Design of B+4tree-Based Predicate Index for
Efficient Event Matching

Botao Wang!, Wang Zhang!, and Masaru Kitsuregawa!

Institute of Industrial Science, The University of Tokyo
Komaba 4-6-1, Meguro Ku, Tokyo, 135-8505 Japan
{botaow, zhangw,kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract. Efficient event matching algorithms are the core of pub-
lish /subscribe systems. Such algorithms are typically designed based on
memory structure for performance reasons. Given the explosive growth
of information, it is not always practically feasible to keep the index
for event filtering memory-resident, thereby necessitating the need for a
secondary storage structure. Incidentally, even though search algorithms
designed for active databases and spatio-temporal databases are appli-
cable to publish/subscribe systems, these algorithms are not specifically
designed for publish/subscribe systems which require both fast search as
well as efficient support for dynamic insertions and deletions. To address
this problem, we propose a predicate index for secondary storage struc-
tures with space complexity O(n) and search time complexity O(logn).
Analytical comparison of our proposed algorithms with existing work in-
dicates that our secondary storage predicate index is efficient for event
matching.

1 Introduction

The rapid growth of technology has considerably changed the manner and scale
of information management. Users can find and provide information easily through
brokers like the Web; at the same time, in various applications, such as stock
tickers, traffic control, network monitoring, Web logs and clickstreams, and Sen-
sor networks, input data arrive as continuous ordered data streams[17]. There is
a growing necessity for systems to be able to capture the dynamic aspect of Web
information. Publish/subscribe systems provide subscribers with the ability to
express their interest in an event in order to be notified afterwards of any event
fired by a publisher, matching their registered interest. In other words, producers
publish information on publish/subscribe systems and consumers subscribe to
their desired information[7].

The precursor of publish/subscribe systems was subject-based. In such sys-
tems, information consumers subscribe to one or more subjects and the system
notifies them whenever an event classified as belonging to one of their relevant
subjects is published. A representative example of such a system is a mailing list.
Thousands of mailing lists exist, encompassing a wide variety of topics. The user

2 Botao Wang et al.

subscribes to lists of his/her interests and receives messages via mail. However,
it offers only limited expressiveness.

As an attractive alternative to subject-based publish/subscribe systems, content-
based publish/subscribe systems typically introduce subscription schemes based
on the properties of the given notifications. Notably, events are not classified
according to some pre-defined subject names, but according to properties of
the event themselves. For example, a content-based system for a stock mar-
ket may define a subscription schema as a tuple containing three attributes:
CompanyName, Price and ChangeRatio with string, float and float types re-
spectively. The user can choose stock information by the values of attributes not
by subject Stock only.

The cost of the gain in expressiveness of content-based system is an increase
in the complexity of the matching process. The efficiency of matching highly
depends on matching algorithms. Input data arrive as data stream and the sub-
scriptions are inserted and deleted dynamically.

As far as we know, many matching algorithms in the context of publish /subscribe
are generally proposed based on memory structure [1][3][8][9][13][16][18]. As
pointed in [17], input data arrive in form of data stream, it’s very difficult to keep
all the index data in the memory practically. At the same time, for the similar-
ity of operations(range or interval query), some searching algorithms designed
for active database[11], spatio-temporal database [2][5][6][10] can be applied to
publish /subscribe system, those algorithms are not designed originally for pub-
lish /subscription system and lack of flexibility of insertion and deletion, don’t
support relational operator ”!="" directly.

In this paper, we will propose a secondary storage predicate index structure
based on B+tree for efficient event matching. The rest of this paper is organized
as follows. Section 2 formally defines the event matching problem. Section 3
introduces the related work. Section 4 describes our predicate index structure:
PB-+tree and event matching algorithm in this context. In Section 5, analytical
comparisons between our proposed algorithm and existing techniques are made.
Finally, conclusion is given in Section 6.

