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Abstract

Current search engines cannot effectively rank those re-
lational data, which exists on dynamic websites sup-
ported by online databases. In this study, to rank
such structured data, we propose a new model, Re-
|laxed Dominant Relationship (RDR), which extends the
state-of-the-art work by incorporating rank aggregation
methods. We propose efficient strategies on building
compressed data structure to encode the core part of
RDR between items. Efficient querying approaches are
devised to facilitate the ranking process and to answer
the RDR query. Extensive experiments are conducted
and the resultsillustrate the effectiveness and efficiency
of our methods.

I ntroduction

Many e-Business applications, i.e., online shopping system,
support users by providing optimal solutions. The typical
features of these applications include: (1) the query from
users is based on multiple criteria; and (2) different users
may prefer different answers based on their personal inter-
ests and hence, no single optimal one exists. A practica
system should provide all interesting answers that may sat-
isfy auser’'s demand. One reasonable solution is that only a
few “best” goods are recommended by the website's system
to the users with regard to their preferences. Here we give
an example. Suppose you are looking for one digital cam-
erathat is cheap and with light weight on awebsite. Fig. 1
(8 shows the information of several sample products in 2-
dimensional space, in which the items a and b should be the
candidates recommended to you because al the other items
areworsethan thesetwo itemswith regard the two attributes,
price and weight.

The set of these “best” items is called the Pareto set, ad-
missible points (Barndorff-Nielsen & Sobel 1966), maximal
vectors (Bentley et al. 1978), or skyline points (Borzsonyi,
Kossmann, & Stocker 2001). However, as pointed in (Yang
et al. 2007) all of these works concerned only the pure bi-
nary relationship, i.e., a product item p is whether or not
worse than (dominated by) others. Interestingly, Yang et al.
(Yang et al. 2007) proposed an efficient data structure (i.e.,
ParCube) to analyze amore general dominant relationship,
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Figure 1. Product attributes in 2-dimensiona space, corre-
sponding partial order, and possible fused rank lists

that users preferred the details of the dominant relationship,
i.e, an item p is better than (dominates) how many other
items. The general dominant rel ationship between items can
be compressed into partial orders. For example, Fig. 1 (b) is
the corresponding partial order (encoded as DAG format) of
the product items in Fig. 1 (a). We can easily know any
product’s dominating items by traverse its out-link in the
DAG (i.e., c dominatese).

Althoughthe general dominant relationship analysis plays
an important role in business decisions, it may fails due to
the market adjustment mechanism, that product items are a-
ways complementary to one another, i.e., lightweight cam-
eras tend to be more expensive. Therefore, it may be that
no products are worse than (dominated by) a given query
item, especially when querying in high dimension (attribute)
space. As such, users would like to get the items with high-
est comprehensive scores by fusing the values on different
attributes. For example, Fig. 1 (c) shows one fused rank list
of the sample dataset in Fig. 1 (a). Consider you are aman-
ager of adigital camera corporation. You may want to know
the business position of adigital camerac inthe current mar-
ket. By checking Fig. 1 (c), you can know that ¢ dominates
e, g and f. Note that the result here is different from that
discovered by general dominant relationship analysis (i.e., ¢
only dominates e). In this paper, we relax the strict mean-
ing of “dominate” in general dominant relationship analysis
by considering on the comprehensive value of items, which
incorporates rank aggregation methods.

! Borda Count rank aggregation method (Borda 1781) is em-
ployed here.



We find the relaxed dominant relationship analysis can
be efficiently explored based on the partia order. The in-
tuitive ideais that the “strong” ranking in general dominant
relationship can be utilized to induce the “weak” ranking
in relaxed dominant relationship. With the help of partial
order representation (DAG), we can prune some candidate
items earlier and do not need to compute their comprehen-
sive value. To illustrate the idea, here we show a simple
example. Fig. 1 (c)-(e) showsthree possible fused rank lists
of the sample product items after applying some rank aggre-
gation method with users' preferences. We can observe that
no matter which rank aggregation method is employed, the
relaxed dominant relationship between some items do not
change. For instance, theitem d always dominates f, ¢, and
isdominated by a and b. The stable property between these
items can be deduced from the partial order representation
(DAG in Fig. 1 (b)) based on the out-link and in-link of d.
In this paper we formally justify this discovery and more-
over, explore how to efficiently index and query such suc-
cinct representative partial orders. For the purposes of this
paper, we assume the attribute sets of products are available
in structured format.

