
Using Ontology-Based User Preferences to

Aggregate Rank Lists in Web Search

Lin Li1, Zhenglu Yang1, and Masaru Kitsuregawa2

1 Dept. of Info. and Comm. Engineering, University of Tokyo, Japan
2 Institute of Industrial Science, University of Tokyo, Japan

{lilin, yangzl, kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract. This paper studies rank aggregation by using ontology-based
user preferences in the context of Web search. We introduce a set of
techniques to combine the respective rank lists produced by different
attributes of user preferences. Furthermore, the learned user preferences
are structured as a taxonomic hierarchy (a simple ontology). We use
the learned ontology to store the attributes such as, the topics that a
user is interested in and the degrees of user interests in these topics. The
primary goal of our work is to form a broadly acceptable rank list among
these attributes by making use of rank-based aggregation. Experiment
results on a real click-through data set show that our user-centered rank
aggregation techniques are effective in improving the quality of the Web
search in terms of user satisfaction.

1 Introduction

Nowadays, it becomes increasingly difficult for users to retrieve desired informa-
tion due to the continued rapid growth in data volume and the ambiguity of short
queries in Web searches. As we know, different users have different intentions
for a same query. In order to satisfy the diverse needs of users, search engines
should be adaptive to the individual contexts in which users submit their queries.
Lawrence et al. [6] addressed an overview of the context of the Web search. User
preferences are a kind of useful contexts. Shen et al. [11] developed a client-side
Web search agent to perform implicit feedback and inferred user model from
short-term search contexts to improve Web searches. The user preferences can
be represented by a bag of words or a taxonomic hierarchy. The bag of word rep-
resentation does not consider term correlations because terms in user preferences
are considered in isolation from one another. The taxonomic hierarchy can over-
come this drawback and has been widely accepted [2, 7, 10]. It is also the basic
structure of modeling our user preferences. Furthermore, user preferences consist
of a number of attributes, such as what kind of topics that users are interested
in, and how much users are interested in each topic. Each attribute describes
a user’s favorite in different aspects. In most cases, any individual attribute is
deficient in accurately representing user preferences. Combining user knowledge
depicted by each attribute can help us understand user preferences well, which
finally results in an effective rank mechanism in the Web search. To leverage

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 923–931, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

924 L. Li, Z. Yang, and M. Kitsuregawa

Root

[Computer,15] [Travel,1]

[Internet,18] [Software,22] [Hardware,15] [Lodging,6]

AB

C D E F

Fig. 1. Hierarchical Model of User Preferences

the rankings produced by the different attributes, rank aggregation intends to
form a single rank list supported by a broad consensus among these attributes.
There are two approaches: score-based and rank-based. The score-based rank
aggregation merges the values of the attributes [2, 12]. However, it is important
to observe that if the rank mechanism is score-based, the sequence implied by
the scores makes it more meaningful than the actual scores themselves. On the
other hand, the rank-based rank aggregation fuses the rank lists produced by
the values of the attributes and has been studied and employed in many appli-
cations in the last half century [4, 9, 14]. Renda et al. [9] compared rank and
score based methods without training data in the context of metasearch, and
showed that Markov chain rank-based methods compete with score-based meth-
ods. Dwork et al. [4] developed the theoretical groundwork for describing and
evaluating rank aggregation methods. Their main point is to effectively combat
spam. In this paper we introduce methods to effectively improve the Web search
in a context-aware manner.

In the rest of this paper, Section 2 describes rank-based rank aggregation,
including how to produce and fuse user-centered rank lists. We report the exper-
imental results in Section 3, and draw conclusions in Section 4 . From now on, the
term “rank aggregation” means “rank-based” rank aggregation for simplicity.

2 Rank Aggregation

In the following part, we will discuss how to get the respective rank lists from
the learned use preferences and the proposed rank aggregation methods.