2 Event Matching Model

The event matching problem can be expressed as follows. Given an event e and
a set, of subscriptions S, determine all subscriptions in S that are matched by e.
A subscription is a conjunction of predicates. A predicate is a triple consisting
of an attribute, a constant, and a relational operator (<, <=, =, !=, >=, >). A
subscription schema defines the properties of the information to be supported by
publish /subscribe system. Attributes are defined in subscription schema. For ex-
ample, three attributes: CompanyName, Price and ChangeRatio with string,
float and float types respectively, can be defined for stock market. Following is a
subscription example, (CompanyName = Yahoo) AND (Price>1000) AND
(ChangeRati0<0.05). An event is an array of (Attribute, Constant) tuples.
The size of array depends on the number of attributes defined in subscription

Lecture Notes in Computer Science 3

schema. Following is an event example of stock schema, (CompanyName, Intel),
(Price, 5000), (ChangeRatio,0.03). An event e matches a subscription S if all
predicates in S are satisfied by some (Attribute, Value) tuples in e. For example,
the event (CompanyName,Y ahoo), (price,500), (ChangeRatio,0.1) matches
the following subscription which is expressed as a conjunction of two predicates:
(CompanyName = Yahoo) AND (Price < 1000).

Event matching algorithms in content-based publish/subscribe systems can
be classified into two categories:

— Algorithms based predicate index. The solutions based on predicate indexing
consist of two phases:
e The first phase determines all predicates that are satisfied by event.
e The second phase finds all the subscriptions matched by the event ac-
cording to the results of the first phase.
Algorithms based on predicate indexing techniques use a set of one-dimensional
index structures to build indexes for predicates defined in subscriptions. They
differ from each other in the way of selecting predicates from subscriptions
to index structures[3] [8][9][11][13] [16][18].
Basically, predicates are grouped by attributes. A predicate family consists
of predicates with same attribute. For each attribute, one predicate index is
built. For example, for stock schema introduced previously, three predicate
indexes will be built on attributes CompanyName, Price, ChangeRatio.
— Algorithms based on subscription index[1][14]. The techniques based on sub-
scription index insert subscriptions into a decision tree. Events enter the tree
from root node and are filtered through by intermediate nodes. An event that
passes all intermediate testing nodes reaches a leaf node where reference(s)
of matched subscriptions are stored.

Our index data structure is designed for predicate index. Although, there
are many proposals for predicates selection [8][9][11][18], the predicate index
is essential while getting all satisfied predicates according to the event at the
first phase. In the following introductions, we will concentrate on the predicate
index of one attribute without considering about the second phase. For details
of different selection methods of predicates, please refer to [8][9][11][18].

3 Related Work

A lot of algorithms related to event matching have been proposed. Some are pro-
posed for publish /subscribe systems[1] [8] [9][15] [14][18] and continuous queries[3]
[4][17]; Some are proposed for active database [11] [12][13], spatio-temporal
database [2] [6] [10].

In [8][9][18], predicate indexs are built. The algorithm consist of two phases:
the first step gets satisfied predicates, the second step collects matching subscrip-
tions according to the results of the first step. In [8], three predicate indexes are
built for operators (=, >, <). For = operator, hash table or binary search can
be used. For > and < operator, binary search trees are used. In [8], hash table is

4 Botao Wang et al.

used to build index for predicates with = operator. [18] is a information Dissem-
ination System(IDS) for document filtering. There, predicate index is a inverted
list which is built based on the vocabularies used in predicates.

Different from predicate index, [1] and [14] built subscription tree based on
subscription schema. In [1], each non-leaf node contains a test, and edges from the
node represent results of that test. The test and result corresponds to predicate.
A leaf node contains a subscription. The matching is to walk the matching tree by
performing the test prescribed by each node and following the edge according
to the result of test. if number of matched subscription is greater then one,
multiple paths will be walked. In [14], Profile(subscription) tree is built, the
height of tree is number of attributes defined in subscription schema. Each non-
leaf level corresponds to one attribute of event schema. Each attribute domain
is divided non-overlapping subrange by the value of predicate. One leaf node
contains multiple subscriptions whose predicates are satisfied by the values of
attributes in the subranges. There is only a single path to follow in order to find
the matched subscriptions.