Our contributionsin this paper are as follows:

e We propose a new problem, Relaxed Dominant Relation-
ship Query (RDRQ), which extends the work in (Yang et
al. 2007) by incorporating rank aggregation. RDRQ is
based on a more natural model to rank relational data for
business analysis.

e We propose efficient methods to improve the perfor-
mance of constructing the data cube, ParCube(Yang et
al. 2007), which concisely represents the dominant rela-
tionship as partial order representation (DAGS).

e We introduce efficient query processing strategies, which
isindeed rank-based fusion method, to answer the general
dominant relationship queries with rank aggregation.

¢ We conduct comprehensive experimentsto confirm the ef -
ficiency of our strategies.

The remainder of this paper is organized asfollows. After
discussing the related work, we introduce the preliminaries
and then propose severa strategies to efficiently construct
dataindex and then query it to analyze relaxed dominant re-
lationship. The performance analysis is reported in Section
5. We conclude the paper in Section 6.

Related wor k

Rank Aggregation. Relaxed Dominant Relationship Anal-
ysisisrelated to the problem of merging rank-ordered lists.
There are mainly two kinds of strategies in merging rank-
ordered lists. One is score-based, that the score is come
from the original score of an item in the rank list, or some
transformation of this score (Adam & Montague 2003;
Fagin & Wimmers 1997; Lee 1997). The other strategy is
rank-based, that the rank is the original rank of an item as-
signed to the rank list, or some transformation of this rank
(Aslam & Montague 2003; Dwork et al. 2001). As another
category to classify different approaches, some rank fusion
methods rely on training data (e.g., the Bayes-fuse method

(Aslam & Montague 2003), the preference rank combina-
tion method (Fagin & Wimmers 1997) and the probabilistic
model based method (Lillis et al. 2006)), while others not.

Dominant relationship analysis with rank aggregation can
be seen as a specia case, that traditional rank aggregation
methods give the order of whole datasets, in contrast, after
combining dominant relationship analysis, the relaxed
dominant relationship analysis issue becomes finding the
order of those items ranked lower than a given item. The
two issues coincide when the given query item is the one
with highest score (rank) in the dataset.

M aximum vector and Skyline. The maximum vector prob-
lem (Kung, Luccio, & Preparata 1975) is a special case of
dominant relationship analysis. There are some other related
issues, i.e., convex hull (Preparata & Shamos 1985) and the
skyline query (Borzsonyi, Kossmann, & Stocker 2001). All
these works concerned only the pure dominant relationship
and, output those items which are not “dominated” by oth-
ers. In contrast, Yang et a. (Yang et al. 2007) proposed
to analyze ageneral dominant relationship from amicroeco-
nomic aspect in dynamic environments. The authorsdevised
an efficient data structure, ParCube, to compress the gen-
eral dominant relationship.

However, all these works gave strict definition on “dom-
inate” between two items that, i.e., one item a dominates
another item b, if and only if al the attribute values (inferred
by users) of « is not worse than those of b. This criteriais
too strict and leads to such a result that, it is most likely no
items have dominating items, due to the market mechanism
of automatic adjustment. Hence, in this paper, we aim to
study a ranking-relaxed problem, by incorporating rank
aggregation.

Preliminaries

We first introduce some basic notations to present the re-
laxed dominant relationship analysis in a uniform way.
Given a d-dimension (attribute) space S={s1, s2,..., 84},
a set of product items D={p1,pa,...,p,} is said to be a
dataset on S if every p; € D isad-dimensional itemon S.
We use p;.s; to denote the j*" dimension value of item p;.
For each dimension s;, we assume that there exists a total
order relationship. For simplicity and without loss of gener-
ality, we assume smaller values are preferred, and are ranked
higher. A dimensionwith rankeditemswill becalled arank
list, denoted as 7.