2.1 Hierarchical Similarity Measures

Our user preferences are structured as a semantic hierarchy shown in Figure 1.
Technical details about how to learn and update user preferences from click-
through data are in our previous work [7]. For an effective rank mechanism,
the more similar a search result is to user preferences, the higher position it
will be put in the final rank list. To produce such a new rank list, hierarchical
similarity measures are needed to assess the relatedness between user preferences
and search results. We choose five content-ignorant measures from [8] because
we want to see how much we can benefit from the hierarchical structure. The
measures are defined as

S1(i, j) = 2 · M − l , (1)

Using Ontology-Based User Preferences to Aggregate Rank Lists 925

S2(i, j) = αS1(i, j) + βh (α = 0.05, β = 1) , (2)
S3(i, j) = e−α·l (α = 0.25) , (3)

S4(i, j) =
eβ·h − e−β·h

eβ·h + e−β·h (β = 0.15) , (4)

S5(i, j) = e−α·l · eβ·h − e−β·h

eβ·h + e−β·h (α = 0.2, β = 0.6) , (5)

where h means the depth of the subsumer (the deepest node common to two
nodes), l is the näıve distance (the number of edges or the shortest path length
between two nodes), i and j are nodes (topics) in Figure 1, and M is the maxi-
mum depth of topic directory possessed by user preferences. The values in paren-
theses are the optimal values of parameters [8].

2.2 Rank Lists Produced by Ontology-Based User Preferences

The above five content-ignorant measures can evaluate the hierarchical similarity
between search results and user preferences. The degree of user preferences has
effect on the similarity as well. There are various ways of combining the two kinds
of similarity scores dependent on applications. Their product is commonly used
in classic IR like our previous work. However, as we mentioned in Section 1, the
ranking implied by the scores has more sense than the actual scores themselves.
In the following discussion we calculate two user-centered rank lists plus the
result list returned by Google for rank-based fusion, as distinguished from the
traditional score-based combination.

(1) Hierarchical Semantic Similarity. User preferences include a number
of topics (nodes) in Figure 1. We further define the semantic similarity between
one search result and one user as the maximum value among all the values
computed by any one of Equations 1-5. The search results then are re-ranked
and form a rank list in order of one attribute of user preferences (i.e., the topics
a user is interested in). The priori work [2], however, just selected one of them
without analyzing their differences.

The five measures have their own features from their definitions. For example,
compared to Equation 1, Equation 3 also uses the näıve distance alone, but
makes use of a nonlinear function. Equation 2 is a linear combination of the
näıve distance and the depth. Different from Equation 2, Equation 5 transfers
the näıve distance and the depth by a nonlinear function, respectively, and then
combines them by multiplication. Equation 4 is the transformation of the depth
of the subsumer through a nonlinear function. Based on these differences, we
think that it is necessary to experimentally compare their performances when
they are applied in the context of the Web search and no priori work has done
it. The experimental results are reported in Section 3.

(2) Degree of User Interests. We find that Equations 1-5 are not round in
re-ordering search results. With the help of Figure 1, let us explain the problem
clearly. The näıve distance between node A and node C (i.e., 3) is the same as
that between node B and node F , and the subsumer of A and C (i.e., “root”) is
the same as that of B and F as well. As a result, computed by any equation from

926 L. Li, Z. Yang, and M. Kitsuregawa

Equations 1-5, the similarity score between A and C is equal to that between
B and F . In this situation, these measures cannot order the two pairs. Our
solution for this problem is intuitive that the degree of the user interests in a
topic (node) can alleviate this problem. The more times a user clicks one topic,
the more interested the user is in it. The user’s clicked times can produce a
complementary rank list of search results.

(3) Google List. Google applies its patented PageRank technology on the
Google Directory to rank the sites. To keep our rank aggregation from missing the
high quality Web pages in Google, we also consider the original rank list of Google
Directory Search. As we know, there is a PageRank value accompanied with each
search result, representing the popularity or authority of results. It certainly
could be used to weigh the topics associated with results. Unfortunately, these
values are not publicly available for the present, but the ordering of search results
can be easily obtained. From this point of view, our rank-based aggregation
is suitable in this situation since it is exactly good at processing rank lists.
Certainly, it is reasonable for us to guess the approximate values of PageRank
if we favor the score-based combination, but this topic is out of the scope of
this paper. In our methods the original rank lists as inputs can intactly and
unbiasedly reflect Google’s standpoint.

2.3 Rank Aggregation Methods

We study the problem of combining sets of rank lists from different attributes
of user preferences into a single rank list. Voting provides us with a traditional
class of algorithms to determine the aggregated rank list. The most common
voting theory, named after its creator, is known as Borda’s rule [1] which argues
that the majority opinion is the truth, or at least the closest that we can come
to determining it [13]. However, the problem with Borda’s rule is that it does
not optimize any criterion. We make use of Footrule distances [3] to weigh edges
in a bipartite graph and then find a minimum cost matching. This method was
proved in [4] to approximate the optimal ranking that approximately minimizes
the number of disagreements with the given inputs.