In [11][12][13], algorithms related to rule management were proposed. The
key component of the algorithm in [11] is the interval binary search tree(IBS-
tree). The IBS-tree is designed for efficient retrieval of all intervals that overlap
a point, while allowing dynamic insertion and deletion of intervals. In [12], the
same idea of IBS-tree is implemented by skip lists. ”Expression Signature” is
designed to group subscriptions and share computation in [13].

Event filtering is critical step of continuous queries. In [4], Expression Signa-
ture is used to group queries for computation sharing. In [16], four data struc-
tures: a greater-than balanced binary tree, a less-than balanced binary tree, an
equality hash-table, and an inequality hash-table were built(we call them data
structure Group Filter in Section 5). The structures are similar to that of [§],
but inequality operator(!=) is supported. In [3], predicate index is built based on
Red-Black tree. Each node contains five arrays that store queryIDs of the corre-
sponding predicates. Five relational operators (<, <=, =, >=, >) are supported
directly.

Because the range query of spatio-temporal database uses operators (<, <=,
>=, >) in the similar way of predicate index, the related data structures can
be used to built predicate index. In[6], an index structure for time interval is
built. A set of linearly ordered indexing points is maintained by a B+tree, and
for each point, a bucket of pointers refers to the associated set of intervals. In
[2], Interval B+tree is built and the lower bounds of the intervals are used as
primary keys. Multi-dimensional Rtree[10] and its variants may not behave well
for one-dimensional interval for the reason of overlap of interval.

4 PB+tree: Predicate Index Based On B-tree

4.1 Motivation

B+tree is an efficient secondary storage index structure and all its data are
kept in leaf nodes which are linked in an order list. Our idea is that to build

Lecture Notes in Computer Science 5

a predicate index on secondary storage based on B+tree and make use of the
order of leaf node list to share computation. All the predicates of one attribute
are kept in one extended B+tree which supports relational operators (<, <=,
=, >=, >, |=) directly.

4.2 Structure of Predicate Index

The basic structure of the predicate index is shown in Fig.1. The constant defined
in predicate is used as the key of B+tree. As shown in Fig. 1, three lists are added
below the leaf node list of B+tree, where data structure of B+tree leaf node is
extended.

Non-Leaf nodes

B+tree

Leaf node list

Inequality List

GreaterThan List

LessThan List

Fig. 1. Basic Structure of PB+tree

Inequality List Inequality list is used to deal with predicates with operator
(!=). The data structure of its node is shown in Fig.2. Mainly, it consists
of two pointers and an array of items. An item consists of key and SidSet.
The key is the same as the key used in B+tree. It corresponds to predicate
Attribute! = Key. SidSet is ID set of subscriptions which contain predi-
cate Attribute! = Key. Because Attribute! = Key means a special range
(Attribute > key AND Attribute < Key) double links are defined in in-
equality list. Inside one node, the items are arranged in descending order of
key. PreviousPointer points to previous node of inequality list in ascending
order of key. NextPointer points to next node of inequality list in descending
order of key. Logically, Inequality list is an order list of items, where the log-
ically adjacent two items maybe be kept in two different adjacent Inequality
list nodes.

6 Botao Wang et al.

Leaf nodelist

/ Inequality list

previous | Keyi-1 | Keyi |...... next previoug - Keyi+n |[Keyi+tn+l| ... next

. A [-eeen L . A
Pointer . . Pointer Pointer . . Pointer
ointe SidSet | SidSet ointe ointe SidSet | SidSet ointe

Fig. 2. Data Structure of Inequality List Node

GreaterThan List and LessThan List GreaterThan list is used to deal with
predicates with operators (>, >=). The data structure of GreaterThan list
node is shown in Fig.3 It is similar to that of Inequality list. The differ-
ence is that it has only previousPointer, no nextPointer. For each item,
SidSet is ID set of subscriptions which contain predicate Attribute > Key
or Attribute >= Key. For two predicates with different keys, the range rep-
resented by one predicate will totally cover another on GreaterThan list. It
is determined by the value of key. For example, Attribute > 10 is true means
Attribute > 5 is true too. We make use of this property to share computa-
tion to collect results on GreaterThan list via previousPointer from the item
corresponding to the largest range designated by input.

