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SUMMARY This paper presents an overview of the SDC-I
(Super Database Computer I) developed at the University of
Tokyo, Japan. The purpose of the project was to build a high
performance SQL server which emphasizes query processing over
transaction processing. Recently relational database systems
tend to be used for heavy decision support queries, which include
many join, aggregation, and order-by operations. At present
high-end mainframes are used for these applications requiring
several hours in some cases. While the system architecture for
high traffic transaction processing systems is well established,
that for adhoc query processing has not yet adequately under-
stood. SDC-I proved that a parallel machine could attain
significant performance improvements over a conventional
sequential machine through the exploitation of the high degree of
parallelism present in relational query processing. A unique
bucket spreading parallel hash join algorithm is employed in
SDC, which makes the system very robust in the presense of data
skew and allows SDC to attain almost linear performance
scalability. SDC adopts a hybrid parallel architecture, where
globally it is a shared nothing architecture, that is, modules are
connected through the multistage network, but each module itself
is a symmetric multiprocessor system. Although most of the
hardware elements use commodity microprocessors for improved
performance to cost, only the interconnection network incorpo-
rates the special function to support our parallel - relational
algorithm. Data movement over the memory and the network,
rather than computation, is heavy for I/O intensive database
processing. A dedicated software system was carefully designed
for efficient data movement. The implemented prototype consists
of two modules. Its hardware and software organization is
described. The performance monitoring tool was developed to
visualize the system activities, which showed that SDC-I works
very efficiently.

key words: parallel machine, relational database, SQL, parallel
algorithm

1. Introduction

The database management system is one of the most

important components of the modern computer sys-
tems.  Recent widespread adoption of relational
database systems, mainly due to its ease of use, has led
to the creation of larger and larger databases, which
has brought about the great demand for super relational
database servers that have much higher performance
than current ones. One of the key features of relational
database systems is their employment of the non-
procedural query language, SQL, through which users
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can issue adhoc queries very easily. This stimulates the
use of the relational database for query processing,
while traditional database management systems have
been mainly adopted in high traffic transaction proc-
essing systems.

Commercial database applications can be
classified roughly into two types: transaction proc-
essing (TP) and query processing (QP). Considerable
research has been done on TP. Large online systems
such as banking with ATMs, reservation systems, and
stock marketing systems have been constructed. This
technology, which is characterized by very high traffic
rate and relatively small access to the database, has
already matured. Recently, relational database systems
tend to be used for query processing applications such
as decision support, market analysis, sales trend analy-
sis, and information mining. Since queries are issued
to the system in an adhoc way, usually queries access
the attributes which are not indexed. Query processing
for statistical analysis scans very large amounts of data
and takes a very long time to complete. It can take
several hours, even days in certain cases. Large
amounts of data generated by transaction processing is
accumulated and this data tends to be used by query
processing for statistical analysis. The standardization
of the benchmarks reflects the prevalence of such
applications. - TPC-A, B, C are well known bench-
marks for transaction processing, and at present fre-
quently used as performance metrics of the machine.
Currently TPC is working to establish yet another
benchmark called TPC-D, which is targeted for deci-
sion support queries.

Much more powerful machines are required to
support query processing, since it has to scan very large
amount of data and has to do some computation over
it. Current mainframe machines are not necessarily
sufficient. There are two directions that can be taken to
improve the performance of relational database proc-
essing: the special purpose processor approach and the
parallel processor approach. Searching is one of the .
most fundamental operations. Special hardware to
accelerate the search operation has been researched [3],
[7],[19], [22] and developed as a product [9], [18], [23]
which performs interpretation of the physical record
structure, predicate evaluation and the extraction of
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necessary fields from the records efficiently. If search
processing is done by the CPU, all the data from the
disk must be transferred to the CPU via the channel.
The bandwidth of the channel is usually limited and is
a very expensive resource. Intelligent disk controllers
which incorporate the search logic are currently used
in mainframe computers. It is reported that these
devices can decrease the load of the channel dramati-
cally and increase the system throughput [18]. This
filter processor is very effective for the reduction of the
data but is not so helpful for the heavy relational
operators such as join.

