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ABSTRACT 
 
We have proposed an improved concurrency control 
protocol for nested transactions based on speculation.  
In the proposed speculative nested locking (SNL) 
protocol, whenever a sub-transaction finishes work 
with a data object (produces after-image), it's parent 
inherits the lock. The waiting sub-transaction carries 
out speculative executions by accessing both before- 
and after-images of preceding sub-transaction.  It then 
selects appropriate execution after the termination of 
preceding sub-transactions. In this way, by carrying 
out multiple executions for a transaction, SNL 
increases concurrency.  The SNL approach requires 
both extra processing power and main memory to 
support speculative executions. In this paper, we have 
presented the SNL approach and explained how it 
increases both intra- and inter-transaction concurrency 
by trading extra resources as compared to Moss's 
nested locking protocol. 
 
 

1  INTRODUCTION 
 
The traditional transaction model, although suitable for 
conventional database applications such as banking 
and airline reservation systems, does not provide much 
flexibility and high performance when used for 
complex applications such as object oriented systems, 
long-lived transactions, or distributed systems.  Nested 
transactions have been proposed [18] to overcome the 
limitations of  flat transaction model.  Nested 
transactions extend the notion that transactions are flat 
entities by allowing a transaction to invoke atomic 
transactions as well as atomic operations.  They 
provide safe concurrency within transaction,  allow 
potential internal parallelism to be exploited and offer 
an appropriate control structure to support their 
execution.  Also, they provide finer control over 
failures by limiting the effects of failures to a small 
part of the transaction. This property is achieved by 
allowing transactions within a given transaction to fail 
independently of their invoking transaction.  Nested 
transactions were implemented in system R [9], Argus 
[15], Clouds [6], Locus [19] and Eden [12], and are 
widely accepted as a suitable mechanism for reliable 
distributed transaction processing systems.  
  

In nested locking (NL) protocol proposed by Moss 
[18] each leaf-transaction follows two-phase locking 
(2PL) protocol [8] for concurrency control. If a sub-
transaction obtains a write lock, its parent inherits the 
lock  only after its commit, as per 2PL rules.  To 
access the locked data object, a (sub) transaction has to 
wait until termination of a lock holding transaction. 
Therefore, in nested transactions, data contention 
increases lock waiting time, which decreases the 
throughput performance of the system.  In this paper 
we propose speculative nested locking (SNL) protocol 
to increase concurrency by supporting multiple 
executions for a transaction with extra computing 
resources. In SNL whenever a sub-transaction Ti 
finishes work with a data object (produces after-image), 
it's parent inherits the lock. The waiting (sub) 
transaction accesses both before- and after-images of 
Ti  and then carries out speculative executions. 
However, the order is maintained; i.e., the waiting 
transaction selects appropriate execution only after 
termination of Ti.  As such, there is no limitation on the 
number of levels of speculation but this number 
depends on the system's resources, such as the size of 
main memory and processing power.  In SNL, the 
number of speculative executions carried out by a 
transaction increases exponentially as data contention 
increases.  By trading extra resources SNL increases 
concurrency of nested transactions. 
 
As compared to NL, the SNL approach increases 
concurrency by allowing a sub-transaction to release 
the lock before its termination without causing 
cascading aborts.  (In this approach on termination of 
earlier transaction the waiting transaction drops invalid 
execution(s) and retains the valid one. However, this is 
different from abort of a transaction) Further, if data 
objects accessed by a transaction are pre- declared, 
SNL increases both intra- as well as inter- transaction 
parallelism without violating serializability criteria. 
Under simplified assumptions, we analyze the scope of 
SNL to increase concurrency among sub-transactions 
under limited resource environments. 
 
The work is motivated by the fact that with the 
continual improvement in hardware technology, we 
now have systems with significant amounts of 
processing speed and main memory, but more time is 
spent by transaction waiting for data (both I/O and 
remote data) than performing actual computations. 
Consequently, a (sub) transaction keeps locks for 



longer times  if Moss's NL [18]  is followed. As a 
result, throughput is decreased. Since the cost of both 
CPU and main memory is falling, we believe that extra 
processing power and memory could be added to the  
system at reasonable cost. The strength of SNL is that 
it offers the potential to increase concurrency by 
trading extra main memory and processing resources 
without violating seralizability as correctness criteria.  
Also, the speculative processing is transparent to the 
user.  (In this paper we are not considering extension 
of speculation to interactive transactions.) Since SNL 
is lock-based, it could be integrated with existing 
applications based on Moss's NL with little effort. 
 