L eaf node list

/ / GreaterThan list

Previoug Keyi-1 | Keyi | ... Previoud Keyi+n | Keyi+n+l| ...
Pointer Sidset | sidSet Pointer Sidset | SidSet

Fig. 3. Data Structure of GreaterThan List Node

LessThan List has similar data structure to GreaterThan List. The difference
is that the pointer of node is nextPointer, not previousPointer.

Extended Leaf Node of B+4tree As shown in Fig.1, three lists are added
below leaf node list of B+tree. The nodes on these lists are designated by
the pointers defined in the items of leaf nodes. The data structure of B+tree
leaf node is extended as shown in Fig.4
It consists of an array of items, previousPointer and nextPointer. The defini-
tions of previousPointer, key and nextPointer are same as those in B+tree re-
spectively. For each item, besides the key, the SidSet is ID set of subscriptions
which contain predicates in the forms of Attribute = Key, Attribute <=
Key or Attribute >= Key. INEQPointer, GTPointer, LTPointer are the
pointers of Inequality list node, GreaterThan list node and LessThan list

node respectively. GTPointer points to the GreaterThan list node where
exits the item with the biggest key less than or equal to the key kept in
the item of the leaf node. For example, GTPointers of key 5 and 6 in Fig.
5. LTPointer points to the LessThan list node where exists the item with
the smallest key greater than or equal to the key kept in the item of the
leaf node. Because Inequality predicate represent two special ranges and has
double links, INEQPointer can be set by the same way as that of GTPointer
or LTPointer to keep order. In Fig.5, the setting of INEQPointer is the same

Lecture Notes in Computer Science

previ ous
Poi nt er

Key i Key i+1
Si dSet Si dSet
| NEQPoi nt er |1 NEQPoi nt er
GTPoi nt er GTPoi nt er
LTPoi nt er LTPoi nter

next
Poi nt er

as that of GTPointer.

Sample Subscriptions

S1| a1
S2| a>5
S3| a>10
s4| a>15
S5| a=6
S6| al=5
S7| al=10

Inequality List

1
renterThan Lisg s v

LessThan List

An example of predicate index tree is shown in Fig.5. On each list, there are
both head and tail nodes exist where the keys are Minimum value and Maximum
value in head and tail node respectively.

Fig. 4. Data Structure of Leaf Node

Minmum Key

B+tree
1 6 « 5 10| 15 Maximu Key|
S5 —
1
1
1
[}
1
1
. ~ 1
Y v 1
[ss [s7 :(ETI
1
"""") H

Link of Leaf Node

e Link Of INequlity List «sssseesd Link of GreaterThan List == === Link of LessThan List

Fig. 5. Example of B+tree-Based Predicate Index

8 Botao Wang et al.

4.3 Insert Algorithm

Insert(Sid, Predicate, Root)

1 //Sid:Identifier of Subscription. Predicate:input predicate.

2 //Root: root of Bt+tree

3 Insert Predicate.constant into B+tree

4 Assign the leaf node holding Predicate.constant to CurrrentLeafNode
5 1IF (Predicate.constant didn’t exist before insertion)

6 // initialize pointers of new inserted item on the leaf node

7 Assign the item with key Predicate.constant

8 to CurrentItem

9 Assign the item with biggest key less than

10 Predicate.constant to PreviousItem
11 Assign the item with smallest key greater than

12 Predicate.constant to NextItem

13 //Set pointers according to nearby item.