The other key function frequently used in
database processing is sorting. Most of the current
commercial products use a sort library as a preproces-
sor for the relational operations such as join, aggrega-
tion and duplicate elimination. Sorting is also heavily
used for report generation and index creation. Due to

-the heavy load caused by sorting, special hardware

engines have been developed. IDP (Integrated
Database Processor) [17] by Hitachi modifies the
vector processing unit to support the merge operation.
By using those vector units iteratively, it can produce a
fully sorted record stream. Another special sort

_ machine prepares log N comparators connected linear-

ly with each dedicated memory bank [4], [20]. This
can sort the record stream in O(N) time, while the
uniprocessor machines take O (N log N) time. Linear
time sorting means that the file read out from the disk
can be directly fed into this sort accelerator. High
speed sorting plays a very important role under practi-
cal applications. Since the end of 80’s, large computer
manufacturers, especially Japanese companies, have
developed special database accelerators. Since consid-
erable investment has gone into the development of
host ‘machines, application specific functionality
should be designed to integrate with these systems with
minimal impact. The sorter is added as an extension to
the host system. A hardware sorter can boost the
performance of join operations, but it is a basically
sequential architecture and cannot exploit a high
degree of parallelism. '

 Recently the computer industry has seen a shift
from the use of proprietary systems to the use of open
systems. Downsizing stimulates the replacement of the
large mainframe based centralized system with an in-
expensive microprocessor based distributed system
using open software. For transaction processing appli-
cations a multiprocessor system fits very well and can
attain very high transactions per second, which is much
higher than mainframe machines. If such general
purpose parallel processor systems based on inexpen-

“sive microprocessors can be used for relational query

processing, hopefully we can realize very powerful as
well as scalable systems. Parallel database processing
has been an active research area for the last ten years

(1], [2], [5], [8], [15], [24].
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'So far we have done research on performance
issues on relational database systems. We have devel-
oped the parallel relational algorithms, high speed
hardware sorter and the functional disk system (FDS)
[12], [13], [15], [16]. FDS was implemented to deter-
mine whether introducing database functionality into
the disk controllers leads to improved database perfor-
mance. Based on our previous results, we started the
SDC project in 1988.

SDC-I is an experimental prototype to prove the
viability of microprocessor based parallel query
processing servers [6], {10], [14]. One of the most
unique features is in its use of the bucket spreading
hash join algorithm which is robust against data skew.
With this algorithm, SDC can achieve high degrees of
scalability. Extra hardware was introduced into the
interconnection network to assist the algorithm. A
dedicated operating system was constructed to support
efficient data transfers among the modules. These
transfers are essential for data intensive database
processing. SDC-I consists of several modules inter-
connected by. the network, where each module contains

_five MC68020 microprocessors, while SDC-II under

development employs seven MC68040’s. The I/O
system is much more enhanced compared with current
scientific parallel machines. SDC-I was designed to
have very powerful query processing capabilities. This'
paper overviews several aspects of SDC-I: its parallel
relational algorithms in Sect. 2, its architecture in Sect.
3, its software system in Sect. 4, and its performance
monitoring tools in Sect.5. Section 6 presents our
conclusion.

2. Parallel Relational Algorithm

In order for a parallel system to work effectively, the
target application must have substantial inherent paral-
lelism which is easily exploitable.  Fortunately, |
relational query processing applications contain high
degrees of parallelism. This parallelism can be catego-
rized into three levels. Several queries can be processed -
in parallel (inter-query parallelism). Several opera-
tions within a query can be processed in parallel
(intra-query parallelism). A single relational operator
can exploit data parallelism (intra-operator parallel-
ism). Thus large amounts of parallelism can be ex-
ploited for relational query processing.

