
An E�cient Scheme for Processing Wireless Read-only Transactions
in Data Broadcast

SangKeun Lee and Masaru Kitsuregawa
Institute of Industrial Science, The University of Tokyo, Japan

flsk, kitsureg@tkl.iis.u-tokyo.ac.jp

Abstract

This paper addresses the issue of ensuring consistency
and currency of data items requested by wireless read-
only transactions in data broadcast. To handle an in-
herent property in wireless data broadcast that data
can only be accessed strictly sequential by users, a
predeclaration-based query optimization is explored and
a practical method, called PwA (Predeclaration with
Autoprefetching), is devised for e�cient wireless read-
only transactions processing. The performance of the
proposed method is also evaluated by an analytical study.
Evaluation results show that the predeclaration tech-
nique we introduce reduces response time signi�cantly
and adapts to dynamic changes in workload.

1 Introduction

In wireless computing, the stationary server machines
are sometimes provided with a relatively high-bandwidth
channel which supports broadcast delivery to all mo-
bile clients located inside the geographical region it
covers. This facility provides the infrastructure for a
form of data delivery called push-based delivery. Push-
based delivery is important for a wide range of appli-
cations that involve dissemination of information to a
large number of clients. Dissemination-based applica-
tions include information feeds such as stock quotes
and sport tickets, electronic newsletters, mailing lists,
tra�c management systems. In such applications, the
server repetitively broadcast data to a client popula-
tion without a speci�c request. Clients monitor the
broadcast channel and retrieve the data items they
need as they arrive on the broadcast channel.

In wireless broadcast environment, if there is a mo-
bile client waiting for a data item, the client will get
the data item from the air while it is being broadcast
by the server. Thus, the cost for data dissemination
is independent of client number since a data broad-
cast can satisfy multiple clients waiting for the same
data item, resulting in a much more e�cient way of
using the bandwidth. It is therefore quite suitable for
disseminating substantial amount of information and
data to a large number of clients where bandwidth
e�ciency is a major concern.

An important consideration in data broadcast is to
provide consistent data values to wireless transactions.
In data broadcast, transactions do not need to inform
the server or set any locks at the server before they ac-
cess data items. They can get data items from the air
while the data items are being broadcast. If updates
at the server are done concurrently, however, transac-
tions may observe inconsistent data values. This paper
addresses such a consistency problem in wireless data
broadcast. Another important consideration in data

broadcast is to provide current, i.e. up-to-date, data
values to wireless transactions. Most advanced appli-
cations in a dissemination-based environment do need
to read current data items. Thus, the major challenge
in this paper is how to provide consistent and current
data items to wireless transactions while speeding up
their processing.

1.1 Related Work

Recently, several approaches to consistent and current
data access despite updates in wireless data broadcast
have been proposed in the literature [SNS+99, PC99a,
PC99b, LAC99]. A control information matrix and a
serialization graph testing are used for concurrency
checking in [SNS+99] and [PC99a] respectively. The
work in [SNS+99] involves the development of a weaker
correctness criterion called update consistency and the
outline of mechanisms to ensure both the mutual con-
sistency of data items and the currency of data items
read by clients. In serialization graph testing [PC99a],
at each broadcast cycle, the server broadcasts any
updates of the graph which includes the committed
transactions at the server. Upon receipt of the up-
dates, the client integrates them into its local copy
of the graph and then checks if any cycle is created.
The major problem with these approaches is, however,
that the large overhead is involved in maintaining con-
trol information for concurrency control and con
ict
detection at the server.

A simple invalidation method is presented in [PC99b],
where an invalidation report is broadcast at pre-speci�ed
points (e.g. at the beginning of each broadcast cycle)
during the broadcast. The invalidation report includes
a list with the data items that have been updated
since the previous invalidation report was broadcast.
The client tunes in at the pre-speci�ed points to read
the invalidation reports. The transaction is aborted if
any data item belonging to the readset appears in the
invalidation report. To increase the number of read-
only transactions that are successfully processed de-
spite updates at the server, multiversion schemes are
also employed in [PC99b]. The basic idea underlying
multiversioning is to temporarily retain old versions
of data items in a broadcast, so that the number of
aborted transactions is reduced. Multiversioning with
invalidation method, a variation of the multiversioning
method, is also suggested in [PC99b]. In this method,
after being invalidated for the �rst time, multiversion-
ing method is applied. However, these multiversion
schemes increase broadcast cycle length, so they im-
pose a serious performance deterioration especially in
an update-intensive environment. Update-�rst with
order (UFO) algorithm proposed in [LAC99] checks
data con
icts among broadcast transactions and up-

1

date transactions instead of detecting con
icts among
mobile transactions and update transactions. By re-
broadcasting con
icting data items, this algorithm en-
sures that the serialization order of a broadcast trans-
action is preceded by an con
icting update transac-
tion. However, this method is vulnerable to perfor-
mance degradation in case of heavy updates.

1.2 Contribution of the Paper

In this paper, we investigate a simple but robust read-
only transaction processing scheme that facilitates pre-
declaration combined with local caching. In a tradi-
tional pull-based (i.e. client-initiated) data delivery,
predeclaration technique has often been used to avoid
deadlocks in locking protocols [BHG87]. In the push-
based data delivery, however, predeclaration in trans-
action processing has a novel property that each read-
only transaction can be processed successfully with
a bounded worst-case response time. Only assuming
that the server broadcasts transactionally consistent
data values in each broadcast cycle, the consistency of
read-only transactions is easily guaranteed. In partic-
ular, predeclaration combined with invalidation-based
cache consistency maintenance can process read-only
transactions successfully even when their processing is
across more than one broadcast cycle. In this manner,
read-only transactions are processed successfully with-
out increasing broadcast cycle length or being consid-
erably a�ected by the rate of updates at the server.
The unique contributions of this paper can be sum-
marized as follows:

� Wireless read-only transactions can be processed
successfully with a bounded worst-case response
time. Even in an extreme case where all data
items in a database are updated in each broad-
cast cycle, the worst-case response time is only
doubled from a broadcast cycle.