In the next section we discuss related work. In section 
3 we explain nested transaction model and the NL 
protocol.  In section 4, we present the SNL approach 
and discuss its variations. In section 5 we explain how 
SNL increases concurrency through an example. In 
section 6, we informally discuss the correctness of the 
SNL approach. In section 7, we perform concurrency 
analysis under simplified assumptions.  In section 8, 
we extend SNL under limited resource environments. 
The last section consists of summary and conclusions. 
 

2 RELATED WORK 
 
Several protocols exist to synchronize the execution of 
nested transactions. Reed developed a time-stamp 
based technique for nested transactions [21].  In [18], 
Moss presented a concurrency control algorithm using 
2PL for a nested transaction environment.   In [20] 
theoretical framework has been presented to prove the 
serializability of synchronization protocols for nested 
transactions. In [16], overview of research in the area 
of nested transactions is given. In [10], a concept of 
downward inheritance is introduced to improve the 
parallelism within the nested transaction. In [17] the 
pre-write operation is introduced to increase 
concurrency in a nested transaction processing 
environment. This model allows some particular sub-
transactions to release their locks before their ancestor 
transaction's commit. This allows other sub-
transactions to acquire required locks earlier.  However, 
it is assumed that once the sub-transaction pre-writes 
the value, it will not abort. 
 
In the context of flat transactions, there are approaches 
to increase concurrency based on early (before 
completion) release of locks. The ordered sharing 
protocol [1], allows multiple flat transactions to hold 
conflicting locks on data objects as long as operations 
are executed in the same order as that in which locks 
are acquired.  But this protocol suffers from cascading 
abort problem. The altruistic locking protocol [22] 
allows transactions to donate previously locked objects, 
once they are done with them but before the object is 
unlocked.  Another transaction may lock a donated 
object, but to ensure serializability it should remain in 
the wake of the original transaction.  This protocol is 

proposed to synchronize long-lived flat transactions. 
This protocol also suffers from cascading aborts. 
 
In the context of flat transactions, speculation has been 
employed in [2] to increase the transaction processing 
performance for real-time centralized environments 
that employ optimistic algorithms for concurrency 
control.  In [4], a branching transaction model has been 
proposed for parallel database systems where a 
transaction follows alternative paths of execution in 
case of a conflict. In that paper the operation in limited 
resource environments is not analyzed. In [11] a 
proclamation-based model is proposed for cooperative 
environments in which a cooperative transaction 
proclaims a set of values, one of which a transaction 
promises to write if it commits.  The waiting 
transactions could access these proclaimed values and 
carry out multiple executions. This approach is mainly 
aimed at cooperative environments such as design 
databases and software engineering. In [13], a 
transaction processing approach has been proposed for 
distributed database systems where a transaction 
releases locks after completing execution by 
employing static 2PL. In  [14], speculation is 
employed to increase concurrency in mobile 
environments, with the assumption that a mobile host 
could support a reasonable number of executions. 
 
The SNL approach differs from above approaches, as it 
is a lock based approach and proposed for nested 
transactions. Also, in the SNL approach, transaction 
releases locks before execution and cascading aborts 
do not occur. 
 

3 NESTED TRANSACTIONS AND 
LOCKING 

 
3.1  Nested transaction model 
 
We employ X,Y, … to represent data objects. 
Transactions are represented by Ti, Tj, …; where, i, j, 
…  are integer values. In nested transaction model [18] 
a transaction may contain any number of sub-
transactions, which again may be composed of any 
number of sub-transactions- conceivably resulting in 
an arbitrary deep hierarchy of nested transactions.  The 
root transaction that is not enclosed in any transaction 
is called the top-level transaction (TLT).  Transactions 
having sub-transactions are called parent transactions 
(PTs), and their sub-transactions are their children.  
Leaf-transactions (LTs) are those transactions with no 
children. The ancestor (descendant) relation is the 
reflexive transitive closure of the parent (child) relation. 
We will use the term superior (inferior) for the non-
reflexive version of the ancestor (descendant). The 
children of one parent are called siblings.  The set of 
descendants of a transaction together with their 
parent/child relationships is called the transaction's 
hierarchy. In the following, we will use the term 
`transaction' to denote TLT, PT, and LT. The hierarchy 



of a top-level transaction (TLT) can be represented by 
a transaction tree. The nodes of the tree represent 
transactions, and the edges illustrate the parent/child 
relationships between the related transactions. In the 
transaction tree shown in Figure 1, T1 represents TLT 
or root. A children of sub-transaction T3 are T4, T6, and 
T7 and the parent of T3 is T2. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Example of a Transaction tree. 
 