14 Assign GTPointer of PreviousItem to GTPointer of CurrentItem

15 Assign LTPointer of NextItem to LTPointer of CurrentItem

16 Assign INEQPointer of PreviousItem to INEQPointer of CurrentItem
17 ENDIF

18 InsertToList(SID, Predicate, CurrentLeafNode)

Fig. 6. Algorithm of Inserting Leaf Node List

Insert Algorithm has two main steps, 1)the first is insertion of leaf node list
of B+tree, where INEQPointer, GTPointer or LTPointer of the new item should
be set. 2)the second is insertion of one of the three lists according to the operator
of predicate. Besides inserting Sid of new subscription to SidSet. INEQPointers,
GTPointers or LTPointers of related items on leaf nodes should be adjusted as
shown in Fig.7(Line 7) according to input.

The first step is shown in Fig. 6. Line 3 inserts Predicate.constant into leaf
node list. This step is same as that of original B+tree. Line 5 judges whether the
key of the added item is new or not. If the key is new, its related pointers must
be set. Line6-12 get pointers of new added item, and its previous item and next
item. Line 13-16 set pointers of new added item. Line 18 starts the function of
the second step InsertToList().

The second step of insertion is executed by function InsertToList(). The
function first chooses which list should be inserted according to the operator
contained in the predicate. Because three lists share the similar idea of ordering
predicates according to their constants, here we introduce algorithm of inserting
GreaterThan list only. The function name is Insert ToGreaterThanList() and
the algorithm is shown in Fig.7.

For line 3-4, the greaterThan node holding the item with biggest key less
than or equal to Predicate.constant, so the operation here guarantee the right
order of GreaterThan list. If the greaterThan node splits after insertion at line 5,

Lecture Notes in Computer Science 9

InsertToGreaterThanList (Sid, Predicate, LeafNode)

1 //Sid: Identifier of Subscription, Predicate: predicate with (>, >=)
2 //LeafNode: LeafNode holding the item with key Predicate.constant
3 Insert GreaterThan list node pointed by GTPointer of the item

4 with key value Predicate.constant in the LeafNode

5 IF (GreaterThan node is split after insertion)

6 Create new node and insert it into GreaterThan list in order of key
7 Adjust GTPointers of items on leaf nodes related two nodes

8 ELSE IF (item with Predicate.constant existed before insertion)

9 Add Sid into SidSet corresponding to the item

10 ENDIF

11 ENDIF

Fig. 7. Algorithm of Function InsertToGreaterThanList()

line 6 inserts the new node into the list in order of key. line 7 adjusts GTPointers
kept in the items of related leaf nodes by checking leaf node list according to the
minimum key and maximum key kept in the items of two split GreaterThan list
nodes. Line 9 adds sid into SidSet if the key of the item exited before insertion.

4.4 Search Algorithm

According to the above insertion algorithm, the searching results on GreaterThan
list is the part of GreaterThan list from the item with biggest key less than input
key to the Head of GreaterThan list.

Search(InputKey, Root, Result)

1 //InputKey: input data from event, Root: root of B+tree
2 //Result: Set of Sid and initial value is null

3 Search Inputkey from Root of B+tree

4 TIF (found)

5 Assign found LeafNode to CurrentLeafNode

6 Assign found item to CurrentItem

7 Add SideSet of CurrentItem to Result

8 ELSE //not found

9 Assign leafNode where search(line 3) stopped to CurrentLeafNode
10 ENDIF

11 CollectPreviousINEQ(InputKey, CurrentLeafNode, Result)
12 CollectNextINEQ(InputKey, CurrentLeafNode, Result)

13 CollectGT(InputKey, CurrentLeafNode, Result)

14 CollectLT(InputKey, CurrentLeafNode, Result)

Fig. 8. Main Search Algorithm

10 Botao Wang et al.

The main search algorithm is shown in Fig.8. Line5-7 show the case when
the ImputKey is found. In this case, the content of SidSet kept in the found
item in the leaf node should be added to the result(Line 7). Line8-10 show the
case when the key is not found. In that case, the starting leaf node to get results
from each list is set at Line 9. The algorithms of four CollectPreviousINEQ(),
CollectNextINEQ(), CollectGT() and CollectLT() functions are similar.