Modified Borda’s Rule. Borda’s rule is a single winner election method in
which voters rank candidates in order of preferences. The winner of an election
is determined by giving each candidate a certain number of points corresponding
to the position in which she is ranked by each voter. Once all points have been
counted, the candidate with the most points is the winner.

Our idea is that we treat each attribute of user preferences as a voter. It means
that each attribute re-orders the search results in the same way as each voter
selects a list of candidates. Let A = a1, a2, · · · , am be the set of positions in the
rank list, and let the attributes of user preferences plus the result list of Google
be named by elements of n (i.e., n voters in an election). We shall assume for
the present that every element of n can be expressed by a linear order in the
position set A. We denote a linear order by a sequence Ai = ai1 , ai2 , · · · , aim

where for j < k, aij is preferred to aik
. For each voter, the ranked results

Using Ontology-Based User Preferences to Aggregate Rank Lists 927

should be given some points. The closer a search result is to the top of the list,
the more points it will be given. Especially in the context of the Web search,
the top search results have much higher possibility to be clicked than others.
Most Web search users just browse the top 10 or 20 results. If they do not find
the desired information, they will modify their queries to start a new search,
instead of continuing checking the results. Therefore, modified Borda’s rule is
applied here. The voter awards the first-ranked candidate with one point (i.e., 1).
The second-ranked candidate receives half of a point (i.e., 1/2), the third-ranked
candidate receives on a third (i.e., 1/3), etc. This kind of point distribution gives
more weights to the top results. When all elements of n have been counted, and
each Ai can be thought of as a position vector, we sort the search results by
several formulas, defined as

L1(ak) =
n∑

i=1

1/aik
, L2(ak) =

√√√√
n∑

i=1

(1/aik
)2 , (6)

GM(ak) = (
n∏

i=1

1/aik
)1/n . (7)

Equation 6 represents the L1 norm and the L2 norm of these position vectors,
and the geometric mean of the n points is expressed in Equation 7. We take
into consideration the median of the n points as well. Borda’s rule is commonly
classified as a positional voting system because from each voter, candidates re-
ceive a certain number of points. Computationally it is very easy, as it can be
implemented in linear time.

Bipartite Graph. Borda’s rule does not assure us that it can find the optimal
rank list because it does not optimize any criterion. A graph theory based method
is proposed here, to approximate the optimal ranking. We define a weighted
balanced bipartite graph G = (V1 ∪ V2, W). V1 = r1, r2, · · · , rm is a set of search
results to be ranked. V2 = p1, p2, · · · , pm is the m available positions in the rank
list. For any two vertices r ∈ V1 and p ∈ V2, rp is an edge in G; thus G is
also a complete bipartite graph. The weight W (r, p) = is the total distance of
a ranking value that places r at position p. The task of rank aggregation is to
minimizes the number of disagreements with the respective lists. Therefore, if
all the search results are put in proper positions, the total distance (i.e., the
number of disagreements) should be the smallest. Now we meet two difficulties
in achieving this goal. One is how to compute the distance. The other one is
what kind of approaches can minimize the distance.

To weigh the edges in G, according to Diaconis et al. [3], the two distance
measures that we consider are:

Footrule D(π, σ) =
n∑

i=1

| π(i) − σ(i) | , Footrule S(π, σ) =
n∑

i=1

(π(i) − σ(i))2 ,

(8)

928 L. Li, Z. Yang, and M. Kitsuregawa

where π and σ are regarded as rank lists. Diaconis et al. [3] also suggest two other
measures. One roughly seems similar to Footrule D, and the other is unsuitable
for general use, having very small variance about a mean that is very close to
its maximum value. Therefore, we choose Footrule D and Footrule S here. We
then adjust the two measures to compute the total distance that is the weight
in an edge, now defined as

∑n
i | Ai(r) − p | or

∑n
i (Ai(r) − p)2. Minimizing the

total distance to n could be solved by the well-known Hungarian algorithm that
finds a minimum cost perfect matching in the bipartite graph. A matching in
a graph is a set of edges where no two of which share an endpoint. The most
similar work to ours is Dwork et al. [4] who only used Footrule D as the distance
measure. However, our experiments compared the two measures and observed
that Footrule D performed the worst among all the methods, even inferior to
the score-based method. The largest improvement is reached by Footrule S. In
addition, their main application is to effectively combat spam while we study
the rank aggregation in terms of user preferences to improve the Web search.