 
The properties defined for flat transactions are 
atomicity, consistency, isolated execution, and 
durability (ACID properties). In the nested transaction 
model, the ACID-properties are fulfilled for TLTs, 
while only a subset of them are defined for sub-
transactions. A sub transaction appears atomic to the 
other transactions and may commit and abort 
independently. Aborting a sub-transaction does not 
effect the outcome of the transactions not belonging to 
the sub-transaction's hierarchy, and hence sub-
transactions act as firewalls, shielding the outside 
world from internal failures.  The durability of the 
effects of a committed sub-transaction depends on the 
outcome of its superiors. Even if a sub-transaction 
commits, aborting one of its superiors will undo its 
effects. A sub-transaction's effect becomes permanent 
only when its TLT commits.  
 
Assumptions We assume only LTs perform data 
manipulation operations and issue lock requests to 
obtain locks and PTs act as a place holders for the 
locks [18]. An LT is a flat transaction as defined in [3]; 
i.e., it is a representation of execution that identifies 
Read and Write operations and indicates the order in 
which these operations are executed.  It is assumed that 
no transaction reads or writes data objects more than 
once.  Also, a transaction reads before it writes any 
data object. 
Knowledge of after-image : Normally, an LT copies 
data objects through read operations into private 
working space and issues a series of update operations. 
For the SNL approach, we assume that for any data 
object X, write operation is issued whenever it 

completes work with the data object. This assumption 
is also adopted in [1, 22]. 
 
3.2  Nested locking protocol 
 
In this section we will summarize the NL protocol 
proposed by Moss [18].  Conventional locking 
protocols offer two modes of synchronization - Read, 
which permits multiple transactions to share an object 
at a time, and Write, which gives the right to a single 
transaction for exclusively accessing an object.  
Possible lock modes on an object are NL-, R-, and W-
mode.  The null mode (NL) represents the absence of a 
lock request for or a lock on the object. A transaction 
can acquire a lock on object X in some mode M; then 
it holds lock in mode M until its termination.  Besides 
holding a lock, a transaction can retain a lock. When a 
sub-transaction commits, its PT inherits its locks and 
then retains them. If a transaction holds a lock, it has 
the right to access the locked object (in the 
corresponding mode), which is not true for retained 
locks.  A retained lock is only a placeholder.  A 
retained W-lock, indicates that transactions outside the 
hierarchy of the retainer can not acquire the lock, but 
that descendants of the retainer potentially can. That is, 
if a transaction Ti retains an W-lock, then all non 
descendants of Ti   can not hold the lock in either W- 
or in R-mode.  If Ti is a retainer of an R-lock, it is 
guaranteed that a non-descendant of Ti  can not hold 
the lock in W-mode, but potentially can in R-mode. As 
soon as a transaction becomes a retainer of a lock, it 
remains a retainer for that lock until it terminates.  
 
The NL  rules for a transaction Ti  are as follows.  
 
NL1: Ti   may acquire a lock in R-mode if 

• no other transaction holds the lock in W-mode, 
and 

• all transactions that retain the lock in W-mode  
are its  ancestors. 

 
NL2 : Ti    may acquire a lock in W-mode if 

• no other transaction holds the lock in W- or 
R-mode, and 

• all transactions that retain the lock in W- or 
R-mode are its ancestors. 

 
NL3:  When Ti commits, its parent inherits its (held or 
retained) locks. After that, Ti's parent retains the locks 
in the same mode (W or R) in which Ti held or retained 
the locks previously. 
 
NL4:  When Ti aborts, it releases all locks it holds or 
retains. If any of its superiors holds or retains  any of 
these locks they continue to do so. 
 
Note that the inheritance mechanism (Rule NL3) may 
cause a transaction to retain several locks on the same 
object. In such a case, a transaction retains a most 
restrictive lock. 

