
Dimension Transform Based Efficient Event
Filtering for Symmetric Publish /Subscribe

System

Botao Wang1 and Masaru Kitsuregawa1

Institute of Industrial Science, The University of Tokyo
Komaba 4–6–1, Meguro Ku, Tokyo, 135–8505 Japan

{botaow, kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract. There exists a class of publish/subscribe applications, such
as recruitment, insurance, personal service, classified advertisement, elec-
tronic commerce, etc., where publisher needs the capability to select sub-
scribers. Such kinds of publish/subscribe applications are called symmet-
ric publish/subscribe system. The existing event matching algorithms
designed for traditional publish/ subscribe systems (called asymmet-
ric publish/subscribe system) can not be applied to symmetric pub-
lish/subscribe systems efficiently.
By extending the existing data model and algorithm, we propose an
event matching method for symmetric publish/subscribe system based
on dimension transform regarding the query in multidimensional space.
An efficient underlying multidimensional index structure is chosen and
verified. Our proposal is evaluated in a simulated environment. The re-
sults show that, our proposal outperforms the other possible solutions in
one or two orders of magnitude. For a typical workload containing one
million subscriptions with 16 attributes, an event can be filtered within
several milliseconds and the subscription base can be updated within
hundreds of microseconds. We can say that our proposal is efficient and
practical for symmetric publish/subscribe systems.

1 Introduction

There exists a class of publish/subscribe applications, such as recruitment, in-
surance, personal service, classified advertisement, electronic commerce, etc.,
where publisher needs the capability to select subscribers who can receive its
publications. Consider the recruitment for example, company is publisher and
job seeker is subscriber. For a complete recruitment matching, besides providing
with working conditions, the publisher (company) wants to check the informa-
tion related to the subscriber (job seeker) also. For example, the subscriber is
required to be older than 18. Accordingly, the subscriber needs to provide his own
information also. Such kinds of systems are called symmetric publish/subscribe
system. Different from traditional publish/subscribe system (called asymmetric
publish/subscribe system in this paper), both subscriber and publisher keep in-
formation and filtering criteria as shown below.
(S1) Subscription :
Criteria:(Salary > 500) AND (Location = Paris), Information:(Age, 25)

(E1) Event :

Information :(Salary, 400− 600), (Location, Paris), Criteria: (Age > 30)

In the context of event matching, many event matching techniques [4] [5]
[7] [8] [13] [16] [17] have been proposed. The main challenge here is that all
above techniques are designed for asymmetric publish/subscribe system. These
techniques can not be applied to symmetric publish/subscribe system for three
reasons: 1) Predicates are defined and included in event. 2) Not only point data
(Location in E1) represented by one constant but also range data (Salary in
E1) represented by a pair of constants need to be supported. 3) The frequency of
index updating is same as that of event arriving. The new type of event matching
techniques for symmetric publish/subscribe system is required.

As far as we know, the symmetric publish/subscribe system is first intro-
duced in [12] without performance evaluation. In this paper, for symmetric
publish/subscribe system, we propose and evaluate an efficient event match-
ing method based on a multidimensional index structure MultiLevel Grid File
(MLGF) [14] [15] with dimension transform.

The main contributions of this paper are that: 1) Propose an event matching
model for symmetric publish/subscribe system, which allows information and
criteria to be defined in both event and subscription. The format of informa-
tion is extended from point format to range format. 2) Extend the dimension
transform techniques used in [13] to support event matching for both symmetric
and asymmetric publish/subscribe systems. Moreover, different from [13], where
UBTree [2] [3] [10] [11] is chosen as its underlying index structure, we propose
a more efficient multidimensional index structure MLGF, the performance of
event matching can be improved one order of magnitude in almost all cases.

The remainder of this paper is organized as follows. Section 2 defines the event
matching model of symmetric publish/subscribe system. Section 3 introduces
the main idea of our proposal after analyzing the limitations of the related
solutions. Section 4 describes the method of the dimension transform to support
event matching of symmetric publish/subscribe system. Section 5 introduces the
related work. Section 6 reports experimental evaluation. Finally, conclusions are
presented in Section 7.

2 Event Matching of Symmetric Publish/Subscribe
System

2.1 Architecture of Symmetric Publish/Subscribe System

The architecture of symmetric publish/subscribe system is shown in Fig.1-a.
There event and subscription are ”symmetric”, and the roles of subscriber and
publisher are relative not absolute. While an event arrives, besides matching
the event on subscription base, the system inserts the event to event base also.
The frequency of event (subscription) matching operations is same as that of
data updating of event (subscription) base. Symmetric publish/subscribe system
should support both high rate of event matching and high rate of data updating.