� The worst-case response time of a wireless read-
only transaction is totally immune to local cache
hit ratio, the number of data items it reads, and
the mismatch between the needs of the trans-
action and the broadcast program generated by
the server.

� Each wireless read-only transaction reads cur-
rent data values that correspond to the database
state at the completion of data acquisition of its
readset, which is usually the broadcast cycle at
which it commits.

The strength of our scheme is based on the assump-
tion that a mobile client is equipped with enough local
storage capacity to hold all data items needed to exe-
cute a single transaction. This assumption is valid due
to the fact that even though there exists no hope to
increase battery life, recent advances in the hardware
indicate that processing power, main memory and lo-
cal storage capacity will be increased.

1.3 Organization of the Paper

The remainder of this paper is organized as follows.
Section 2 introduces the basic design principles to pro-
cess wireless read-only transactions in data broadcast.
Section 3 describes our PwA method used to maintain
consistency and currency of transactions. Sections 4

and 5 contain an analytical study and its results, re-
spectively. Finally, Section 6 presents our conclusions
and future work.

2 Basic Design Principles

2.1 Preliminaries and Problem State-
ment

The server periodically broadcasts data items over a
single channel to a large client population. Each pe-
riod of broadcast is called a broadcast cycle or bcycle,
while the content of the broadcast is called a bcast.
Each client listens to the broadcast and fetches data
as they arrive. This way data can be accessed concur-
rently by any number of clients without any perfor-
mance degradation. However, access to data is strictly
sequential since clients need to wait for the data of in-
terest to appear on the channel.

Clients access data from the bcast in a read-only
mode, and maintain their local caches. We assume
that the cache at a client is a nonvolatile memory such
as a hard disk and a client does not have a mechanism
for sending messages to the server. At any given time,
it is assumed that there exists a single read-only trans-
action in a client. Clients do not need to continuously
listen to the bcast. They tune-in to read speci�c data
items. To do so, clients must have some prior knowl-
edge of the structure of the bcast that they can utilize
to determine when the item of interest appears on the
channel. In this paper, we assume that the location
of each data item in the broadcast channel remains
�xed and clients have su�cient storage capacity, thus
an index for the data of interest may be maintained
locally at each client 1.

To disseminate data via broadcasting, the server
constructs a broadcast program and periodically trans-
mits data according to the program. In a uniform
broadcast program all data items are broadcast once
in a bcycle regardless of their access frequencies. On
the contrary, a nonuniform broadcast program favors
data with higher access frequencies. Hence, in a bcy-
cle of a nonuniform bcast, while all data items are
broadcast, some will appear more often than those
that are less frequently broadcast. Consider the two
di�erent broadcast organizations illustrated in Figure
1, where the server broadcasts a set of data times
fd1; d2; d3; d4; d5; d6; d7g in one broadcast according to
a broadcast program (d1 is the most frequently ac-
cessed item, d2 and d3 are less frequently accessed
ones, and d4; d5; d6 and d7 are least frequently accessed
ones). While program (a) is a uniform broadcast pro-
gram, (b) is a nonuniform broadcast program (refer
to [AAF+95] for detail). Suppose that, in each broad-
cast organization, a client transaction program starts
its execution at the middle of the bcycle:

IF (d2 � 3) THEN read(d1) ELSE read(d6)

Now, we can pose the following three questions, in-
cluding

� What is the response time (in terms of the num-
ber of data items) taken to execute the transac-
tion?

1Our work is also applicable to the case where some form of
directory information is broadcast along with data items with-
out loss of generality.

2

d1 d2 d7d6d5d4d3

(a) Uniform Broadcast Program

d1 d2 d1d5d3d1d4 d7d3d1d6d2

(b) Nonuniform Broadcast Program

Figure 1: Broadcast Organizations

� What happens to transactional consistency if data
items are being updated at the server?

� To what extent the transaction can read current
data values?

In the following sections, we answer the questions raised
above and their rationale.

2.2 Predeclaration and Its Usefulness

To �rst show that the order in which a transaction
reads data a�ects the response time of the transac-
tion, consider the client transaction program at the
uniform bcast in Figure 1. Since both d1 and d6 pre-
cede d2 in the bcast with respect to the client and
access to data is strictly sequential, the transaction
has to read d2 �rst and wait to read the value of d6
or d1. Thus, the response time of the transaction is
11.5 (in case d2 and d1 are accessed) or 9.5 (in case
d2 and d6 are accessed). If, however, all data items
that will be accessed potentially by a transaction, i.e.
fd1; d2; d6g, are predeclared in advance, a client can
hold all necessary data items with a reduced response
time of 5.5. This is also true, although not so ap-
parent, to the case of the nonuniform bcast in Figure
1. The response time of the transaction is 4 (in case
d2 and d1 are accessed) or 3 (in case d2 and d6 are
accessed), while the response time is 3 if predeclara-
tion is used. Thus the use of predeclaration allows the
necessary items to be retrieved in the order they are
broadcast, rather than in the order the requests are
issued.

Another point is that the response time of a trans-
action can be a�ected by a transaction's local process-
ing delay. This is true even when the order in which
a transaction reads data is consistent with the order
in which data items are broadcast by the server. The
reason is that after reading one data item, there will
be a slight delay before a transaction is ready to read
the next. If the next data the transaction requires is
broadcast in the immediately next position in the cur-
rent bcast, that data will have already passed by the
time the transaction is ready for it. Thus the transac-
tion would have to wait another bcast before that data
came by again. If, however, all data items that will be
accessed by a transaction are predeclared in advance,
a client will have time to get ready to read before the
data its transaction needs reaches itself. For these rea-
sons, predeclaration is adopted in our method and the
remaining design issues are discussed in the context of
predeclaration based transaction processing.