T1 

T2 T9 

T3 T8 

T4 
T7 T6 

T5 

Hierarchy of T3



 
4 SPECULATIVE NESTED LOCKING 

 
4.1  Lock modes and commit dependency 
 
In the SNL approach, the duration of lock in W-mode 
is partitioned  into three modes, EW- ( Executive 
Write)-, PSW-(Passive Speculative  Write) and ASW 
(Active Speculative Write)-mode.  The LTs request 
only R- or EW-mode lock. Also, note that an LT holds 
a lock, and a PT (or TLT) retains a lock. 
 
An LT requests a lock in R-mode to read a data object 
and in EW-mode both to read and write a data object. 
Lock conversion from R- to EW-mode is not allowed1. 
An LT converts lock from EW-mode to PSW-mode 
whenever it produces after-image and holds the lock in 
the same mode until its termination. Whenever an LT 
holds lock in PSW-mode, its parent inherits and retains 
a lock in an ASW-mode. 
 
Let Tj  be a PT and retains a lock in ASW-mode on a 
data object. As per NSL rules (explained in the section 
4.2), Tj converts lock from ASW-mode to PSW-mode 
and retains in the same mode. Whenever Tj retains a 
lock in PSW-mode its parent inherits and retains lock 
in ASW-mode. 
   
For X, a retained ASW-lock indicates that descendants 
of the retainer potentially can acquire lock in EW-
mode, but all non-descendants of the retainer can 
acquire a lock only after it converts lock from ASW-
mode to PSW-mode.  Similarly, a hold/ retained lock 
in PSW-mode indicates that any other transaction 
which obtains lock in R- or EW-mode forms a commit 
dependency with lock holding transaction. If Ti  forms 
a commit dependency with Tj  then Ti  is committed 
only after termination of Tj. Let Ti  be an LT and Tj  be 
any sub-transaction (an LT, PT or TLT) such that Tj is 
a non-ancestor of Ti. In SNL Ti forms commit 
dependency with Tj under the following situations.  
 

1. If Ti obtains the lock in R-mode while Tj  
holds/retains a lock in PSW-mode on a data 
object, Ti  forms a commit dependency with 
Tj. 

2. If Ti  obtains the lock in EW-mode while Tj  
holds/retains  a  lock in R-mode or PSW-
mode  on a data object, Ti  forms a commit 
dependency with Tj.         

 
(Note that as per nested rule a parent (ancestor) 
commits only after termination of transactions in its 
hierarchy. Therefore, even though an  LT obtains a 
lock in R- or EW-mode while its parent (ancestor) 
retains a lock in PSW-mode (as per SNL rules in 

                                                           
1 However one can observe that lock conversion can be easily 
incorporated. 

section 4.2), we do not form  commit dependency with 
ancestor transactions.) 
   
4.2  Speculative nested locking  protocol 
 
We first explain the data structures used in the SNL 
protocol. 
 
• treeX : We employ a tree data structure to 

organize the uncommitted versions of a data 
object produced by speculative executions.   The 
notation Xq  (q≥1) is used to represent the q’th 
version of X. For a data object X,  its  tree is 
denoted by treex. It is a tree with committed 
version as the root and uncommitted versions as 
the rest of the nodes. 

 
• Depend_seti : Depend_seti is a set of transactions 

with which Ti has formed commit dependencies 
for all the data objects it has accessed.  

 
We now present SNL synchronization rules.  Each data 
object X is organized as a tree with X1  as a root. We 
use the notation Tim  to represent the m’th (m≥1) 
speculative execution of Ti.  Note that deadlock 
handling [18] algorithms needs to be initiated 
whenever a deadlock occurs. 
 
SNL1 : Lock acquisition: Note that during lock 
acquisition whenever Ti forms a commit dependency 
(as per commit dependency rules) with Ti, the identity 
of Tj is included in depend_seti.  (The rules 1.b and 2.b 
increase intra-transaction concurrency. Also, rules 1.c 
and 2.c increase inter-transaction concurrency.) 
   
1) Ti  may acquire a lock in R-mode if 

a) no other transaction holds the lock in EW-
mode, and  

b) all transactions that retain the lock in ASW-
mode are ancestors of Ti and 

c) no other transaction retains the lock in ASW-
mode and for each transaction that 
retains/holds a lock in PSW-mode, its TLT 
retains a lock in PSW-mode. 

2) Ti may acquire a lock in EW-mode if 
a) no other transaction holds the lock in R- or 

EW-mode and 
b) all transactions that retain the lock in R- or 

ASW-mode are ancestors of Ti  and 
c) no other transaction retains the lock in ASW-

mode and for each transaction that 
retains/holds a lock in R-/PSW-mode, its TLT 
retains a lock in R-/PSW-mode. 