2.2 Data Model of Symmetric Publish/ Subscribe System

Schema Attributes The schema attributes are defined from the view of sub-
scriber. Let Ac, Ai and A denote the filtering criteria domain, the information

(a) Architecture of symmet-
ric publish/subscribe

(b) Data structure of event
and subscription

Fig. 1. The symmetric publish/subscribe system

domain and the publish/subscribe application domain, the schema attribtues are
defined as following:

Ac = {ac1, ac2, ..., acg, ..., aci} 1 <= i, acg ∈ Ac, 1 <= g <= i
Ai = {ai1, ai2, .., aih, ..., aij} 0 <= j, aih ∈ Ai, 0 <= h <= j
A = Ac ∪Ai

Event and Subscription Both event and subscription in symmetric pub-
lish/subscribe system consist of filtering criteria and information data as shown
in Fig.1-b. Because range data (interval) must be supported and predicate can
be represented as an interval also, an event e and a subscription s are defined as
conjunctions of intervals in the following formats:

e={(a1 : EIa1), ..., (ak : EIak
), ..., (ai+j : EIai+j)}

s={(a1 : SIa1), ..., (ak : SIak
), ..., (ai+j : SIai+j)}

where ak ∈ A = Ac ∪ Ai, 1 <= k <= i + j, and EIak
, SIak

are the intervals in
application domain respectively. The interval has format:

Ia = [Isa, Iea]
where a ∈ A, Isa, Iea ∈ a, Isa <= Iea. Notice that both predicate and informa-
tion data are represented by the same interval format here. They are different
semantically.

Event Matching An event pair (a,EIa) matches a subscription pair (a, SIa) if
EIa intersects SIa. An event e satisfies a subscription s if all subscription pairs
in s are matched by its corresponding event pairs.

3 Solution Overview

3.1 Limitations of Related Solutions

Compound Algorithm As far as we know, the symmetric publish/subscribe
system was first introduced in [12] without performance evaluation. The events
are matched based on two indexes: predicate index (Count algorithm [16] or

Handson [7] [8]) built on data belong to Ac and data index (B+tree) built on
data belong to Ai. The event data is divided into two subsets (Fig.1-b) : the data
subset belong to Ac and the data subset belong to Ai. The two data subsets are
sent to their corresponding indexes and the result subscriptions are obtained by
joining two intermediate result sets from two indexes.

The main problem of the Compound algorithm is performance. Both predicate
index and data index are a cluster of one-dimensional structures there. As analy-
ized and evaluated in [3] [10] [13] [17], the performance of such kind of clusters is
very sensitive to the selectivity of attributes. According to the analyses and eval-
uation results in [3] [10], it is hard to expect competitive performance with mul-
tiple B+trees compared to the multidimensional index structures like UBTree.
As introduced in [13] [17], the performances of UBTree-based and RTree-based
event matching are three orders of magnitude faster than that of the Count al-
gorithm [16] in most of cases regarding different workloads. Logically, the Count
algorithm [16] and the Hanson algorithm [7] [8] have same complexity order for
event matching.

Algorithms Based on Multidimensional Indexes Multidimensional in-
dexes, like UBTree [3] [10] and RTree [6] are feasible for event matching of
asymmetric publish/subscribe system as introduced in [13] [17]. The dimension
transform is adopted in order to avoid overlap in hypercubes corresponding to
subscriptions. There the hypercubes in d space are transferred into points in 2d
space. The point access method used there is UBTree.

The problems of [13] [17] are that: 1) The method introduced in [13] can not
be applied to symmetric publish/subscribe directly. The reason is that the new
data type (range data) and operation (predicate) in event are newly defined in
symmetric publish/subscribe system, and event matching here is an intersection
query based on the model (Section 2.2) instead of a point enclosed query [13]
which corresponds to asymmetric publish/subscribe system . 2) For the range
search based on UBTree which was chosen as the underlying index structure
in [13], the number of empty spaces (no data is kept there) becomes larger
with increasement of dimension number. Skipping empty space is an expensive
memory operation, which can not be neglected in the event matching based on
main memory structure.

3.2 Main Idea

The main idea of our solution is stated as: the event matching of symmetric
publish/subscribe system is regraded as an intersection query on hypercubes in
d space and the intersection query on hypercubes is transformed into a range
query on points in 2d space so as to make use of efficient point access methods
for event matching.