Then we need an efficient parallel algorithm
which can exploit this parallelism. Usually very
sophisticated sequential algorithms tend to be difficult
to be parallelized. SDC employs a new parallel algo-
rithm named “Bucket Spreading Hash Join” [14].
Conventional parallel hash join algorithms are very
sensitive to data skew, because the buckets generated
by the hash function are assigned to the processors
statically. Thus the size of the hash tables varies
among the processors. In some cases, certain proces-
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sors’ memories may overflow and the others’ may not.
If overflow occurs, performance deteriorates
significantly. The total execution time is determined
by the slowest module. Thus the conventional naive
parallel hash join algorithm or the parallel hybrid
hash join algorithm are very fragile under non-
uniformly distributed data. Any parallel processing
system must pay careful attention to load balancing in
order to achieve linear scalability. The bucket spread-
ing hash join algorithm is designed so that it works
well even if the distribution of data is skewed appre-
ciably.

The algorithms utilizes a shared nothing architec-
ture and assumes that all the relations are fully declus-
tered over the modules. The bucket spreading hybrid
hash join algorithm works as follows. Let the smaller
relation be R and the larger be S.

i) Build Phases: Each module applies the hash func-
tion to each tuple of its portion of the relation R, then
send out the tuples over the interconnection network,
named bucket flattening omega network. This func-
tional network automatically distributes the tuples
with the same hash id equally among the modules. If
the size of the relation R is small enough, the whole
relation fits into the main memory space. However, if
the relation size exceeds the size of main memory, then
the dynamic destaging mechanism is invoked [11],
[21]. The largest bucket is selected and the tuples of
that bucket are destaged into the disks. The memory
space occupied by this bucket is released for use by
incoming tuples. Everytime the memory space
becomes full, dynamic destaging occurs. When SDC
finishes reading all the tuples from the disks, it exam-
ines the size of the buckets in memory. Since the
bucket flattening omega network distributes each
bucket evenly over the modules, a certain coordinator
can schedule the bucket assignments with its local
information. Each module exchanges the bucket frag-
ments among each other following the given schedule
and builds its own hash table. This scheduling and
data exchange seems to be an extra cost, since such
processing is not required by the naive parallel
GRACE hash join. However, this contributes to the
avoidance of hash table overflow and can utilize the
memory space with the highest degree of efficiency. In
addition, the time necessary for it is small, since data
exchange involves not the disk I/O but only communi-
cation over the interconnection networks, where the
recent network bandwidth is much higher than that of
the disks.

ii) Probe Phase: The relation S is read out from the
disk and the hash function is applied to each tuple. If
the hashed value falls into one of R’s bucket ids which
are stored in the current module’s main memory, that
tuple is probed against the local hash table and the
result tuples are produced. The result tuples are again
hashed over the attribute for the next operation and
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sent out over the bucket flattening network. If the
hashed values falls into R’s bucket ids which are stored
on the current module’s disk, the tuple is stored back
into the disk. Otherwise, the tuple is sent to the
corresponding module according to its hashed value.
When all the tuples are finished being read from the
disks, the result tuples for the buckets resident in
memory are produced and the nonresident buckets are
stored back to the disks. At this time, the statistical
information on the buckets stored on the disks are
available for scheduling the remaining buckets. The
assignment of buckets to the processors is determined

-with this infermation, this process is called bucket

tuning [11]. Once the schedule is fixed, build and
probe phases are repeatedly performed until all the
tuples have been processed.

3. Architecture of SDC-I
3.1 Global Architecture

As shown in Fig. 1, SDC-I globally employs the dis-
tributed memory architecture where modules are con-
nected through the interconnection networks. Each
module itself is a symmetric multiprocessor system
(SMP). Although the single processor per module
approach is much simpler, we adopted SMP as a unit
of the system. This relies on our belief that in the near
future a single chip will include multiple processors to
increase the performance beyond the degree of super-
scaler parallelism. Also, we believe that the system
software will support both shared memory and message
passing paradigms.