In the following, only function collecting GreaterThan list(CollectGT()) is
introduced. It is shown in Fig.9. Line 4-5 get starting node to collect results on
GreaterThan list. Line 6-7 get first result item on GreaterThan list Line 8-12
collect results by scanning GreaterThan list from the first item.

CollectGT(InputKey, LeafNode, Result)

1 //InputKey: input data from event

2 //LeafNode: LeafNode where B+tree search stopped.

3 //Result: Set of Sid

4 Get GTPointer of the item with the biggest key

5 less than InputKey in LeafNode

6 Get the item which has biggest key value less than Inputkey

7 on the GreaterThan list node pointed the GTPointer(line4-5)
8 Assign the item to CurrentItem.

9 DO

10 Add SidSet of the CurrentItem into Result

11 Assign previous item of the CurrentItem to the CurrentItem

12 WHILE (Head of GreaterThan list is not met)

Fig. 9. Algorithm of Function CollectGT()

4.5 Delete Algorithm

The delete algorithm is a reverse procedure of insertion. Here the details are
skipped for reason of space.

5 Analytical Comparison

Assume the number of unique predicate is n and the total number of predicates
satisfied by event is L, the search time complexity is O(logn + L). Because
pointers of the items on leaf node list need to be adjusted while do insertion as
introduced in Fig.7(Line7), the number of leaf nodes accessed for adjustment of
pointers is called Number,pdqte.- The minimum time complexity is O(logn) if
all the pointers to be adjusted are kept in one same leaf node. Generally, the
time complexity of insert operation is O(n) for the reason of adjustment. Delete
operation has same time complexity for the same reason. Our algorithm is built

Lecture Notes in Computer Science 11

Table 1. Comparisons of Space and Time Complexities

Algorithm Space Search Insert Delete
PB+tree O(n) O(logn + L) |MIN:O(logn) [MIN:O(log n)
MAX:O(n) |[MAX:O(n)
Grouped Filter O(n) O(logn + L) |O(logn) O(logn)
Red-Black tree based |O(n) O(n) O(logn) O(logn)
IBS-Tree O(nlogn) [O(logn+ L) [O(log®n) O(log®n)
Time Index 0O(n?) O(logn + L) |MIN:O(logn) [MIN:O(logn)
MAX:O(n) |[MAX:O(n)
Interval B+tree O(n) O(n) O(logn) O(logn)

based on B+tree, only the leaf nodes are extended to point to three lists, so the
space complexity is O(n). In table 1, the comparisons of complexities are listed.

Considering Complexities of space and search time, we compare with Grouped
Filter[16] only for its best complexities. In publish/subscribe systems, the ratio
of data arriving is much higher than that of subscriptions updating. It means
that performance of search (event matching) has a decisive influence on per-
formance of publish/subscribe system. From the view of event matching, both
Grouped Filter and PB+tree have same time complexity O(logn + L). But as
introduced in Section3, Grouped Filter uses four data structures and PB-+tree
use only one B+tree structure. Grouped Filter is a main memory predicate index
and PB+tree is designed for secondary storage predicate index, which as far as
we know, it is a novel predicate index.

Generally, the insertion and deletion complexity of PB+tree are O(logn +
numberupdate). In practice, it is reasonable to predicate that the Numberpqate <<n
in the case that distribution of predicates with different operators and constants
is uniform. That means the performance of insert and delete is very near to
minimum complexity O(logn) and far from maximum complexity O(n).

Besides differences in space and time complexities, the data structure de-
signed for spatio-temporal database is used to find all intervals that intersect
a input point, which means they mainly support predicates with format (Con-
stantscare < Attribute < Constantena). In the case that the Constantssar: or Con-
stantena is infinite, overlap will rise greatly for IBS-tree[11] and Time Index[6],
search efficiency will decline greatly for IB+tree[2]. They don’t support predicate
with single operator directly.