A partial order on D is a binary relation < on D such
that, for all z,y,z € D, (i) z = « (reflexivity), (i) x < y
andy < z imply z=y (antisymmetry), (iii) z < yandy < z
imply x < z (transitivity). We use (D,=) to denote the
partial order set (or poset) of D.

Definition 1 (dominate) A product p is said to dominate
another product g on S if and only if Vs € S, p.si < ¢.sk
andds; € S, p.s; < q.5¢.

The partial order (D,=) can be represented by a DAG
G = (D, E), where (v,u) € E if p < v and there does
not exist another value x € D suchthat p < =z < v. For



Table 1: Sample Product Items Dataset

a|b|lc|d|elf g
Dy 2 1 6 3 7 4 5
Do 1 4 2 5 3 7 6
D3 3 1 4 2 5 6 7

simplicity and without loss of generality, we assume that G
is a single connected component.

To relax the strict meaning of dominate in Definition 1,
we need to compute each product’s comprehensive value
by fusing product values (scores) on multiple dimensions
(rank lists) into one rank list. Since the values in different
dimensions may be not comparable, normalization is usu-
ally applied before merging dimensions (rank lists) in order
to uniform value distributions to capture within an unique
framework. We can apply any normalization method here?.
Because Borda Count (Borda 1781) is one of the semi-
na rank aggregation methods, we employ its normalized
weight. Consider a set S of rank lists (dimensions), a set
D of product items, and let arank list 7 € S. 7(p;) isthe
rank of product p; in 7.

Definition 2 (nor malized weight (Bordarank)) The nor-
malized weight, w™(p;), of a product p; € 7 is defined as
follows:

1-— (pi)—1 pi €T
(i) = { 1+ —‘7‘9‘1 otherwise )
2 T 2D]
Definition 3 (Borda score) Thefused ranklist 7 isordered

with regard to the Borda score s™ , wherethe Borda score
of anitemp; € D in7 isdefined as

ST =3 W (i) @
TES
Definition 4 (relaxed-dominate) A product p is said to
relaxed-dominate another product ¢ on S if and only if the
Borda score of p islarger thanthe Borda score of q.

Definition 5 (relaxed-dominating set, RDS(p, D, S'))
Given a product p, we use RDS(p, D, S) to denote the set of

products from D which are relaxed-dominated by p in the
subspace S of S

The problem that we want to solveis as follows:

Problem 1 (Relaxed Dominant Relationship Query (RDRQ))

Given a dataset D, dimension space S, and a product p,
find RDS(p, D, S).

Examplel Consider the 3-dimensional dataset D = {a, b,
¢, d, e f, g} in Table 13. Given a query point ¢, dimension
space S'={D;, D2}, the relaxed-dominating set RDS(c, D,
S = {ef, g}. Wewill usethisdataset asarunning example
hereafter.

2The aim of this paper isto incorporate rank aggregation mech-
anism, rather than comparing different rank aggregation methods.

3D; denotes the ith attribute. For simplicity, we use small in-
teger to simulate items’ values on the attributes for convenience of
description in this paper.

Table 2: Finding (k+1)-length frequent patterns with opti-
mization

INPUT: D B = the converted sequence DB

OUTPUT: FreMaxPatterns = frequent maximal sequential pat-
terns

Function: Gen_Pattern(S)

Parameters: S = Set of k-length frequent patterns

Goal: Generate (k+1)-length frequent sequential pattern

Main():

1. F5 =Scan D B to find 2-length sequential patterns;

2. Cal Gen_Pattern (Fy);

3. FreMaxPatterns = Mergeall theatomsin F;;

Function: Gen_Pattern(S)

4, For al atoms A; € Fs

5. T; =0;

6. For al atoms A; € Fa,withj > 14

7. R=A; V AJ;

8. T; =T; UR;

9. F‘R‘:F‘R‘UR;

10. For all T; # 0

11. Cal Gen_Pattern (T;);

As illustrated in the Introduction section, with the help
of partial order representation, the Relaxed Dominant Rela
tionship can be extracted efficiently. In the next sections, we
will first propose several optimized strategies on discovering
partial orders (DAGS), and then give our effective algorithm
to tackle RDRQ problem.