A single module contains four MC68020 micro-
processors. Processors are connected through two
buses, one for high speed data transfer (H-bus) and the
other for handling control information and mutual
exclusion (C-bus). The H-bus is used solely for bulk
data transfer. Memory is also composed into two
portions: an 8 Mbytes data memory for the raw tuple
data and a 2 Mbytes control memory for storing the
control data structures such as page address lists, hash
table entries, and memory consumption statistics for
each staging buffer. Each module controls two disk
drives in parallel. The disk controller identifies the
tuple boundaries, generates the logical page and
invokes DMA transfers to the data memory. Two disk
controllers are managed by the control processor (CP),
which manipulates the page table on the control
memory and sets the DMA information for the disk
controller. The control processor also manages all the
activities of the module, such as the synchronization of
four processors.

Modules are connected through two kinds of
interconnection networks: the data network and the
control network. The data network offers high-speed
channels for data transfers, while the control network
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Fig. 1 Overview of super database computer I (SDC-I).

handles control information and supports communica-
tions with front-end machines. Each module has a
network adaptor for each network. When invoked by
the control processor, the data network adaptor asyn-
chronously begins the data transfer from the data
memory to the data network through the FIFO buffer
memory on the adaptor, while processors are produc-
ing the pages of the result tuples on the data memory.

~
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In the same way, the network adaptor handles receiv-
ing tuples from the network. Although Fig. 1 shows
eight modules, actually two modules were implement-
ed and evaluated.

3.2 Functional Interconnection Network

As described above, the interconnection networks of
SDC-I are composed of the data network and the
control network. The data network was designed to
incorporate special hardware to support flat distribu-
tion of buckets, which is the key mechanism to handle
the data skew. Since the switching units in the network -
offer the flattening function, processing modules need
not care about the data distribution. ,

An omega network is employed as the network
topology (Fig. 1). Each switch can be set to either of
two states, straight or crossed. These switches are not
controlled by the centralized control manager. They
set their states autonomously using only local informa-
tion.

To accomplish flat distribution of the buckets,
each switch keeps the value, D(X) in a counter for
each bucket id, X, which is the difference between the
number of tuples of the X-th bucket output to the left
port and output to the right port. Since the number of

counters in each switch equals to the number of

buckets, counters are implemented with standard RAM
chips and simple ALU logic. All counters are set to
zero before the query begins. When a tuple of some
bucket arrives at the switch and it is given to the left
output port, the counter for that bucket is incremented.
If it is given to the right output port, the counter is
decremented. Thus D(X) represents the skew of the
bucket distribution. If D(X) >0, more tuples have
been switched to the left output port than the right
port.

Let Xyp: and X,en: denote the bucket ids of the
tuples which arrived at the left and right input ports,
respectively. Then Dif =D (Xies:) — D (Xypign:) repre-
sents the relative skew of the distribution of tuples in
the bucket of X, and Xyien:. In order to distribute
buckets as flatly as possible over the modules, the state
of the switch is set to crossed if Dif >0 and straight if
Dif <0. The state of the switch can be determined
arbitrarily if Dif =0. Figure 2 shows an example of
switching behaviors. Here, the left input port receives
a tuple from the m-th bucket and the right port a tuple
from the n-th bucket. Since Dif is positive, the state of
the switch is set to crossed.