2.3 Transactional Consistency in pres-
ence of Updates

The server broadcasts the whole content of a database
which consists of a �nite set of data items. We adopt
serializability [BHG87], instead of a weaker notion in
[SNS+99], as a correctness criterion. While data items
are being broadcast, update transactions are executed
at the server that update the values of data items
broadcast. Only assumption at the server's part is
that the values of data items that are broadcast during
each bcycle are those produced by committed trans-
actions. Furthermore, we make sure that each bcy-
cle represents a consistent snapshot of the database
2. Thus, a read-only transaction that reads all its
items within a single bcycle can be successfully exe-
cuted without any concurrency control overhead at all.
In reality, however, most transactions will be started
at some point within a bcycle, thus may have to read
data items from di�erent bcasts. In such a situation,
there is no guarantee that the values they read are
transactionally consistent. This is also true to the
case of predeclaration based transaction processing.

One way to ensure the consistency of read-only trans-
actions is to abort transactions that read data values
that correspond to di�erent database states. However,
this kind of abort-based methods leads to intolerable
transaction abort rate in case of intensive updates at
the server. Another way is to control read-only trans-
actions such that it reads consistent data items only.
To achieve this, the server can broadcast multiple ver-
sions of data items so that clients could read an ap-
propriate version. However, this kind of multiversion
schemes increases a bcycle length, thereby resulting
in the increased transaction response time. A better
way, which is adopted in this paper, is to separate
the processing of acquiring data items from that of
delivering data items to transactions. This separa-
tion allows clients to retrieve the new values of inval-
idated data items again from the next bcast prior to
transactions reading data items actually. Under this
scheme, clients can deliver only consistent data items
to their transactions, and so, there is no need to abort
read-only transactions. Moreover, the server does not
have to broadcast old versions of data items. Even
if some items among acquired data items are invali-
dated, clients can get new data values from the next
bcast.

2.4 Currency of Read-only Transactions

In terms of currency of reads, UFO algorithm [LAC99]
among others can provide most up-to-date data values
to transactions by allowing updates to be interleaved
with data broadcast. If there is any data con
ict be-
tween update transaction and broadcast transaction
and the con
icting data items are already broadcast,
the server re-broadcasts the con
icting items. Thus
every time a data item is being broadcast, it will be
the most current version. The major drawback of this

2This assumption was also made in the work [PC99a,
PC99b]. One obvious way to satisfy this assumption is to make
each bcycle represent the state of the database at the beginning
of the cycle. However, if all updates of an update transaction
are made solely to those items not yet transmitted over the
broadcast channel at the moment, the updated values would be
installed into the current bcast, thereby improving data cur-
rency without violating consistency of items within a bcycle.

3

approach is, however, that the large number of re-
broadcast is needed if the probability of data updates
is high. Invalidation method [PC99b] can also pro-
vide relatively up-to-date data values to transactions.
In the invalidation method, if an invalidation report
is broadcast at the beginning of each bcycle, a trans-
action reads the most current values as of the begin-
ning of the bcycle at which it commits. The way to
make a transaction read the most current values as of
the time of its commitment is that each client reads
the next invalidation report that will appear in the
bcast before committing its transaction. However, the
main limitation of this kind of approaches is that they
su�er from the extremely low transaction throughput
in an update-intensive environment. Multiversioning
method [PC99b] sacri�ces currency for high commit-
ment probability of transactions, where a transaction
reads the database state that corresponds to the cur-
rency point at which the transaction starts its process-
ing. The currency of a transaction in multiversioning
with invalidation [PC99b] lies at the point in which its
�rst invalidation occurred. In contrast, with the use
of both predeclaration and separation of data acqui-
sition from delivery, a wireless read-only transaction
reads the most current values as of the end of data
acquisition processing, which usually corresponds to
the bcycle at which it commits.

3 SupportingWireless Read-only
Transactions

In this section, we show that the use of predeclaration
combined with local caching can e�ectively maintain
the serializability of wireless read-only transactions in
the environment where data items are being updated
and disseminated from the server.

3.1 Predeclaration of ReadSet

The basic principle of our method is to employ predec-
laration of readset in order to minimize the number of
di�erent bcycles from which transactions read data. It
is particularly assumed that the information about the
readset of a transaction is available at the beginning
of transaction processing. For example, it is possible
by using preprocessor, such as a compiler, on a client
to analyze its transaction before being submitted to
the client system.

We de�ne the predeclared readset of a transaction
T , denoted by Pre RS(T), to be a set of data items
that T reads potentially. Note that additional reads
may be included to the predeclared readset due to con-
trol statements such as IF-THEN-ELSE and SWITCH
statements in a transaction program. In particular,
each client processes its read-only transaction, T , in
three phases: (1)Preparation phase: it gets Pre RS(T),
(2)Acquisition phase: it acquires all data items belong-
ing to Pre RS(T) from its local cache or the bcast(s),
and (3)Delivery phase: it delivers data items to its
transaction according to the order in which the trans-
action requires data. The execution of read-only trans-
actions is clearly serializable if it can fetch all data
items within a single bcycle. In reality, however, a
transaction is expected to be started at some point
within a bcycle, thus its acquisition phase may be
across more than one bcycle. In the next section, han-

dling such a situation is addressed in the context of
local caching.

3.2 Caching and Invalidation Bit Pat-
terns

In our method, caching technique is employed in the
context of transaction processing, so transaction se-
mantics are not violated as a result of the creation
and destruction of cached data based on the runtime
demands of clients. To this end, the maintenance of
cache consistency is based on invalidation bit patterns
broadcast by the server. In an invalidation bit pat-
tern, each bit corresponds to a single data item in the
database (recall that the location of each data item
in the broadcast channel remains �xed). A bit is set
to 1 if its corresponding data item has been updated
during the previous bcycle but not installed into the
previous bcast. The remaining bits are set to 0s. Each
bcast is preceded by an invalidation bit pattern.

During its acquisition phase, in addition to Pre RS(T),
a client keeps a set Acq RS(T) of all data items that
it has acquired from its local cache or the broadcast
channel so far. Clearly, Acq RS(T) is a subset of
Pre RS(T). At the beginning of each bcycle, the
client tunes in and reads the invalidation bit pattern
broadcast by the server. If any data item di 2 Acq RS(T)
was updated but not installed during the previous
bcast, that is if a bit corresponding to di is 1 in the
invalidation bit pattern, the client marks di as "in-
valid" and gets di again from the current bcast and
puts it into local cache. Cache management in our
scheme is therefore an invalidation combined with a
form of autoprefetching [AFZ96b]. Invalidated data
items remain in cache to be autoprefetched later. In
particular, at the next appearance of the invalidated
data item in the bcast, the client fetches its new value
and replaces the old one.