Optimization of ParCube Construction

In this section, we will propose our strategies on optimizing
the partial order datacube (ParCube) construction. Wefirst
introduce the methods proposed in (Yang et al. 2007) and
then present our optimized approaches.

Naive ParCube Building

To get partia orders from spatial datasets, Yang et al.
(Yang et al. 2007) proposed to apply strategies from an-
other research context, sequential pattern mining (Agrawal
& Srikant 1995). There are three processes for ParCube
construction, asillustrated in Fig. 2.

Thefirst processis to convert the spatial dataset to the se-
quence dataset. With a k-dimensional dataset, it is easy to
get a k-customer sequence dataset by sorting the objectsin
each customer (dimension) according to their value in as-
cending order. In process 2, the sequential patterns from
the transformed sequence dataset are discovered by apply-
ing PrefixSpan algorithm (Pei et al. 2001), which is the
state-of-the-art method. The patterns are then merged as
local mazximal sequential sequences, which are not the
subsequence of other sequential sequences. The resultant
data cube (SeqCube) from process 2 for the sample dataset
isshown in Fig. 2 (c). In process 3, the combinations of
the local maximal sequential sequences are enumerated
to generate partia orders with DAG representation, by ap-
plying the method proposed in (Casas-Garriga 2005). The
resultant data cube (ParCube) for the example dataset is
showninFig. 2 (d).

Optimization of Sequential Pattern Mining Among the
three processes of partial ordersfinding asillustrated in Fig.
2, the second one, sequential pattern mining, is the slowest
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Figure 2: The result representation of each process for the example spatial dataset

process although the state-of-the-art algorithm is used. To
improvethe efficiency of the wholework, we aim to develop
anew agorithm to fasten the mining process by considering
the special property of the converted sequence datasets.

We find that the converted sequence dataset has one im-
portant characteristic: for each customer sequence (dimen-
sion), one item appears and only appears once. In other
words, there is no two same items existing in the same cus-
tomer sequence (dimension). This is very different from
general sequence, i.e., Web log sequence, customer shop-
ping history or DNA sequence. Based on this discovery, we
have the following two lemmas:

Lemma 1 (Transitivity) Let AB and BC be two sequential
patterns in k-customer sequences, then AC should also be a
frequent sequence in the k-customer sequences.

Lemma 2 (Pattern Growth) Let AB and BC be two se-
guential patternsin k-customer sequences, then ABC should
also be a frequent sequence in the k-customer sequences.

These two lemmas can be easily proofed and we avoid de-
tail here. Based on Lemma 1 and Lemma 2, we can develop
a much more efficient algorithm to find the sequentia pat-
terns. The pseudo code of the algorithm is shown in Table
2.

Because every item (point) must exist in each customer
sequence (dimension), we do not need to find 1-length pat-
terns. Inline 1, we thus directly find the 2-length sequential
patterns. We scan each item’s suffix database to accumulate
the support of 2-length candidate sequences. Theninline 2,
we recursively call the function Gen _Pattern to get those
patterns whose length are larger than 2. We just merge two
atoms together based on their prefix sequences. For exam-
ple, when merging two patterns, i.e., ab and ac, we need
to check the existence of bc or ¢b in the frequent pattern list.
The pattern abe could be claimed if be isfound. By thisway,
we do not need to do DB projecting and scanning operation
in PrefixSpan, which largely reduce the computation cost.
The experimental results illustrates the improvement of this
strategy. In line 3, we merge these sequential patternsto get
maximal ones.