Different from [13] [17], the dimension transform (to be introduced in Section
4) supports event matching of symmetric publish/subscribe system. Moreover,
instead of UBTree, we propose to use a more efficient underlying index struc-
ture, MultiLevel Grid File (MLGF) [14] [15]. MLGF is a dynamic, balanced,
multidimensional index structure that adapts to nonuniform and correlated dis-
tributions. For the details of Multilevel Grid File, please refer to [14] [15].

4 Dimension Transform

Fig. 2. Dimension Transform

4.1 Dimension Transform for Symmetric Publish/Subscribe System

As defined in Section 2.2, both subscription and event are conjunctions of in-
tervals. The method of dimension transform is same for all attributes. In the
follows, we introduce the dimension transform method for one attribute. The
same intervals

EIa = [EIsa, EIea], SIa = [SIsa, SIea]
defined in Section 2.2 is used here. Given an attribute a ∈ A with domain size
[Min, Max], two new dimensions in a 2d space Dsa and Dea are defined corre-
sponding to starting and ending points.

We start from the cases that EIa doesn’t intersect with SIa, which means the
predicate is not matched. As shown in Fig.2, there are only two cases which are
represented by two pairs of intervals (EIa, S1Ia) and (EIa, S2Ia). Logically, the
two cases can be summarized as follows,

EIsa > SIea OR EIea < SIsa

From above expression, we can deduce the expression representing intersection
of two intervals:

NOT (EIsa > SIea OR EIea < SIsa)
m

(EIsa <= SIea AND EIea >= SIsa)
m

(EIsa <= SIea <= Max) AND (Min <= SIsa <= EIea)
If SIsa and SIea are considered as one point in the 2d space, by mapping SIsa

and SIea to the newly defined two dimensions Dsa and Dea, one 1d intersection
query on hypercubes can be transformed into one 2d range query on points as
shown in Fig.2. The range in 2d space is

Range : ([Min, EIea], [EIsa, Max])
and the point is

Point : (SIsa, SIea)

5 Related Work

A lot of algorithms related to event matching have been proposed. They are
proposed for publish/subscribe systems [1] [5] [9] [13] [16] [17], continuous queries
[4] and active databases [7] [8].

Predicate indexing techniques have been widely applied. There, a set of one-
dimensional index structures are used to index the predicates in subscriptions.
Mainly, there are two kinds of algorithms based on multiple one-dimensional
index structures: Count algorithm [16] and Hanson algorithm [7] [8]. The perfor-
mances of Count algorithm and Hanson algorithm have same complexity order,
they differ from each other by whether or not all predicates in subscriptions
are placed in the index structures. Meanwhile in [13] [17], the event matching
based on multidimensional index structures has been proved to be feasible and
efficient compared to the Count algorithm. The conclusions of [13] [17] are the
basis of this paper. Hanson algorithm is extended in [5] where subscriptions were
clustered according to their equality predicates and mutli-attribute hashing was
utilized to find the related clusters. The size of domain can not be too larger for
reason of multi-attribute hashing.

The testing networking based techniques [1] [9] initially preprocess the sub-
scriptions into a matching tree. Different from the predicate indexes, [1] and [9]
built subscription index trees based on subscription schema. They suffer from
the problems of space and maintenance.

Event matching is one critical step of continuous queries. In [4], predicate
index was built based on Red-Black tree, there algorithm is similar to bruteforce
which scans the total Red-Black tree every time when an event arrives.

All above algorithms are designed for asymmetric event matching, which can
not be applied to symmetric publish/subscribe system directly.

6 Evaluation

6.1 Envaluation Environment

Parameter Value range Default
value

Global parameters
Number of subscriptions 0-2,500,000 1,000,000
Number of attributes (dimension) 8-64 16
Ratio of attributes belong to Ac to attributes belong to Ai 16:0-0:16 8:8
Ratio of one subscription is matched (selectivity) 0.001-0.05% 0.01%

Parameters related to subscription or event
Ratio of an attributes to be used to define predicate 0-100% 100%
Ratio of equality predicates to be defined 0-100% 50%
Ratio of point data to be defined 0-100% 50%

Table 1. Simulated parameters

Three kinds of solutions have been implemented and compared based on main
memory structure: 1) Naive. RTree is used directly for intersection query with-

out dimension transform. 2) Compound. It is an implementation similar to the
algorithm proposed in [12]. Different from the original proposal, two indexes for
predicates and information data kept in subscriptions are two RTrees. 3) Dimen-
sion Transform. Two point access methods are chosen: UBTree and MLGF.