If the tuple length is fixed and all tuples are given
to the switches synchronously, this network achieves
block-free transmission. Usually, SDC-I assumes a
full declustering storage scheme, that is, all the rela-
tions are declustered over ‘all the modules. The
relational operators in a query are processed one by
one in left-deep tree fashion or segment by segment in
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right-deep tree way, and block free interconnection can
be fully utilized for the relations of fixed length tuples.
However, in order to support variable length tuples or
to support bushy tree execution parallelism, each
switch has to handle asynchronous arrival of the tuples
at the two input ports. The tuple which arrived earlier
can determine its output port using D(X). But the
tuple which comes later has no choice, when the trans-
fer of the primary tuple is still in progress. To output
this tuple to the remaining port might increase the
skew. In such cases, the switch blocks the transmis-
-sion. Thus, asynchronous switching incurs blocking,
while synchronous switching has no blocking. We
_introduced a threshold value to decrease the blocking
ratio at the cost of increased skew. That is, when there
is a possibility of blocking, each switch tests D (X)
— Thr instead of just D(X'). Thr is, in fact, a function
of the current state of the switch, taking the value T if
the unused output port is the left port, and the value
— T if it is the right one, where T is a positive constant
number. A large 7 makes the value of the test expres-
sion increase or decrease according to whether the
unused output port is the right or left one respectively,
and causes blocking to be less likely to occur. Thus the
value T is a relative penalty of blocking to data skew.
In SDC-II, we are planning to add two more

extensions to the bucket flattening function to support .

more general environments. One extension is support
for variable length tuples. The counter is incremented
or decremented by the tuple length in bytes after the
switch state was determined. As a consequence, all the
modules can receive almost equal volume of tuples,
rather than equal number of tuples. This avoids
“bucket overflow due to the skew in the data volume
and eases the management of the memory space. The
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other is to allow the number of modules to be an
arbitrary number (i.e. other than a power of 2).
Usually, the number of the modules should exactly
equal to a power of 2, because of the nature of the
multi-stage network. However, such a restriction
causes the inflexibility of system configuration. The
user may want to construct the system with arbitrary
number of modules. For the system with » modules
where 2*7'<n<2* we use k stage omega network
with 2*—n ports disabled.. We introduced another
parameter representing the number of active ports, and
use it as a weighting factor so that the unequal number
(or volume) of tuples can be output from the right and
the left ports. The details of the algorithms are beyond
the scope of this paper, and will be described in the
future paper. ‘

4. System Software

The software system of SDC should be designed so that

the bucket spreading hash algorithm can run as

efficiently as possible. Parallel hash based relational

database processing algorithms require that the tuples

always flow through the modules. While the computa-

tion load is heavy for scientific applications, for

database processing, data movement over the memory

and the network is much more intensive than computa-

tion. Efficient data movement is the largest concern in

I/O intensive parallel database processing. SDC

adopts an I/O driven processing model. An abstract

view of data movement in SDC-I is depicted in Fig. 3,

where dark circles denote tasks composed of a filled

page and white circles those with an empty page. The

task are generated by the disks and are put on the task

pipe over the shared memory. The processors rep-.
resented by four rectangles at the center of the figure,

fetch the task from the pipe, perform relational alge-

braic operations on it, produce result tuples and apply

the hash function for the next operation if necessary,

and finally release the page which was occupied by

task to the free page pool. The tasks generated by the -
processors are sent out to the other modules over the
network or written back to their own disks. The
programmer writing the relational processing code
does not have to be concerned with the details of flow
control.

SDC Operating System (SDC-OS) which was
developed as the fundamental system software for
SDC-I provides only the following four primitives to
the programmer,

getTask ( ): get a task from the input pipe

putFree( ): return an empty page to the free
pool

getFree( ): get an empty page for result tuples

from the free pool
putTask( ): put a task into the output pipe
Conventional operating systems suffer from the
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data copy overhead between the various layers of
software, for example between kernel space and user
space. SDC-OS was carefully designed to reduce this
overhead as much as possible. The disk controller and
network adaptor incorporates task generation hard-
ware. The tuple stream from the disk/network is
transformed into the page format by hardware, which
are then placed on the task pipe. During the data
transfer, there is no explicit copy operation. Only the
pointers to the pages are exchanged among the proces-
sors, the disk controller, and the network adaptor via
the control memory.