3 Experiments

3.1 Dataset and Evaluation Metrics

Given a query, Google API offered us the top 20 search results. In order to
collect the real click-through data, we randomized the order of the results before
returning them to 12 invited users and asked them to evaluate whether the
clicked results are relevant or not. After the data were collected over a ten-day
period (From October 23nd, 2006, to November 1st, 2006), we had a log of
about 300 queries averaging 25 queries per subject and about 1200 records of
the clicked Web pages in total. The evaluation metrics are listed as follows.

(1) AvgRank indicates the average rank of search results, defined as:

AvgRank(q) =
∑

p∈S

R(p)/|S| . (9)

Here S denotes the set of search results selected by a subject for query q,
R(p) is the position of p in the result list, and |S| is the cardinality of the
set S. A smaller AvgRank represents a better quality.

(2) DCG [5] gives more weight to highly ranked search results, defined as:

DCG(i) =

{
G(1) if i = 1
DCG(i − 1) + G(i)/log(i) otherwise

(10)

By averaging over a set of test queries, the average performance of our meth-
ods can be analyzed. In the experiments, we used G(i) = 2 for highly relevant
Web pages, G(i) = 1 for relevant Web pages, and G(i) = 0 for non-relevant
search results. A larger DCG means a better quality.

Using Ontology-Based User Preferences to Aggregate Rank Lists 929

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 ALL

Depth of Hierarchical User Preferences

Im
pr

ov
m

en
t

ov
er

 G
oo

gl
e

D
ir

ec
to

ry
 (

A
vg

R
an

k%
) S1 S2 S3 S4 S5Similarity Mesures

Fig. 2. Depth of Hierarchical User Preferences

3.2 Experimental Results

Depth of Topic Directory for User Preferences. The first step is to deter-
mine how deep the depth of topics is when modeling user preferences. We did a
preliminary performance analysis on different depths. The re-ranking mechanism
is addressed in [7]. Measured by AvgRank in Equation 9, Figure 2 illustrates
the improvement over Google Directory Search per similarity measure versus the
depths considered in learning user preferences.

It shows that the deeper the topic directory we process, the bigger improve-
ment is generally reached. If our algorithm stores the whole topic directory, the
biggest improvement is over 40%. In addition, we observed that when the depth
is set to 1 (2 or 3), the five similarity measures performed almost the same. The
reason is that in our dataset, most of the relevant and non-relevant search re-
sults share the same subsumer in a very low depth of the hierarchy. We need to
store the deeper topic directory to tell the relevant results from the non-relevant
ones. Furthermore, from Figure 2 when the depth of topic directory increases to
3, the improvement is big, from 5% to above 25%. However, when the depth is
increased continually from 3 to 6, the improvement changes slowly. Due to this
observation and the large size of the whole Google Directory1, only the top 4
topic directory is encoded into the user preferences in the following experiments,
which is a trade-off between accuracy and storage memory.

Effect of Similarity Measures and Rank Aggregation Methods. Figure 3
illustrates the performances of rand aggregation methods and the five similarity
measures defined in Equations 1- 5. The Score-Based method in the figure is
the same as that in [7]. From this figure, the highest improvement over Google
Directory Search is about 13%, produced by Footrule S. L1 norm, L2 norm, and
Footrule S performed better than Score-Based, while the qualities of Median

1 Google uses ODP as basis for its Google Directory service, and ODP has more than
590,000 categories.

930 L. Li, Z. Yang, and M. Kitsuregawa

6

7

8

9

10

11

12

13

14

Score-
Based

L1 L2 Median GM Footrule_D Footrule_S

Rank Aggregation Methods

Im
pr

ov
em

en
t o

ve
r

G
oo

gl
e

D
ire

ct
or

y
(D

C
G

 %
)

S1 % S2 % S3 % S4 % S5 %Similarity Measures

Fig. 3. Effect of Similarity Measures and Rank Aggregation Methods

and Footrule D are inferior to that of Score-Based. Although Borda’s Rule nei-
ther optimizes any criterion nor satisfies the Condorcet property [13], this kind
of method outperformed the score-based combination. The Hungarian algorithm
based on the Footrule distance that finds a minimum cost perfect matching in
the bipartite graph showed the best results obtained by the distance measure
Footrule S in Equation 8. In addition, we know that S2, S4, and S5 perform
similarly, while S1 and S3 perform similarly as well. The reason is that the for-
mer three measures give much more weight on depth than length, and the latter
two measures only consider length. Given the same length and depth, the five
measures will compute different values due to different transformation functions.
Thus the score-based method is easily influenced by the selected function. On
the other hand, the rank-based methods are robust. Even the transformation
function is different, as long as the measures take into account the same in-
formation, they will produce similar performance. Moreover, in the rank-based
methods, S2, S4, and S5 performed slightly better than S1 and S3, which tells
us that the depth of subsumbers carry more useful information than the näıve
distance in our dataset. Note that S4 uses the depth alone, but competes with
S2 and S5. In the score-based method, however, S5 is the winner, much better
than the other measures.