 
SNL2 :  Execution and inheritance 
 
1) Execution: Suppose Ti be an LT, and is carrying 

out m speculative executions and obtains a lock in 
EW-mode on X.  Let treex contains n versions. 



Then, each Tiq (q=1 … m) splits into n speculative 
executions (one for each version of treex).  

 
Lock conversion: Whenever an LT (Ti) produces 
after-images during its execution, after including 
each after-image of X as a child to the 
corresponding before-image of X's tree, it converts 
the lock in EW-mode to PSW-mode and holds in 
the same mode. 

 
2) Inheritance The inheritance can be separated into 

two types: LT to PT and PT to PT. 
         

a) LT to PT : Whenever an LT holds a lock in 
R-/PSW-mode, its parent (Tj) inherits and 
retains the lock in R-/ASW-mode2.  
 
Lock conversion by a PT: When all sub-
transactions of a PT  (Tj ) finish work on X, if 
only one LT in Tj's hierarchy holds lock in 
PSW-mode, Tj converts the lock from ASW- 
to PSW-mode and retains in the same mode 
without waiting for the commit of other 
transactions in its hierarchy. 
 
Otherwise, if more than one LTs of Tj holds a 
lock on X in PSW-mode, then Tj  converts the 
lock from ASW- to PSW-mode only after all 
LTs which have accessed X have been 
committed3.  
 

b)  PT to PT : Whenever a sub-transaction retains 
a lock in R-/PSW-mode, its parent  inherits and 
retains a lock in R-/ASW-mode. 

 
SNL3  : Termination 
 
1. Commit: A transaction Ti commits by selecting 

appropriate execution only after termination of all 
transactions in depend_seti. Each locked data 
object is updated with after-image produced by Ti  
as the root. The Ti's identity is removed from 
depend_set of all remaining transactions. Also, the 
waiting transactions drop speculative executions 
carried out by reading before-images of Ti. 

 
2.  Abort: When Ti aborts, it releases all the locks it 

holds or retains.  If any of its superiors holds or 
retains any of these locks they continue to do so.  
Also, each tree of a data object (accessed by Ti) is 
updated by removing after-images (with sub-trees) 

                                                           
2 To avoid inconsistency, the two actions, lock conversion from EW- 
to PSW-mode by LT and lock inheritance by its PT should be carried 
out atomically.  To be safe, an LT converts EW- to PSW-mode only 
after its parent inherits in ASW-mode. 
3In this protocol we assume that a sub-transaction either commits or 
aborts. If aborts, it releases all the locks both hold/retained. Next, it 
is resubmitted. This process repeats until it commits. However, an 
abort of a nonessential LT is allowed in nested environment [18]. 
We are not considering such option here. However, one can observe 
that SNL can be extended under such environments. 

which were included by Ti.  Its identity is removed 
from the depend_set of all waiting transactions. 
The waiting transactions drop speculative 
executions carried out by reading after-images of 
Ti. 

 
4.3   SNLnp and SNLp approaches 
 
In SNL, after inheriting a lock from a sub-transaction 
(as per rule SNL2), a PT can not donate the locks in 
turn to its PT, unless all sub-transactions in its 
hierarchy finish the work with corresponding data 
object. Without having knowledge of data objects 
accessed by its sub-transactions, a lock is held by a PT 
until termination of all transactions in its hierarchy. 
Therefore, based on the prior knowledge of data 
objects accessed by a transaction, SNL can adaptively 
operate in two modes: SNLnp (SNL-no-predeclaration) 
and SNLp (SNL-predeclaration).  
 
In SNLnp mode, a lock is held by a PT till termination 
of all transactions in its hierarchy.  Therefore, SNLnp 
increases only intra-transaction parallelism (up to only 
one level in the nested hierarchy).  
 
On the other hand, in SNLp-mode, once inherited the 
speculative locks from an LT, its PT (Ti) checks if any 
of its other sub-transactions requires access to 
corresponding data object. If none, then Ti's PT inherits 
the locks on the corresponding data object. In this way, 
speculative locks are donated outside nested 
transaction before its termination (under rule 1.c and 
2.c of SNL1).  
 
As a result, SNLp could increase both intra- as well as 
inter-transaction concurrency. 
  