Compression of the ParCube Data Cube The local
maximal sequential sequences compress the data to some

extent, we can further improve the compression by employ-
ing the technique of closed sequence (Yan, Han, & Afshar
2003; Casas-Garriga 2005). If alocal maximal sequence [
exists in two subspaces, S; and S where S; C So, then [
is only recorded in S,. For instance, although a segquence,
b — d — g, existsin three subspaces { D1,D2}, {D2,D3}
and {D,D4,Ds}, we only record it in the super-subspace,
i.e., {D1,D2,D3}. This technique can largely reduce the
space consumed to store the DAGs. While querying the re-
laxed dominant in the local subspace, we should also check
the super-subspace because some local sequences are ab-
sorbed by their super-subspace ones.

Efficient Strategies on Relaxed Dominant
Relationship Query

We assume that the query point Py, isin the dataset D.
With the help of the partial order models, DAGs, we have
the following lemmas:

Lemma3 Let A be a node on the path from the root to
the query point, Pyyery, in the DAG, then Pyye,, can-
not relaxed-dominate A, no matter which rank aggregation
method is used.

Lemma4 Let Abeanodeon the path fromthe query point,
Pyyery, to any leaf node in the DAG, then Py, relaxed-
dominates A, no matter which rank aggregation method is
used.

Lemmab5 If the aggregate score of a node A is smaller
than the aggregation score of the query point, Pgyery,
with regard to some rank aggregation method (i.e., Borda
Count), then all the child nodes of A in the DAG are
relaxed-dominated by A with regard to the same rank ag-
gregation method.

These three lemmas can be easily proofed and we avoid
detail here. The intuition idea is that the general dominant
relationship has a stronger rank meaning compared with re-
laxed dominant relationship. Therefore the semantic mean-
ing compressed in the partial order representation, DAG, can
be utilized to deduce relaxed dominant relationship with the
help of rank aggregation methods. We next introduce our &f-
ficient algorithm based on Lemma 3, Lemma4 and Lemma
5. Notice that Borda score is counted as the aggregation



Table 3. Relaxed Dominant Relationship Query Processing
INPUT: Partial order representation D AG, aquery point Pyycry, @ sub-

space S’
OUTPUT: RDRQ(Pgucry, D, S’)
1. Insert al points with sorting into the candidate list, L., based on

their level valuein D AG (from top to bottom)
2 for each parent node c;, of Pyyery in DAG and its subspace S’
3 remove c,, from the candidate list L.
4. for each child node ¢, of Pyyery in DAG and its subspace S’
5. put ¢; intheresult set RDRQ(Pyuery, D, S’)
6. remove c,, from the candidate list L.
7 compute Borda score of Pgyery, Sq (Dased on Equation 2)
8 for each candidate point ¢,, in the candidate list L. (start from the
root node of L.)

9. compute Borda score of ¢, s. (based on Equation 2)
10. if (sc < sq)
11. put ¢, in the result set RDRQ(Pyyery, D, S”)
12. for each child node c,, of ¢, in D AG with subspace S’
13. put ¢, in the result set RDRQ(Pyuery, D, S”)
5000
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Figure 3: Execution time comparison between ParCube
and RD R A on dataindex construction

score of apoint. Other rank aggregation method can be al'so
applied. The pseudo codeis shown in Table 3.

InLine 1, we first insert all points into the candidate list
based on their level valuein DAG. In fact, this step can be
executed in the pre-processing. The reason why we sort the
points is based on Lemma 5. We fasten the process if the
root of a subgraph is relaxed-dominated by the query point,
and hence, al the nodes in the subgraph can be extracted
immediately.

Line 2 and Line 3 is based on Lemma 3, which prunes
candidates as soon as possible, before we compute their
Borda scores. Lines 4-6 are based on Lemma 4, which
extracts the results before we compute their Borda scores.