3.3 Handling Disconnections

In case a client misses an invalidation bit pattern due
to a disconnection during its acquisition phase, it merely
invalidates all data items in its local cache after waking
up from a disconnection. And, at the next appearance
of the invalidated data items in the following bcast
the client fetches its new value and replaces the old
one. In this simple method, some data items in local
cache may lead to "false invalidation", while in fact
they are valid. That is, discarding the entire cache
because of a disconnection may be costly in terms of
energy-e�ciency as most of bene�ts of caching are lost,
especially if most of the cached data items are still
valid [WYC96]. In fact, re-acquiring data items from
scratch in point-to-point communication is costly since
the disconnected client should send request messages,
which consumes much energy than receiving ones, for
invalidated data items. In the previous research [BI94,
LHY99, PC99a], it has been shown that periodic re-
transmission of invalidation information can increase
clients tolerance to intermittent connectivity. For in-
stance, an invalidation bit pattern on data items up-
dated during last ! (> 1) bcycles may be broadcast to
allow a disconnected client to resynchronize. In this
case, however, the client should wait for the next in-
validation bit pattern to arrive in order to decide to
retain or discard data items in its cache.

4

In the push-based data delivery, in contrast, the
simple method using autoprefetching has the advan-
tage of handling disconnections e�ectively by just fetch-
ing data items, which are on the air anyway. Further-
more, a read-only transaction can be shielded from dis-
connections if a client delivers data items to its trans-
action only after all data items belonging to Pre RS(Ti)
are acquired. For these reasons, we employ the simple
method to handle disconnections in processing read-
only transactions.

3.4 PwA method

Here we describe the read-only transactions process-
ing method, called the PwA (Predeclaration with Au-
toprefetching) method. A client processes its read-
only transaction Ti according to the following PwA
method:

1. On receiving Begin(Ti) f
get Pre RS(Ti); Acq RS(Ti) = ;;

g

2. For every "valid" item di in local cache f
if (di 2 Pre RS(Ti)) f Acq RS(Ti)(di; g

g

While (Pre RS(Ti) 6= Acq RS(Ti)) f
for any ("invalid" item dk in cache)
or any (dj 2 Pre RS(Ti)�Acq RS(Ti)) f

tune in and read dk or dj from the bcast;
if (dk was fetched) f overwrite the value; g
if (dj was fetched) f
put dj into local cache; Acq RS(Ti)(dj ;

g

g

if (it is time to receive an invalidation bit pattern) f
tune in and listen to an invalidation bit pattern;
for every item di in local cache f

if (the invalidation bit is set to 1) f
mark di as "invalid";
Acq RS(Ti) = Acq RS(Ti)� fdig; g

g

g

if (miss an invalidation) f
mark all data items in local cache "invalid";
Acq RS(Ti) = ;;

g

g

3. Deliver data items to Ti according to the order in which
Ti requires, and then commit Ti.

The following Theorem 1 shows the correctness of
PwA method.

Theorem 1. PwA method generates serializable ex-
ecution of read-only transactions if the server
broadcasts only serializable data values in each
bcycle.
Proof. Let bcyclei be the bcycle in which a
transaction T1 completes its acquisition phase
and DSi be the serializable database state that
corresponds to the bcycle bcyclei. We show that
the values read by T1 correspond to the database
state DSi by using a contradiction. Let us as-
sume that the value of data item d1 read by T1
di�ers from the value of d1 at DSi. Then, an

invalidation bit pattern should have been broad-
cast at the beginning of bcyclei and thus d1 should
have been invalidated. 2

So far, we have described how PwA method works
and its correctness. Now, we identify some useful
properties of PwAmethod. In particular, PwAmethod
has three highly desirable properties for transaction
processing in wireless data broadcast:

1. It achieves a considerable reduction of transac-
tion response time in an update-intensive envi-
ronment. In particular, in the absence of discon-
nections, all data items needed for a read-only
transaction can be fetched from at most two dif-
ferent bcasts even in an extreme case where all
data items in a database is updated during a
bcycle.

2. It commits each transaction successfully without
sacri�cing currency of data values.

3. It imposes minimal overhead on the server. The
only overhead on the server side is to broadcast
an invalidation bit pattern at the beginning of a
bcycle.

4 Analytical Study

In this section, we analyze the performance of trans-
action processing methods in terms of expected av-
erage response time. The average response time will
be measured in the number of data items. We com-
pare PwA method with other methods proposed by
[PC99b]. In particular, invalidation based methods
only are considered for comparison purpose in no up-
date environment, whereas multiversion based meth-
ods only are considered for comparison purpose in an
updated database. This is due to the following rea-
sons:

� Without updates at the server, invalidation based
methods are superior to multiversion based ones
which increase a bcycle length unnecessarily.

� With intensive updates at the server, invalida-
tion based methods are intolerable to transac-
tion aborts. Since PwA method never aborts
read-only transactions, multiversion based meth-
ods which can commit transactions with high
probability are more appropriate than invalida-
tion based ones for comparison purpose.

In the uniform bcast, all D data items are broad-
cast periodically. In the nonuniform bcast, the D data
items are split into n partitions, where each partition
comprises data items with similar access frequencies.
Partitions with larger access frequencies will be broad-
cast more often than those with lower access frequen-
cies. Let partition i be broadcast �i times (1 � i � n).
Moreover let �i > �j for 0 < i < j and �n = 1. Let
� be LCM (least common multiple) of �i for all i. In
[AAF+95], the ith partition, Pi (1 � i � n), is further
split into ci chunks (ci = �=�i). The data broadcast
is then organized by a broadcast program that inter-
leaves the chunks of the various partitions.

The broadcast program can also be viewed as a se-
quence of equal sized segments such that P1 appears in
all segments. Since P1 is broadcast �1 times, there are

5

�1 segments and each segment contains
Pn

i=1 �ijPij=�1
items, where jPij denotes the number of data items in
partition i.