5   EXAMPLE 
 

Consider follwing two transactions T1(T2(T4:{V, X}, 
T5:{X,Y}) , T3:{U,V}) and T6 (T7 :{U}, T8 :{Z}) 
which are simultaneously entered into the system (see 
Figure 2).  Consider that all request locks in EW-mode.  
The processing employing NL and SNLp is as follows. 
 
• NL : Figure 3(a) depicts the processing employing 

NL. (In Figure 3, an arrow from a to b, indicates b 
happens after a.) T4 obtains lock on X only after 
termination of T5. Similarly T3 obtains lock on V 
only after the abort of T4 or the commit of both T4 
and T2. Similarly, T7 obtains lock on U only after 
the abort of T3 or the commit of both T3 and T1. 

 
• SNL : Figure 3(b) depicts the processing with 

SNLp. At first, T5, T4, T3, and T8 obtain locks in 
EW-mode on X, V, U, and Z respectively.  
Whenever T5 and T4  produces after-images of X 
and V, respectively, T2  inherits the lock in ASW-
mode and whenever T3  produces after-images of 
U, T1 inherits the lock on ASW-mode. Next, T4 



obtains lock in EW-mode and carries out two 
speculative executions by accessing both before- 
and after-images of X.  Due to pre-declared 
assumption (since T5  will not access V), T2 
decides that it has finished work with V and 
therefore changes lock on V from ASW- to PSW-
mode. Then, T1 inherits lock in ASW-mode on V 
and retains in the same mode.  Next, T3 obtains 
lock on V in EW-mode and carries out two 
speculative executions. Due to pre-declaration 
assumption (no other transaction will access U), 
T1 decides that it has finished work on U, and 
converts lock from ASW- to PSW-mode. T7  
obtains lock in EW-mode (under rule 2.c of 
SNL1) carries out two executions by accessing 
before- and after-images of X.  

 
In this way SNLp increases both intra- and inter-
transaction parallelism of nested transactions. 
 
 
 
 
 
 
  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
6 CORRECTNESS 

 
In this section we informally argue that the histories 
produced by the SNL protocol are serializable like 
histories produced by NL protocol [18].  
 
In nested transactions ACID-properties are fulfilled for 
TLTs. Therefore, the execution of a group of TLTs is 
correct if it is equivalent to a serial execution of same 
TLTs. However, within TLT, each set of sibling 
transactions runs as if all the transactions that have 
committed ran in a serial order and all the transactions 
that aborted did not run at all. Since we assume all sub-
transactions essentially commit (after re-submissions) 
the correctness criteria can be stated as follows. Let Ti 
be a TLT or a PT with `k' siblings (children). Ti's 
execution is correct, iff it is equivalent to a serial 
execution of `k' sibling transactions. 
 
We briefly argue that the commit dependency rules 
and NSL rules preserve the correctness. Consider Ti 
and Tj are LTs that conflict (write-write) on X under 
the same TLT.  Suppose Tj first obtains a lock in EW-
mode on X. When Ti converts its lock into PSW-mode, 
its parent inherits in ASW-mode.  As per inheritance 
rules, the lock propagates to least common ancestor 
(lca) of both Ti and Tj. The Tj obtains lock and carries 
out speculative executions by accessing before and 
after-images. Also, Tj forms commit dependency with 
Ti and its ancestors, which are in lca's hierarchy. When 
Tj forms a commit dependency, it commits only after 
termination of Ti  and its ancestors which are in lca's 
hierarchy. If Ti commits, it selects appropriate 
speculative execution that ensures the order Ti  « Tj.  In 
this way a conflict among any two LTs within a TLT, 
forces a serial order among siblings of   lca. In this way 
between any two conflicting  transactions, the SNL 
forces a serial order through corresponding lca . 
 
Similarly, TLTs execute in a serial order  by forcing 
the commit dependency among TLTs.   
 

7 CONCURRENCY ANALYSIS 
 
In the SNL approach, speculative executions of a 
transaction depends on its speculation level and 
number of data objects it conflicts with other 
transactions.  In this section we consider a set of flat 
transactions under same parent and analyze increase of 
concurrency employing SNL. 
 
We first define the term speculation level, which is 
used to quantify the parallelism that could be achieved 
using SNL.  
 