The events and subscriptions are created according to a workload specification.
The parameters used in the evaluations are tabulated in Table.1 along with their
range and default values. For each test, we change one parameter and fix the
others with their default values without specific introduction. For each test, the
average response time of 1000 inputs is measured.

All the solutions are implemented in C++. The type of all attributes is short
integer. The fanout of UBTree, MLGF tree and R-tree1 are 200, 20, 10. With
these values, the best response times are obtained in one preliminary test with
a workload of 1 million subscriptions and 10 thousands events in a 16d space.
The hardware platform is a Sun Fire 4800 workstation with four 900MHz CPUs
and 16G bytes memory under Solaris 8.

6.2 Evaluation Results

Performances Related to Event Matching Fig.3-a shows the scalability on
the number of subscriptions. All solutions have good scalabilities here.

Fig.3-b shows the performances with different numbers of dimensions. Com-
pared to the performance of Compound, the performance of Naive deteriorates
quickly than that of Compound. The reason is that the number of dimensions
used in Naive is double of that used in Compound (two RTrees are used). The
influence of number of dimensions on RTree’s performance accelerates when the
dimension number becomes larger. The total number of intermediate results ob-
tained from two indexes of Compound has an average value 2789 when dimension
number is 8 and an average value 205 when dimension number is 16. That is the
reason why its performance seems to upgrade a little when dimension number
is 16, because the number of the intermediate results decreases 10 times here.
Contrast to our expectation, the performance of MLGF does not changes lin-
early with number of dimension. The main reason is that the selectivity is fixed
by default and the number of candidate objects which were filtered to get final
results, decreases with the number of dimensions here.

Fig.3-c shows the performance with different selectivities. Here 1 million sub-
scriptions are used and the number of results for one event matching changes
from 10 to 500. Except Naive, the time costs of other solutions become larger
with the increasement of the selectivity. The reason that Naive is relatively
stable is the numbers of candidate objects are on same order of amount.

Fig.3-d shows the influence of attributes distribution related to the numbers
of attributes defined in Ac and Ai. ”0:16” means the size of Ac is 0 and the size
of Ai is 16. Subscriptions consist of information data only and events consist of
predicates only. In this case, the event matching of symmetric publish/subscribe
is same as a traditional query which is applied on static data (subscriptions).
”16:0” means the size of Ac is 16 and the size of Ai is 0. It means that sub-
scriptions consist of predicates only and event consists of information data only,
which is similar to asymmetric publish/subscribe system. The difference is that
the information data kept in events include has format of range data (Section
1 Version 0.62b. http: //www.cs.ucr.edu/ marioh/ spatialindex. Only the two param-

eters related to fanout are changed here. The others are default values.

(a) Scalability on in-
dex size

(b) Scalability on di-
mension

(c) Performance
with different selec-
tivities

(d) Performance
with different dis-
tribution ratios of
attributes

(e) Performance
with different dis-
tribution ratios of
event predicate

(f) Performance
with different num-
bers of attributes
used in event predi-
cates

Fig. 3. Performances related to event matching

2.2). In above two cases, Compound method creates only one index (predicate
or data) same as naive, so the performances of them are same. The performance
difference between MLGF-based solution and UBTree-based solution becomes
larger with increasement of Ac’s size. It indicates that MLGF is more suitable
than UBTree for both symmetric and asymmetric publish/subscribe system.

Fig.3-e shows that the distribution ratio of different predicates (equality or
non-equality) used in the events influences the performance bitterly. Except
UBTree-based solution, the performances of other solutions become better while
the percentage of equality predicates becomes larger. It is a process that the cor-
responding query changes from intersection query (symmetric publish/subscribe)
to point enclosed query (asymmetric publish/subscribe), because equality pred-
icate can be represented in the format of point data.

Fig.3-f shows that the changing of the number of unused attributes in event
predicate only influences the performance of Compound and Naive. The perfor-
mances become better for the reason that the more the number of used attributes

is , the less the overlap is. But it does not influence the performance of UBTree
and MLGF where dimension transform has been done.

(a) Index building
time with different
dimensions

(b) Performance of
insertion with differ-
ent dimensions

(c) Performance of
deletion with differ-
ent dimensions

Fig. 4. Performances related to index updating

Performances Related to Index Updating As introduced in Section 2.1,
symmetric publish/subscribe system must support high dynamically updating
operations. Fig.4-a shows that the index building time based on UBTree and
MLGF increases linearly with the number of dimensions. In contrast, Compound
and Naive deteriorate quickly for the reason of heavy overlaps.