Flow control and buffer management are also
important issues for parallel database processing,
which are handled by SDC-OS. There are four kinds
of buffers: a read buffer for the disks and the net-
works, a net buffer, a write buffer, and a bucket buffer
for the hash table. A high water mark is introduced on
the net buffer. If the number of tuples in the net buffer
exceeds the high water mark, the disks are suspended
from reading the tuples, waiting for the target modules
- to consume the tuples transmitted by this module. The
disk read operation resumes when the number of tuples
in the net buffer falls below the low water mark. While
the disk reads are suspended, the tuples in the write
buffer are flushed out to disk. Thus the data flows in
SDC are controlled so as to keep the disks idle time to
a minimum. Our adaptive flow control scheme works
well even under dynamically varying loads, which are
confirmed by the detailed simulation [6]. Usually the
disk I/0 and the network I/O are treated completely
independently. However as shown in Fig. 3, the tasks
from both the disks and the network are equivalently
processed in our application. To ease the program-
ming, these two 1/O’s are unified. There is no distinc-
tion between these two, which is also one of the fea-
- tures of SDC-OS. '

On top of the SDC-OS, SDC-DB was constructed,
which is a collection of processes dedicated to each
- database management function. The processors of
each module run data processing processes, which

perform the relational algebraic operations using the
four primitives described above. On the control proc-
essor, several processes such as Module Control Proc-
ess, Disk Manager, Network Manager Process, Mem-
ory & DMA manager, and SCSI driver are activated.
The Module Control Process is responsible for all the
activities occurring in a single module. SDC-I is
connected to the server machine, where the SQL com-
piler, the scheduler and the coordinator are invoked.
The last one synchronizes the operations among the
multiple modules. Barrier synchronization is necessary
for phase transitions such as the switch from the i-th
bucket to the (i+1)-th bucket, and the transition from
the build phase to the probe phase.

5. Performance Monitor

It is usually difficult to understand the behavior of
parallel processing systems, since so many activities
run simultaneously. This stimulates the research on
the performance monitoring tool and its visualization
system. The majority of such tools developed so far are
for scientific applications and focus on just CPU
utilization. Since database processing requires large
amount of I/O to the secondary storage system, I/O
behavior and buffer memory utilization are also
influential factors to the overall performance.

The SDC performance evaluation tool consists of
performance measurement tools and performance visu-
alization tools. There are two approaches for the
performance monitor: hardware monitor and software
monitor. The former can measure the system with
minimum interference but its dedicated hardware
incurs a high cost. The latter is easy to introduce but
usually has side effects which are not negligible.
Therefore we integrated these two approaches to form
the SDC performance monitoring system. We devel-
oped the bus monitor as a hardware monitor and the
resource monitor as a software monitor. The bus
monitor is designed to measure the utilization
efficiency of the H-bus and C-bus which can be found




KITSUREGAWA et al:

in Fig. | and examine the I/O activities of the disk
drives. Since all the data from the disks flows through
the bus, I/O behavior can be monitored by examining
the bus. The most sensitive component in SMP is the
common bus, whose bandwidth determines- the total
number of processors in the system. Especially in
database applications, data movement is the major
task, which produces a heavy load on the common bus.
“ Thus the traffic on the bus must be carefully examined.
- The resources which try to issue H-bus requests are
four processors, the control processor, two disk con-
trollers, and the network adaptor. C-bus is accessed by
four processors and the control processor. Thus there
are in all thirteen bus grant signals, and the bus
monitor can select four of them to watch at a time. The
active time of these signals are cumulated by the
hardware counters in the bus monitor. The monitor
has two kinds of precision modes: 50 nsec and 100
nsec, where the bus cycle of the H-bus is 50 nsec. For
each counter, 2 MBytes RAM are prepared to store the
traffic data. The most precise measurement mode can
monitor the system for 54 seconds. A 216 seconds-run
can be monitored with a rolgher measurement.