4 Conclusions

In this paper we proposed a set of techniques for rank aggregation. Experimental
results on a real click-through data set demonstrate the effectiveness of our meth-
ods. We observed that some rank-based aggregation methods performed better
than the Socre-Based method and the Footrule S method performed best in
our evaluation. Furthermore, we analyzed the influence of the topic depth of
the ontology-based user preferences on the quality of the Web search, and com-
pared the performances of five similarity measures. If the measures utilize similar

Using Ontology-Based User Preferences to Aggregate Rank Lists 931

information from users, they will perform similarly regardless of what kind of
transformation functions is being used. But the score-based combination is sen-
sitive to the selected function. In the future we plan to put these methods into
larger datasets, and further mine more user-centered information and optimize
Web searches in terms of user’s satisfaction.

References

[1] Borda, J.: Mémoire sur les élections au scrutin. Comptes rendus de l’Académie
des sciences 44, 42–51 (1781)

[2] Chirita, P.A., Nejdl, W., Paiu, R., Kohlschütter, C.: Using ODP metadata to
personalize search. In: Proc. of SIGIR 2005, Salvador, Brazil, pp. 178–185 (2005)

[3] Diaconis, P., Graham, R.L.: Spearman’s footrule as a measure of disarray. Journal
of the Royal Statistical Society. Series B (Methodological) 39(2), 262–268 (1977)

[4] Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for
the web. In: Proc. of WWW 2001, Hong Kong, China, pp. 613–622 (2001)

[5] Jarvelin, K., Kekalainen, J.: IR evaluation methods for retrieving highly relevant
documents. In: Proc. of SIGIR 2000, Athens, Greece, pp. 41–48 (2000)

[6] Lawrence, S.: Context in web search. IEEE Data Eng. Bull. 23(3), 25–32 (2000)
[7] Li, L., Yang, Z., Wang, B., Kitsuregawa, M.: Dynamic adaptation strategies for

long-term and short-term user profile to personalize search. In: Proc. of AP-
Web/WAIM 2007, Huang Shan, China, pp. 228–240 (2007)

[8] Li, Y., Bandar, Z., McLean, D.: An approach for measuring semantic similarity
between words using multiple information sources. IEEE Trans. Knowl. Data
Eng. 15(4), 871–882 (2003)

[9] Renda, M.E., Straccia, U.: Web metasearch: Rank vs. score based rank aggregation
methods. In: Proc. of SAC 2003, Melbourne, USA, pp. 841–846 (2003)

[10] Schickel-Zuber, V., Faltings, B.: Inferring user’s preferences using ontologies. In:
Proc. of AAAI 2006, Boston, Massachusetts, USA (2006)

[11] Shen, X., Tan, B., Zhai, C.: Implicit user modeling for personalized search. In:
Proc. of CIKM 2005, Bremen, Germany, pp. 824–831 (2005)

[12] Speretta, M., Gauch, S.: Personalized search based on user search histories. In:
Proc. of WI 2005, Compiegne, France, pp. 622–628 (2005)

[13] Young, H.P.: Condorcet’s theory of voting. American Political Science Re-
view 82(4), 1231–1244 (1988)

[14] Zhu, S., Fang, Q., Deng, X., Zheng, W.: Metasearch via voting. In: Liu, J., Che-
ung, Y.-m., Yin, H. (eds.) IDEAL 2003. LNCS, vol. 2690, pp. 734–741. Springer,
Heidelberg (2003)

	Using Ontology-Based User Preferences to Aggregate Rank Lists in Web Search
	Introduction
	Rank Aggregation
	Hierarchical Similarity Measures
	Rank Lists Produced by Ontology-Based User Preferences
	Rank Aggregation Methods

	Experiments
	Dataset and Evaluation Metrics
	Experimental Results

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