Let jU j and jNU j be the number of items in a sin-
gle bcycle for the uniform bcast and the nonuniform
bcast, respectively. In the uniform bcast, any data
item appears only once in a bcycle. Thus,

jU j = D (1)

For the nonuniform bcast, the number of data items
in a bcycle is,

jNU j =

nX

i=1

�ijPij (2)

Obviously, jNU j > jU j. Furthermore, let aUs (or a
NU
s)

and aUt (or aNU
t) be the average response time for

accessing a single data item and the average response
time for accessing multiple data items in a given trans-
action for the uniform (or nonuniform) bcast, respec-
tively.

4.1 Uniform Bcast

For the uniform bcast, the average response time for
a single data item (the time elapsed from the moment
a client requests for a data item to the point when the
desired one is downloaded by the client) will, on aver-
age, be half the time between successive broadcasts of
the data items,

aUs =
1

2
jU j (3)

4.1.1 Case of No Updates

Let us �rst consider the case where there is no updates
at the server so the execution of read-only transac-
tions is always committed successfully. With the use
of invalidation (InV) method proposed in [PC99b],
a client retrieves data items in a one-at-a-time fash-
ion, i.e. only after retrieving one item from a bcast
another request is issued. Thus the average response
time for a transaction accessing m data items can be
computed as 3,

aUt (InV) =
m

2
jU j (4)

Note that the average response time of InV method
will be improved if local caching is employed. For
the sake of a fair comparison, we assume that cache
management is an invalidation combined with a form
of autoprefetching. We call such a method IwA. Let
h be the cache hit ratio of client caching. Then the
average response time can be calculated by,

aUt (IwA) =
m(1� h)

2
jU j (5)

In PwAmethod, a transaction processing is divided
into 3 phases: preparation, acquisition, and delivery.

3The worst-case response time of InV method is mjU j �m,
in the case where a transaction issues requests for items, whose
next arrival time on the bcast is the highest, one at a time in
the reverse order they are broadcast.

If the time required by a client for each phase is ex-
pressed as PT , AT , and DT respectively, the response
time can be formulated by,

aUt (PwA) = PT +AT +DT (6)

Because of the serial nature of the bcast and the
short span of preparation and delivery phases, most of
transaction response time is dominated by acquisition
phase. Thus Expression (6) can be reduced to,

aUt (PwA) � AT (7)

Since a client can acquire all data items necessary
for its transaction within a single bcylce with the use
of PwA method, the average response time is bounded
by jU j irrespective of the number of data items or
cache hit ratio, i.e.

aUt (PwA) � jU j (8)

4.1.2 Case of Updates

The inherent drawbacks behind both InV and IwA
methods are that they are prone to starvation of read-
only transactions by frequent updates at the server
and they perform poorly when the number of data
items a transaction requires is increased. That is, the
performance of InV and IwA methods is very sensi-
tive to both update rate and the number of data items
necessary for a transaction.

In order to increase the number of read-only trans-
actions that are successfully processed, broadcasting
multiple versions of data items is proposed in [PC99b].
Multiversioning (MV) method can e�ectively increase
the number of read-only transactions that are success-
fully committed. To process every read-only transac-
tion successfully by using multiversioning, however,
the server should maintain enough large number of
old versions per data item. Keeping multiple versions
in the uniform bcast leads to the increased length of
bcycle, which is proportional to the number of addi-
tional versions per data item, thereby resulting in the
increased average response time.

More speci�cally, if the average number of updated
data items during a single bcycle (i.e. jU j) is Nc and
the server maintains large k old versions per data item
enough to process all read-only transactions success-
fully, the increase for old versions on the bcast is at
least kNc. Thus, the average response time of a trans-
action is (note that, like the case with InV method, a
client retrieves data items in a one-at-a-time fashion),

aUt (MV) =
m

2
(jU j+ kNc) (9)

The average response time of MV method will be
reduced if local caching is employed. For the sake of a
fair comparison, we assume that cache management is
an invalidation combined with a form of autoprefetch-
ing. We call such a method MVwA. Let hc be the
client cache hit ratio in an update environment. Then
the average response time can be calculated by,

aUt (MV wA) =
m(1� hc)

2
(jU j+ kNc) (10)

However, using part of the cache space to keep old
versions seems to result in a very small increase in

6

concurrency of long running transactions, since the
e�ective cache size is decreased [PC99b].

In PwA method, a client listens to at most one in-
validation bit pattern during its transaction process-
ing. If the time required by a client for processing
invalidation bit pattern is expressed as IBP , the re-
sponse time of PwA can be formulated by,

aUt (PwA) = PT +AT +DT + IBP (11)

One bit is assigned to each data item in an invali-
dation bit pattern, thus IBP is comprised of only D
bits of which size corresponds to very few number of
data items. Since PT , DT , and IBP are all trivial,
Expression (11) can be reduced to Expression (7).

Since a client can acquire all data items necessary
for its transaction within two bcylces with the use of
PwA method, the average response time is bounded
by 2jU j irrespective of the number of data items or
cache hit ratio, i.e.

aUt (PwA) � 2jU j (12)

4.2 Nonuniform Bcast

For the nonuniform bcast, the average response time
for a single data item is optimal when the inter-arrival
time between two consecutive occurrences of a data
item is always the same, i.e. there is no variance in the
inter-arrival time for each data item [VH99]. When
the inter-arrival rate of a data item is �xed, the ex-
pected delay for a request arriving at a random time
is one half of the gap between successive broadcasts of
the data item. For each data item di 2 D, thus, the
expected delay of di is,

!(di) =
jNU j

2fi
(13)

, where fi is the frequency of di. The expected aver-
age response time for any data request is calculated
by multiplying the probability of access (denoted by
p(di)) with the expected delay of each data item and
summing the results,

aNU
s =

X

di2D

p(di)!(di): (14)

4.2.1 Case of No Updates

With the use of InV method, assuming that there is
no updates on the server side, the average response
time for a transaction accessing m data items can be
computed as,

aNU
t (InV) = m

X

di2D

p(di)!(di) (15)

Also, the average response time of IwA method can
by calculated by,

aNU
t (IwV) = m(1� h)

X

di2D

p(di)!(di) (16)

If we apply the approximation in Expression (7),
the average response time of PwA method is,

aNU
t (PwA) � AT (17)

Hence, the average response time for a transaction
accessing m data items is bounded by jNU j,

aNU
t (PwA) � jNU j (18)

4.2.2 Case of Updates

In [PC99b], three approaches are proposed to maintain
old versions of data items in the nonuniform bcast:
clustering, over
ow bucket pool, and new disks. With
any approach to bcast organization, keeping multiple
versions in the nonuniform bcast, as is the case with
the uniform bcast, leads to the overall increased length
of bcycle, which is proportional to the number of ac-
commodated old versions per data item, thereby re-
sulting in the increased average response time.