Definition. Speculation level: For Tj, the speculation 
level is denoted by ρj. If Tj  executes without conflict, 
ρj=0.  Let Tj speculatively reads a set of data objects, 

Figure 3. Depiction of processing (a) NL (b) SNLp 
 

T1 

T2 T3: U, V 

T5: X, Y 

T6 

T7:U T8:Z

T4: V, X 
Figure 2.  Transactions T1  and T6 . 



say, spec_set updated by n transactions.  Each X ε 
spec_set is updated by some Tk, at speculation level ρk. 
Let ρmax be the maximum of all ρk, where Tk  has 
updated a data object in spec_set.  Then, ρj= (ρmax +1).  
 
Now we derive relationship between speculative 
executions of a transaction and its speculation level.  
 
Let Ti conflicts on m (m ≥ 0) data objects with other 
transactions.  When Ti obtains lock on first data object 
with v1 nodes in its tree, it carries out v1 executions. 
When it accesses the second object having v2 nodes in 
its tree, each one of the v1  executions carries out v2 
executions.  Following this, after accessing all m 
objects, the total number of speculative executions 
carried out by Tj =v1× v2×….×vm. Note that, if a 
transaction has no conflict with other transaction on 
the k’th data object, vk is one.  Otherwise, if a 
transaction obtains the lock on k’th data object in 
speculative mode (some other transaction has updated 
the object tree), vk>1. For the sake of simplicity, let c 
be the mean of number of data objects that a 
transaction conflicts, ρ be the mean speculation level. 
Also, let vρ be the mean of number of versions in the 
tree of a data object and Nρ be number of executions at 
level ρ. Then, 

Nρ= (vρ)c …. (1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From Equations 1 and 2, given N and c we can 
estimate ρ. Database systems vary with respect to 
available resources and data contention. We discuss 
how SNL increases concurrency in such environments 
 
• Single conflict (Hot spots): From Equations 1 and 

2, with c=1, the relationship between ρ and  Nρ is, 
Nρ =2ρ. Therefore,  ρ=log Nρ.  From Fig. 4, it can 
be observed that, in single conflict environments, 
even we support eight speculative executions for a 
transaction (i.e., with N=8 and c=1), concurrency 
can be increased up to three speculation levels. 

 
• Multiple conflicts (long transactions): From 

Equations 1 and 2, with ρ=1, the relationship 
between c and N1 is, N1=2c. Thus in database 
environments in which majority of transactions 
conflict on multiple data objects, if we support 2c 
speculative executions for a transaction, 
concurrency could be increased up to one 
speculation level. So, SL achieves 1-level 
speculation with manageable extra resources.  
However, at multiple conflicts (c>2) and higher 
speculation levels (ρ>2), the value of N explodes. 

 
8  LIMITTED RESOURCES 

ENVIRONMENTS 
 
In the SNL approach, the number of speculative 
executions of a transaction increases exponentially as 
data contention increases. Since each speculative 
execution needs separate workspace, the size of main 
memory available in the system limits the number of 
speculative executions that could be carried out. With 
this limitation, processing cost may not be considered 
as a considerable overhead as current technology 
provides high speed parallel computers at low cost. 
Under limited resource environments the number of 
speculative executions of a transaction could be limited 
as follows. Let amount of memory required to carry 
out single execution be one unit. Based on the 
available memory units, we decide the feasible number 
of speculative executions that could be carried out by a 
transaction. During processing if the number of 
executions crosses the decided value, the transaction is 
either put to wait or aborted. 
 

9 SUMMARY AND CONCLUSIONS 
 
In this paper we have proposed concurrency control 
approach based on speculation for nested transactions.  
In the SNL approach, a (sub) transaction releases a 
lock on the data object when it produces after-image. 
In this approach a transaction carries out multiple 
executions to increase concurrency.  It requires extra 
computing resources for speculative executions to 
increase concurrency. By trading extra resources SNL 
increases concurrency without violating serializability 
criteria.  Through example we illustrated how SNL 

For the sake of simplicity we make two worst-case 
assumptions.  First, we assume that transaction requests 
only write locks and releases these locks after completing 
execution. And second when a transaction carries out Nρ 
executions, Nρ distinct versions are included to the tree of 
each data object it accessed after its execution. Then, the 
number of versions at the next level vρ+1 is given below.  
 

vρ+1= vρ+ Nρ where v0=1 and N0=1  …..(2) 

Figure 4.   Number of levels versus speculative 
executions  



increases concurrency over NL. Also, we have 
analyzed how SNL increases concurrency under 
limited resource environments. As a part of future 
work, we evaluate the performance through simulation 
experiments and formally prove correctness. 
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