From Line 7 to Line 13, we compute and compare the
Borda score of each candidate point with the query point.
This is similar to the traditional rank aggregation process.
The difference is that we give the order of the candidate
points used to compare, that those located in the higher layer
of the DAG will be tested first. By this way, we can enlarge
the probability of pruning points earlier. Asthe experimen-
tal results illustrate, which will be introduced shortly, our
proposed algorithm largely improves the efficiency of ex-
tracting the relaxed-dominant relationship.

@ ParCube
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(a) Average number of result points when varying
dimensionality (number of points=10K)
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(b) Average number of result points when varying
number of points in the dataset
(dimensional ity=5)

Figure 4: Querying result comparison between RDRA and
ParCube against dimensionality and number of points in
the dataset

Performance Analysis

To evaluate the efficiency and effectiveness of our strate-
gies, we conducted extensive experiments. We performed
the experiments using a Intel(R) Core(TM) 2 Dual CPU PC
(3GHz) with a 3G memory, running Microsoft Windows XP.
All the algorithms were written in C++, and compiled in an
MSVisual C++ environment. We conducted experimentson
both synthetic and real life datasets. However, due to space
limitation, we will only report results on synthetic datasets
here. Results from real life datasets mirror the results of
the synthetic datasets closely. We employ the synthetic data
generator (Borzsonyi, Kossmann, & Stocker 2001) to create
our synthetic datasets. They have independent distribution,
with dimensionality d in the range[3, 7] and datasize in the
range [10k, 50k]. The default values of dimensionality were
5. The default value of cardinality for each dimension was
50k.

Detailed implementation of the algorithms used to com-
pareis described as follows:

1. ParCube. ParCube was implemented as described in
(Yang et al. 2007).

2. RDRA* RDRA was implemented as described in this pa-
per.
Index Data Structure Construction Perfor mance

In this section, we show the comparison between RDRA
and ParCube on building the partial orders (DAGS). Fig. 3
illustrates the execution time for index building against the

“Relaxed Dominant Relationship Analysis.
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number of pointsin the dataset. We can seethat the RDRA
is much faster than ParCube. Thereasonwhy RD R A per-
formsso well, is because we can prune many candidates ear-
lier and avoid to compare the positions of every item.

Query Performance

In this section, we evaluated the query answering perfor-
mance of RDRA compared with ParCube. Note that in
this paper, our magjor purpose is to provide more natural
candidate items that users may favor, rather than compare
the precision of results between different rank aggregation
methods. To test the effect of RDR query, we randomly se-
lected 500 different points from D and the result is the av-
erage value. For RDR A, given the randomly selected point
p, we queried p's relaxed dominating points. For ParCube,
we gueried p’s general dominating points.

The result is shown in Fig. 4, from where we can see
that RDRA aways extracts more dominated points than
ParCwube. Thisis not surprising because we relax the strict
meaning of dominate in ParCube and thus, can give users
more favorable candidate items. When dimensionality in-
creases, as shown in Fig. 4 (a), the size of the result set in
ParCube decreases quickly, since ParCube is sensitive to
the dimensiondlity. In contrast, RDRA is relative stable on
output result set. When changing the number of pointsin the
dataset, theresult set of RD R A proportionally varies. How-
ever, the result set of ParCube keeps stable. In summary,
compared with ParCube, RD R A outputs more reasonable
candidates items.

The comparison of the execution time on querying rel axed
dominant relationship between RDRA and traditional rank

aggregation (Borda Count) isshown in Fig. 5. The reason
why we compared with Borda Count is that we want to
demonstrate the efficiency of partial orders on querying re-
laxed dominant relationship, rather than comparing two rank
aggregation methods themselves. The latter issue is beyond
the scope of this paper. We can know that RDR A is much
efficient than its competitor for the two cases (varying di-
mensionality and number of points) because of the effect of
partial orderswe used.

Conclusions

We have introduced Relaxed Dominant Relationship Query
(RDRQ), which is an extension model based on general
dominant relationship by incorporating rank aggregation.
We found that RD RQ can provide more natural candidates
that users may favor. We have proposed efficient strategies
to build partial order models and to answer RDR(Q. The
performance study confirmed the efficiency of our strategies.
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