Although the inter-arrival time between two consec-
utive occurrences of a data item may be di�erent on a
bcast organization carrying old versions of data items,
we assume that there is some optimal bcast organiza-
tion in which the inter-arrival time of a data item is
same. If the average number of data items that have
updated during a single bcast (i.e. jNU j) is Nc and
the server maintains large k old versions per data item
enough to process all read-only transactions success-
fully, the increase for accommodating old versions on
the bcast is at least kNc. For each data item di 2 D,
hence, the expected delay of di,

!c(di) =
jNU j+ kNc

2fi
(19)

, where fi is the frequency of di on the bcast accommo-
dating old versions of data items along with up-to-date
data items. The expected average response time for
any data request is calculated as,

aNU
s (MV) =

X

di2D

p(di)!c(di) (20)

Therefore, the average response time for a transaction
accessing m data items can be computed as,

aNU
t (MV) = m

X

di2D

p(di)!c(di) (21)

Also, the average response time forMV wA method
can be calculated by,

aNU
t (MVwA) = m(1� hc)

X

di2D

p(di)!c(di) (22)

As stated previously, however, using part of the
cache space to keep old versions is not e�cient be-
cause the e�ective cache size is decreased [PC99b]. In
contrast, the average response time of a transaction
in PwA method is bounded by 2jNU j if we apply Ex-
pression (17),

aNU
t (PwA) � 2jNU j (23)

5 Analytical Results

To further substantiate the analysis in last section, we
show some analytical results in this section. In partic-
ular, the performance behavior of PwA methods will

7

be shown in terms of the worst-case expected response
time, while the performance behavior of other meth-
ods will be shown in terms of the average expected re-
sponse time. Table 1 and 2 summarize the parameter
settings for the server and a client respectively, where
values in parenthesis are the default ones. With re-
spect to client's access frequency, the frequency of ac-
cess of data items within a single partition is assumed
to be uniformly distributed. It should be noted that
the results described in this section are a small subset
of the results that have been obtained. These results
have been chosen because they demonstrate unique
performance aspects of PwA method in wireless data
broadcast.

Parameter Value(s)

D 1000
n 3

�1, �2, �3 4, 2, 1
jP1j, jP2j, jP3j 50, 150, 800

Table 1: Server Parameter Settings

Parameter Value(s)

m 10-90 (20)
fP1 , fP2 , fP3 Varying (0.7, 0.2, 0.1)

Cache Replacement Policy LRU
Cache Invalidation Invalidation with Autoprefetch

h 10%-90% (90%)
hc 10%-90% (90%)

Table 2: Client Parameter Settings

5.1 Asymptotic Analysis

First we analyze the performance behavior of several
schemes in extreme cases. The analysis we want to
present shows the behavior as the portion of updated
data items during a bcycle tends to 0% (Nc = 0), and
100% (Nc = D).

5.1.1 Response Time Without Updates

In an environment where there is no updates at the
server, jU j=1000 and jNU j=1300. Figure 2 shows the
performance behavior of PwA and invalidation based
methods as the number of data items for a transaction
is increased (the y-axis is in logscale). In this graph, h
is set to 90%. As shown in the �gure, the worst-case
response time of PwAmethod is totally immune to the
number of data items, while the average response time
of IwA method gets worse with increasing number of
data items. Thus, if a transaction reads more than 20
or 50 items, PwA method provides an improvement
over IwA method in a uniform or a nonuniform bcast
respectively. When a transaction reads small or mod-
erate number of data items, the worst-case response
time of PwA method is higher than the average re-
sponse time of IwA method in each bcast. In such
a small- or moderate-scale case, however, the average
response time of PwA is expected to show a similar
shape to that of IwA method. This is because the
procedure of PwA method is almost identical4 to that
of IwA method in a situation where a transaction can
be processed within a single bcycle length with the use
of IwA method.

4The only di�erence in retrieving data items is that addi-
tional reads may be necessary in PwA method.

With respect to the impact of di�erent bcast orga-
nizations on transaction processing, in IwA method,
the nonuniform bcast outperforms the uniform one by
about 50% reduction of response time across all range
of number of data items. In PwA method, however,
the uniform bcast is superior to the nonuniform one
with respect to the worst-cast response time. This
is because the nonuniform bcast increases a bcycle
length and a client has to spend more time to retrieve
the less commonly requested data.

5.1.2 Response Time with Intolerable Updates

In the previous analysis, no data items is updated
at the server. In this analysis, we examine the per-
formance behavior of PwA and multiversion based
methods in an "intolerable" environment where all
data items in a database are updated during each bcy-
cle. For this examination, we assume that k = 4 and
hc = 90%. In the nonuniform bcast, in particular, the
frequencies of access of di�erent versions for a single
data item are assumed to be uniformly distributed.

Figure 3 compares PwA and multiversion based
methods in response time (y-axis is in logscale), where
MVwA method performs worse than PwA method
across the entire range. The poor performance of
MVwA method is mainly due to the increased bcycle
length; since a bcast accommodates 5 versions of data
items where 4 old versions are appeared once within
a bcycle, each bcycle in the uniform and the nonuni-
form bcasts is 5jU j=5000 and jNU j + 4(1000)=5300
respectively. In contrast, in PwA method, each bcycle
is jU j=1000 and jNU j=1300 respectively since only a
single current version of data items appear on each
bcast. In particular, PwA method has a bounded
worst-case response time which is only doubled from
a single bcycle length. Note that the worst-case re-
sponse time is totally independent of client cache hit
ratio. This means that PwA method works e�ectively
especially in an intolerable update environment.