The resource monitor embeds the monitor routine
into each of the processes and measures the CPU
utilization efficiency of the four processors and the
control processor. The amount of memory allocated
for each buffer (read buffer, write buffer, bucket buffer,
and net buffer) is also monitored by the resource
monitor. The data memory space is managed in the
unit of page and the memory allocation tables are kept
in the control memory. The control processor can take
the statistics by reading the control information on the
control memory, which maintains the number of pages
assigned for each buffer and free pool. The visualiza-
tion tools of SDC-I consists of SDC-Tacho and SDC-
View. The former is the on-line monitor tool which
runs on the server machine and shows the resource
utilization efficiencies whose statistics are transmitted
by the resource monitor on the control processor. The
monitored data is visualized as the tachometer on the
-window. Most of the resource activities can be sum-

merized in just one display, which helps us understand -

the global behavior of SDC and aids in debugging the
system software. SDC-View takes the two files
produced by the bus monitor and the resource monitor.
After the execution it displays the overall performance
data, which are mainly used for the detail analysis.
Figure 4 shows the resource utilization time chart by
SDC-View. For ease of understanding, the expanded
Wisconsin benchmark (1 Mtuple Join_A_Sel_B) with
naive parallel hash join was run on SDC-I. Two
relations, R and S are initially declustered over the two
modules. In Fig. 4, the top five chart shows the CPU
utilization of the control processor and the four proces-
sors. The relational database processing load is
7 equally dlstrlbuted over the four processors. The next
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Wisconsin benchmark.

four charts, in Fig. 4, show the memory utilization of
each buffer. The read buffer is almost always empty,

_which means that the processors are sufficiently fast to

consume the pages, keeping up with the data stream
from the disks. The behavior of the write buffer is like
a-saw. Since the write buffer has a high water mark, its
contents are flushed out when the number of tuples
reaches this mark. Once it goes below the low water
mark, the disk read operation resumes. The last three
charts shows the utilization of the H-bus. It shows that
the system works so well that the disks have almost no
idle time and are almost always busy. . The bus is not
saturated, but still has room for additional disks and
processors.

As shown in Fig. 4, Join_A_Sel_B executes in 65
seconds.” This performance is sufficiently high com-
pared with the current commercial relational database
systems.
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6. Conclusion

This paper explores the feasibility of the massively
parallel processing systems for parallel relational query
processing. The query processing applications contain
a high degrees of potential parallelism. Through the
use of a sophisticated parallel algorithm, we can
efficiently exploit the inherent parallelism. In order to
examine the feasibility of parallel query processing, an
experimental testbed was build from scratch. The
hardware system fully utilizes ‘commodity devices
except for the special purpose interconnection network
with its tuple counting mechanism and dedicated disk
controller.  For data intensive applications like
database processing, data movement is the major task
rather than the computation. The software system
controls the flow of data efficiently so that the data
stream from the disk be disturbed as little as possible.
_ Although only two modules were developed, the per-
formance evaluation results convinced us that the
proposed approach is very powerful and promising.
The pilot system achieved our goal of high perfor-
mance. The activities in the parallel system are very
_difficult to understand. A performance monitoring
 system was also developed, which integrated both the
special hardware based bus monitor and the software
monitor. Visualization tool, SDC-Tacho and SDC-
View were very useful to grasp the global activities of
the system. ‘

The modular architecture gives the ability to
- flexibly scale the system and the bucket spreading hash
join algorithm allows an almost linear increase in
performance. We do not say that this is the ultimate
architecture for parallel query processing. Current
technology increases the performance of the micro-
processors and decreases its price dramatically due to
mass production. In order to increase the perfor-
mance/cost ratio, the design should empoly commod-
ity elements as much as possible. However through
advances in sophisticated CAD systems, the designer
will be able to develop their own chips much more
--easily. Future parallel database servers are expected to
integrate several super chips of special purpose hard-
ware in them.
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