By the comparisons in tablel and above analysises, we can conclude that
efficient event matching can be reached by building secondary storage predicate
index on PB+tree.

6 Conclusion

In this paper, we introduced a secondary storage predicate index structure based
on B+tree. The index structure supports predicates with relational operators(<

12

Botao Wang et al.

,<=,=,! =,>=,>). The space complexity is O(n). The time complexity of
search operation is O(logn + L), and both insertion and deletion have Minimum
O(logn) and Maximum O(n) time complexity. Analytical comparison of our
proposed algorithms with existing work indicates that our secondary storage
predicate index is efficient for event matching.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Marcos K.Aguilera, Robert E.Strom, Daniel C. Sturman, Mark Astley, Tushar

D.Chandra. Matching Events in a Content-based Subscription System. Eighteenth
ACM Symposium on Principles of Distributed Computing(PODC), 1999

Tolga Bozkaya, Meral Ozsoyoglu. Indexing transaction time database. Information
Sciences 112(1998)

Sirish Chandrasekaran, Michael J. Franklin. Streaming Queries over Streaming
Data. Proceedings of the 28th VLDB Conference, Hong Kong, 2002

Jiangjun Chen, David J. DeWitt, Feng Tian, Yuan Wang. NiagaraCQ: A Scalable
Continuous Query System for Internet Databases. ACM SIGMOD 2000

Y.-J. Chiang and R.Tamassai, ”Dynamic Algorithms in Computational Geome-
try”. Technial Report CS-91-24, Dept. of Computer Science, Brown Univ., 1991
Ramez Elmasri, Gene T.J. Wuu, Yeong-Joon Kim. THE TIME INDEX: AN AC-
CESS STRUCTURE FOR TEMPORAL DATA. VLDB 1990

P. Th. Eugster, P. Felber, R. Guerraoui and A.-M. Kermarrec. The Many Faces of
Publish/Subscribe. Technical Report 200104, Swiss Federal Institute of Technology
Francoise Fabret, Francois Llirbat, Joao Pereira, Dennis Shasha. Efficient matching
for Content-based Publish/Subscribe Systems. Technical report, INRIA, 2000.
Francoise Fabret, H.Arno Jacobsen, Francois Llirbat, Joao Pereira, Kenneth
A.Ross, Dennis Shasha. Filtering Algorithms and Implementation for Very Fast
Publish/Subscribe Systems. ACM SIGMOD 2001

Antonin Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching.
ACM SIGMOD 1984

Eric N. Hanson, Moez Chaaboun, Chang-Ho, Yu-Wang Wang. A Predicate Match-
ing Algorithm for Database Rule Systems. ACM SIGMOD 1990

Eric N. Hanson, Theodore Hohnson. Selection Predicate Indexing for Active
Database Using Interval Skip List. TR94-017. CIS department, Univeristy of
Florida, 1994

Eric N. Hanson, Chris Carnes, Lan Huang, Mohan Konyala, Lloyd Noronha. Scal-
able Trigger Processing. ACM SIGMOD 1999

Annika Hinze, Sven Bittner. Efficient Distribution-Based Event Filtering. Interna-
tional Workshop on Distributed Event Based Systems. Austrai July 2002

H.Arno Jacobsen, Francoise Fabret. Publish and Subscribe Systems. Tutorial.
ICDE 2001

Samuel Madden, Mehul Shah, Joseph Hellerstein, Vijayshankar Raman. Continu-
ously Adaptive Continuous Queries(CACA) over Streams. ACM SIGMOD 2002
Rajeev Motwani. Models and Issues in Data Stream Systems. Invited Talk. PODS
2002

Tak W.Yan, Hector Garcia-Molina. The SIFT Information Dissemination System.
In ACM TODS 2000