With respect to the impact of di�erent bcast orga-
nizations on transaction processing, inMVwAmethod,
the uniform and nonuniform bcasts have almost the
same average response times (the nonuniform bcast
outperforms the uniform one by only 7% reduction
of response time). In general, the similarity between
two response times is more apparent for large k. In
PwA method, however, the uniform bcast, which has
a smaller bcycle length, is superior to the nonuniform
one in terms of the worst-cast response time.

5.2 Some Examples

Here we show some additional comparison results for
PwA and other methods in two environment: one is
for no updates at the server, and the other is for an
intensive update (half of the data items in a database
are updated during a bcycle) environment.

5.2.1 Example 1: Response time with Vary-
ing Cache Hit Ratio

This example shows the sensitivity to cache hit ratio.
Figures 4 and 5 present how the client performs in re-
sponse to varying cache hit ratio in no update and in-
tensive update environment respectively. As expected,
performance of IwA and MVwA methods su�er for
each environment as cache hit ratio is decreased. As

8

we can see in Figure 4, PwA method behaves better
than IwA method during the entire range of h in the
uniform bcast. Only when h is greater than 70% in
the nonuniform bcast, the average response time of
IwA method is better than the worst-case response
time of PwA method. As stated before, however, the
average response time of PwA method is expected to
be similar to that of IwA method in such a situation
where a transaction can be processed within a single
bcycle length with the use of IwA method.

Turning to the intensive update environment, PwA
method outperforms MV wA method for all range of
cache hit ratio in the uniform bcast. Only if hc is
greater than 85% in the nonuniform bcast, the av-
erage response time of MV wA method approaches
close to the worst-case response time of PwA method.
Furthermore, in reality, the hit ratio under MVwA
method will be a small value because of intensive up-
dates and decreased e�ective cache size [PC99b]. This
implies that PwA method has an improved perfor-
mance over MV wA method.

5.2.2 Example 2: Response time with Vary-
ing Access Pattern

This example shows the sensitivity to the disagree-
ment between client access pattern and the server's
broadcast program. In the nonuniform data broad-
cast, the server's broadcast may be sub-optimal for
a particular client due to inaccurate access frequency
of a client, dynamically changing access frequency of a
client, and/or the server's averaged broadcast over the
needs of a large client population [AAF+95]. To model
such a mismatch between the needs of a client and the
server's broadcast program, we use three access pat-
terns, which are shown in Table 3, under the default
data partitions. There, AP1 is the least matched ac-
cess pattern, AP2 is less matched one, and AP3 is the
most matched one.

Pattern (fP1 , fP2 , fP3)

AP1 (0.1, 0.2, 0.7)
AP2 (0.5, 0.3, 0.2)
AP3 (0.7, 0.2, 0.1)

Table 3: Di�erent Client Access Patterns for Example 2

Figures 6 and 7 show the performance behavior of
the mentioned methods in di�erent access patterns.
We can see that the average response times of IwA and
MVwA methods get worse as the mismatch becomes
increasingly large from AP3 to AP1. Comparing these
results with the results obtained in the previous exam-
ple (see Figures 4 and 5), we see that the high degree of
mismatch, i.e. when a client's access pattern is AP1,
has the nonuniform bcast performance that is worse
than the uniform bcast performance. This suscepti-
bility to a broadcast mismatch is to be expected, as
the client can not gain the bene�ts of the nonuniform
bcast approach. In the case of PwA method, however,
its worst-case response time is totally immune to the
disagreement. If a transaction reads a moderate or
large number of data items, PwA method dominates
MVwA and IwA methods for an entire range of access
pattern. In no update environment, as stated early,
PwA method is expected to have a comparable aver-
age response time to that of IwA method, although
the latter dominates the former for a small or moder-
ate number of data items (see Figure 6). Thus, we can

conclude that PwA method is somewhat more toler-
ant to the degree of mismatch than other methods.

6 Conclusions

In this paper, we have proposed a simple but robust
PwA (Predeclaration with Autoprefetching) method
to speed up processing of wireless read-only transac-
tions while keeping the serializability for the transac-
tions in wireless data broadcast. Unlike other schemes,
PwAmethod allows transactions to retrieve data items
in the order they are broadcast rather than in the or-
der the requests are issued. Wireless read-only trans-
actions are therefore able to commit successfully with
much reduction of response time. Through an analyti-
cal study, we have shown that PwA method is in favor
of long transactions in a highly changing database en-
vironment. In particular, our method has a bounded
worst-case performance behavior irrespective of the
number of data items read by a transaction, client
cache hit ratio, or client's data access pattern. Thus,
it can adapt to dynamic changes in workload.

With respect to currency, which is another impor-
tant performance metric, PwA method allows trans-
actions to read current data values that correspond
to the database state at the completion of data ac-
quisition of its readset. Since the span of data deliv-
ery phase is usually short, however, most transactions
read the values corresponding to the broadcast cycle
at which they commit.

In the future, we intend to extend this work by con-
sidering multiple physical channels with which data
items can be broadcast more e�ciently than a single
physical channel [LC00, PHO00, VH99].

References

[AAF+95] S. Acharya, R. Alonso, M. Franklin, and
S. Zdonik. Broadcast Disks: Data Man-
agement for Asymmetric Communication
Environments. Proceedings of the ACM
SIGMOD Conference on Management of
Data, pp. 199-210, 1995.

[AFZ96a] S. Acharya, M. Franklin, and S. Zdonic.
Prefetching from a Broadcast Disk. Pro-
ceedings of the 12th International Confer-
ence on Data Engineering, pp. 276-285,
1996.

