids via data migration/replication and analyzed the trade-offs between migra-
tion and replication. Our performance study has demonstrated that our proposed technique
is indeed feasible for providing load-balancing in spatial grids. Currently, we are investigating
performance issues concerning replication in spatial grids.

References

1. H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin, B. Hart, M. Smith,
and P. Valduriez. Prototyping Bubba, a highly parallel database system. IEEE Transactions on
Knowledge and Data Engineering, 2(1), March 1990.

2. A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The data grid: Towards
an architecture for the distributed management and analysis of large scientific datasets. Proc.
Network Storage Symposium, 1999.

3. European DataGrid. http://eu-datagrid.web.cern.ch/eu-datagrid/.
4. Datasets. http://dias.cti.gr/∼ytheod/research/datasets/spatial.html.
5. D. H. J Epema, M. Livny, R. V. Dantzig, X. Evers, and J. Pruyne. A worldwide flock of Condors

: Load sharing among workstation clusters. Journal on Future Generations of Computer Systems,
12, 1996.

6. I. Foster and C. Kesselman. The grid: Blueprint for a new computing infraestructure. Morgan-
Kaufmann, 1999.

7. Earth Systems Grid. http://www.earthsystemgrid.org/.
8. A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proc. ACM SIGMOD

International Conference on Management of Data, pages 47–57, 1984.
9. W. Hoscheck, J. Jaen-Martinex, A. Samar, H. Stockinger, and K. Stockinger. Data management in

an international data grid project. Proc. IEEE/ACM International Workshop on Grid Computing,
2000.

10. NASA IPG. http://www.ipg.nasa.gov/.
11. N. Koudas, C. Faloutsos, and I. Kamel. Declustering spatial databases on a multi-computer

architecture. In Proc. EDBT, pages 592–614, 1996.
12. A. Mondal, M. Kitsuregawa, B.C. Ooi, and K.L. Tan. R-tree-based data migration and self-tuning

strategies in shared-nothing spatial databases. Proc. ACM GIS, 2001.
13. J. Patel and D. DeWitt. Partition based spatial-merge join. In Proc. ACM SIGMOD International

Conference on Management of Data, pages 259–270, 1996.
14. GriPhyN Project. http://www.griphyn.org/index.php.
15. F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhardt, and R. Bayer. Integrating the UB-tree into

a database system kernel. In Proc. VLDB International Conference on Very Large Databases,
pages 263–272, 2000.

16. P. Scheuermann, G. Weikum, and P. Zabback. Adaptive load balancing in disk arrays. Proc.
Foundations of Data Organization and Algorithm, pages 345–360, 1993.

17. D. Thain, J. Basney, S.C. Son, and M. Livny. The Kangaroo approach to data movement on the
grid. Proc. HPDC, 2001.

18. D. Thain, J. Bent, A. Arpaci-Dusseau, R. Arpaci-Dusseau, and M. Livny. Gathering at the well:
Creating communities for grid I/O. Proc. SC, 2001.

19. Gerhard Weikum, Peter Zabback, and Peter Scheuermann. Dynamic file allocation in disk arrays.
In Proc. ACM SIGMOD, pages 406–415, 1991.