Fig.4-b and Fig.4-c show the performances of insert operations and delete op-
erations respectively. Time costs of Compound and Naive increase exponentially
with the number of dimensions because Rtree is built based on overlap of spatial
objects. The insert operation of MLGF is a little faster than that of UBTree
and the delete operation of MLGF is a little slower than that of UBTree. The
reason is their different partition strategies. Merging two regions of MLGF is a
little expensive than merging two nodes of UBTree. The time costs of MLGF
and UBTree increase linearly with the number of dimensions.

7 Conclusions

In this paper, we have described the event matching problem of symmetric pub-
lish/subscribe system and discussed the strategies of applying multidimensional
index structures to symmetric publish/subscribe system. The key feature of our
solution is that map the intersection query on hypercubes to a range query on
points with dimension transform so as the efficient point access method (Multi-
Level Grid File) can be utilized for event matching.

Three kinds of solutions based on RTree, UBTree and MLGF, were evaluated
and compared with various workloads in a simulated environment. The results
show that our proposal outperforms the others in one or two orders of magnitude
in almost all cases regarding different workloads. Performance studies show that

an event can be filtered within several milliseconds and subscriptions can be
updated within hundreds of microseconds for a typical workload containing one
million subscriptions with 16 attributes. We can say that our proposal is efficient
and practical for symmetric publish/subscribe applications with high rates of
incoming events and high rates of data changes.

References

[1] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra.
Matching events in a content-based subscription system. In The 18th annual
ACM symposium on Principles of distributed computing, pages 53–61, 1999.

[2] R. Bayer. The universal b-tree for multidimensional indexing. Technical Report
TUM-I9637, Technische Universitat Munchen, November 1996.

[3] R. Bayer and V. Markl. The ub-tree: Performance of multidimensional range
queries. Technical Report TUM-I9814, Technische Universitat Munchen, June
1998.

[4] S. Chandrasekaran and M. J. Franklin:. Streaming queries over streaming data.
In VLDB, pages 203–214, 2001.

[5] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha.
Filtering algorithms and implementation for very fast publish/subscribe systems.
In SIGMOD, pages 115–126, 2001.

[6] A. Guttman. R-trees: A dynamic index structure for spatial searching. In SIG-
MOD, pages 47–57, 1984.

[7] E. N. Hanson, C. Carnes, L. Huang, M. Konyala, L. Noronha, S. Parthasarathy,
J. B. Park, and A. Vernon. Scalable trigger processing. In ICDE, pages 266–275,
1999.

[8] E. N. Hanson, M. Chaabouni, C.-H. Kim, and Y.-W. Wang. A predicate matching
algorithm for database rule systems. In SIGMOD, pages 271–280, 1990.

[9] A. Hinze and S. Bittner. Efficient distribution-based event filtering. In Workshops:
1st International Workshop on Distributed Event-Based Systems(DEBS), IEEE
Computer Socienty, 2002.

[10] V. Markl. MISTRAL:Processing Relational Queries using a Multidimensional
Access Tecnnique. PhD thesis, Technische Universitat Munchen, 1999. Published
by infix Verlag, St.Augustin. DISDBIS 59, ISBN 3-89601-459-5.

[11] F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhardt, and R. Bayer. Integrating
the ub-tree into a database system kernel. In VLDB, pages 263–272, 2000.

[12] W. Rjaibi, K. R. Dittrich, and D. Jaepel. Event matching in symmetric subscrip-
tion systems. In Proceedings of the 2002 conference of the Centre for Advanced
Studies on Collaborative research, page 9. IBM Press, 2002.

[13] B. Wang, W. Zhang, and M. Kitsuregawa. UB-Tree based efficient predicate index
with dimension transform for pub/sub system. In DASFAA, pages 63–37, 2004.

[14] K. Y. Whang, S. W. Kim, and G. Wiederhold. Dynamic maintenance of data
distribution for selectivity estimation. The VLDB Journal, 3(1):29–51, 1994.

[15] K.-Y. Whang and R. Krishnamurthy. The multilevel grid file - a dynamic hierar-
chical multidimensional file structure. In Proceedings of the Second International
Symposium on Database Systems for Advanced Applications, pages 449–459, 1992.

[16] T. W. Yan and H. Garcia-Molina. The sift information dissemination system.
ACM Trans. Database Syst., 24(4):529–565, 1999.

[17] W. Zhang. Performance analysis of Ub-tree indexed publish/subscribe system.
Master’s thesis, Department of Information and Communication Engineering, The
University of Tokyo, 2004.