[AFZ96b] S. Acharya, M. Franklin, and S. Zdonik.
Disseminating Updates on Broadcast
Disks. Proceedings of the 22nd Inter-
national Conference on Very Large Data
Bases, pp. 354-365, 1996.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N.
Goodman. Concurrency Control and Re-
covery in Database Systems. Addison Wes-
ley, Reading, Massachusetts, 1987.

[BI94] D.Barbara, and T.Imielinski. Sleepers and
Workaholics: Caching in Mobile Environ-
ments. Proceedings of the ACM SIGMOD
Conference on Management of Data, pp.
1-12, 1994.

9

100

1000

10000

100000

1 10 20 30 40 50 60 70 80

Number of data items for a transaction

A
v
e
r
a
g
e

R
e
s
p
o
n
s
e

T
i
m
e

(
i
n

n
u
m
b
e
r

o
f

d
a
t
a

i
t
e
m
s
)

InV(U)

IwA(U)

PwA(U)

InV(NU)

IwA(NU)

PwA(NU)

Figure 2: Comparison of response time
in an extreme case

100

1000

10000

100000

1 10 20 30 40 50 60 70 80

Number of data items for a transaction

A
v
e
r
a
g
e

R
e
s
p
o
n
s
e

T
i
m
e

(
i
n

n
u
m
b
e
r

o
f

d
a
t
a

i
t
e
m
s
)

MV(U)

MVwA(U)

PwA(U)

MV(NU)

MVwA(NU)

PwA(NU)

Figure 3: Comparison of response time
in an extreme case

100

1000

10000

100000

10 20 30 40 50 60 70 80 90

Cache Hit Ratio(%)

A
v
e
r
a
g
e

R
e
s
p
o
n
s
e

T
i
m
e

(
i
n

n
u
m
b
e
r

o
f

d
a
t
a

i
t
e
m
s
)

IwA(U)

PwA(U)

IwA(NU)

PwA(NU)

Figure 4: Comparison of response time
with varying client cache hit ratio

100

1000

10000

100000

10 20 30 40 50 60 70 80 90

Cache Hit Ratio(%)

A
v
e
r
a
g
e

R
e
s
p
o
n
s
e

T
i
m
e

(
i
n

n
u
m
b
e
r

o
f

d
a
t
a

i
t
e
m
s
)

MVwA(U)

PwA(U)

MVwA(NU)

PwA(NU)

Figure 5: Comparison of response time
with varying client cache hit ratio

100

1000

10000

10 20 30 40 50 60 70 80 90

Number of data items for a transaction

A
v
e
r
a
g
e

R
e
s
p
o
n
s
e

T
i
m
e

(
i
n

n
u
m
b
e
r

o
f

d
a
t
a

i
t
e
m
s
)

IwA(NU)-AP1

IwA(NU)-AP2

IwA(NU)-AP3

PwA(NU)

Figure 6: Comparison of response time
with di�erent access patterns

100

1000

10000

10 20 30 40 50 60 70 80 90

Number of data items for a transaction

A
v
e
r
a
g
e

R
e
s
p
o
n
s
e

T
i
m
e

(
i
n

n
u
m
b
e
r

o
f

d
a
t
a

i
t
e
m
s
)

MVwA(NU)-AP1

MVwA(NU)-AP2

MVwA(NU)-AP3

PwA(NU)

Figure 7: Comparison of response time
with di�erent access patterns

[JEH+97] J. Jing, A. Elmargarmid, S. Helal,
and R. Alonso. Bit-Sequences: An
Adaptive Cache Invalidation Method
in Mobile Client/Server Environments.
ACM/Baltzer Mobile Networks and Appli-
cations, Vol. 2, No. 2, pp. 115-127, 1997.

[LAC99] K. Lam, M. Au, and E. Chan. Broadcast
of Consistent Data to Read-Only Trans-
actions from Mobile Clients. Proceedings
of the 2nd IEEE International Workshop
on Mobile Computer Systems and Appli-
cations, 1999.

[LC00] S. Lo and A. Chen Optimal Index and
Data Allocation in Multiple Broadcast
Channels. Proceedings of the 16th IEEE
International Conference on Data Engi-
neering, pp. 293-302, 2000.

[LHY99] S. Lee, and C. Hwang, and H. Yu. Sup-
porting Transactional Cache Consistency
in Mobile Database Systems. Proceedings
of the 1st ACM International Workshop on
Data Engineering for Wireless and Mobile
Access, pp. 6-13, 1999.

[PC99a] E. Pitoura and P. Chrysanthis. Scalable
Processing of Read-only Transactions in
Broadcast Push Proceedings of the 19th
International Conference on Distributed
Computing Systems, pp. 432-439, 1999.

[PC99b] E. Pitoura and P. Chrysanthis. Exploiting
Versions for Handling Updates in Broad-
cast Disks. Proceedings of the 25th Inter-
national Conference on Very Large Data
Bases, pp. 114-125, 1999.

[PHO00] K. Prabhakara, K. Hua, and J. Oh. Multi-
Level Multi-Channel Air Cache Designs
for Broadcasting in a Moible Environ-
ment. Proceedings of the 16th IEEE Inter-
national Conference on Data Engineering,
pp. 167-176, 2000.

[SNS+99] J. Shanmugasundaram, A. Nithrakashyap,
R. Sivasankaran, and K. Ramamritham.
E�cient Concurrency Control for Broad-
cast Environments. Proceedings of the
ACM SIGMOD Conference on Manage-
ment of Data, pp. 85-96, 1999.

[TY98] Kian-Lee Tan and Je�rey Xu Yu. Gen-
erating Broadcast Programs that Support
Range Queries. IEEE Transactions on
Knowledge and Data Engineering, Vol. 10,
No. 4, pp. 668-672, 1998.

[VH99] N. H. Vaidya and S. Hameed. Scheduling
Data Broadcast in Asymmetric Communi-
cation Environments. Wireless Networks,
Vol. 5, No. 3, pp 171-182, 1999.

[WYC96] Kun-Lung Wu, Philip S. Yu and Ming-
Syan Chen. Energy-E�cient Caching for
Wireless Mobile Computing. Proceedings
of the 12th International Conference on
Data Engineering, pp. 336-343, 1996.

10

