
A Fast Convergence Technique for Online Heat-
balancing of Btree Indexed Database over Shared-

nothing Parallel Systems

Hisham Feelifl1 Masaru Kitsuregawa1 Beng-Chin Ooi2

1 Institute of Industrial Science, The University of Tokyo
3rd Dept., 7-22-1 Roppongi, Tokyo, 106-8558, Japan

{hisham, kitsure}@tkl.iis.u-tokyo.ac.jp
2 Department of Computer Science, National University of Singapore

Kent Ridge, 119260, Singapore
ooibc@comp.nus.edu.sg

Abstract. In shared-nothing environments, data is typically declustered and indexed
across the system processing elements (PEs) to achieve efficient processing. However
access patterns are inherently dynamic and skewed, thus, data reorganization based on the
data access history (heat) is essential and should be done online. While the data is being
reorganized, indexes need to be modified too, therefore, reorganization should additionally
deal with the index modification. Based on minimization of index modification, we
propose a data reorganization technique over a shared-nothing parallel system. By finding
the exact work that should be done, the technique can smoothly balance a given heat across
the PEs as fast as possible, if it is required. By tuning its parameters, it can cover a wide
range of balancing requirements. We evaluate its performance through simulation studies.
Its effectiveness is clarified quantitatively.

1 Introduction

The explosive growth of data volume in various fields such as the Internet, Web, and,
data warehouse increases the need for fast response. A shared-nothing parallel
architecture is one of the typical examples to achieve such response [4, 13]. As
demonstrated by the existing machines such as Bubba [2] and NEDO 100 Node PC
Cluster [10], shared-nothing architectures can provide fast response at low cost, high
extensibility and availability. However, shared-nothing architectures suffer from load
balancing problems. Load (heat) balancing is difficult to achieve, compared with
shared-disk architectures, because it relies on the effectiveness of database
partitioning for the query workload [13]. To achieve efficient query (and transaction)
execution, data is typically declustered across the PEs, and, indexed at each of the
PEs. However, access patterns are inherently dynamic and skewed which can lead to
performance degradation as some PEs become hotspots (frequently accessed) while
many other PEs are cold (infrequently accessed). Thus heat-balancing is essential.

Heat balancing is particularly challenging for evolving workloads, where hot and
cold data change over time. Data reorganization can only counteract such situations,
and such reorganizations should be performed online without requiring the system to
be quiescent [8]. As the data is moving from hotspot PEs to cold PEs, the

corresponding indexes have to be modified too. Thus, data reorganization should also
deal with the index modification [1].

In this paper, we propose a new technique to facilitate more efficient data
reorganization. It is based on index-modification minimization, where the amount of
data to be migrated (migration unit) corresponds to the entirety of one or more index
branches at a source PE. In this case, it would be easy to prune the entirety of index
branches from a source PE tree as well as attaching these branches into a destination
PE tree using bulk-migration technique [5]. To distribute a given heat across the PEs,
we introduce a new heat-balancing algorithm that is distinguished from the existing
algorithms in several respects. It provides the exact solution to balance a system
without any heuristic mechanisms. Thus it can distribute a given heat as evenly as
possible across the PEs and as fast as possible, if it is required. Because of its exact
solution, its convergence is guaranteed so that it can be employed in applications in
which fast responses and fast balancing (adaptation) are relevant requirements.
Furthermore, we support the technique by parameters that can be tuned to fit a wide
range of balancing requirements in terms of heat distribution and balancing speed
over a wide range of access pattern skew.

The next section details the related work. Section 3 describes the underlying index
and the migration unit. Section 4 introduces a new heat-balancing algorithm. Sec. 5
deals with the experimental study and Sec. 6 concludes the paper.

2 Related Work

Recently, there has been much work in the area of online reorganization. [8] presents
an efficient online method for the dynamic redistribution of data, however it does not
cover index modification during reorganization. [7] outlines the issues involved in
changing all references to a record when its primary identifier is changed due to a
record move. The techniques of [7, 12] are proposed for centralized DBMS and
require the use of locks, where using locks during reorganization can degrade
performance significantly [1]. [1] presents two alternatives for performing the
necessary index modifications, called one-at-a-time OAT page movement and BULK
page movement. However, both techniques depend on the conventional Btree
algorithms that can lead to considerable index-modification cost [5]. [11] suggests
using the Fat-Btree structure to speedup migration issues so that index can be
modified with minimum cost. However, the objective is to balance the number of
pages across the PEs (space balancing) rather than heat balancing. Access pattern
skew can lead to performance bottleneck even though there is a space balance [5, 13].
[5] assumes heat balancing but without consideration for the balancing speed (the
speed of the system to adapt itself to an access pattern), where fast balancing
(adaptation) is the main requirement for the most advanced applications, e.g. WWW
servers. The balancing algorithm of both [5] and [11] is simply the disk-cooling
algorithm [8] that can lead to a long convergence time and in some cases unstable
situations as a result of its local view while balancing a system (see Sec. 4). In
contrast, we avoid long convergence and unstable cases through an algorithm that
utilizes the range-partitioning strategy and can find the exact solution in one step

without any heuristic mechanism so that the system is heat-balanced. By introducing
balancing parameters into its solution, it can also cover a wide range of requirements.

3 The Global Index

We assume that data is initially range partitioned across all the system PEs so that the
access method can associatively access data for strict match queries, range queries
and can cluster data with similar values together. Using a B-tree based index enables
more efficient processing of range queries compared to a hashed index because in the
former only the nodes containing data in the specified range are accessed. One
solution to associative access is to have a global index mechanism [6], conceptually,
the global index is a two-level index with a major clustering on the PE’s key range
and a minor clustering on sub-ranges of the key range. This non-overlapping data
partitioning gives also non-overlapping indexes [9], so that the first–level index can
be implemented as a partitioning vector with entries number equals the PEs number.
To ensure that there is no central PE, the first-level index is further replicated in all
the PEs [5]. While the first-level index directs the search to the PE wherein the data is
stored, the second-level index is basically a collection of Btrees, one at each PE; each
Btree independently indexes the data at its PE [5, 9, 11].

We assume the tree height at each of the PEs is the same, so that the amount of
data to be migrated corresponds to the entirety of one or more branches of the Btree at
a source PE. The attachment of branches at a destination tree and detachment these
branches at a source tree are essentially pointer updates so that index is modified with
minimum cost. This branch-migration technique does not change the tree structure,
but it changes the record distribution at a source and a destination PE. It causes an
update in the root node of the Btrees at these PEs, which in turn requires the first-level
index copies to be updated. This is can be done in a lazy manner by piggybacking
update messages onto messages used for other purposes [5].

Since it is common to cache a part of the index in memory to accelerate access and
cost per bit is declined, then it is possible to use large memory while data is migrated
from a PE to other PE. Using of large memory for access method accelerates access,
for example, [9] assumes that all the nodes of a Btree are placed in memory. Thus, if a
root at a PE will overflow due to insertion of some branches (as a result of migration)
then instead of having a physical fat structure the branches (and the corresponding
data pages) that lead to fatness can be temporarily stored in memory. This saves
considerable cost of I/O operations if the amount of migrated data is large, which can
also lead to speed up migration issues among the PEs. To demonstrate this point,
assume we have 4 PEs with the following key ranges: PE0 is assigned to hold 1-25,
PE1 26-50, PE2 51-75, and PE3 76-100. If there is a migration decision that migrate
some branches of key range say 15-25 from PE0 to PE1 and if the root node at PE1 is
full, then it is possible to store these branches (and the corresponding data pages) into
the memory of PE1. Then if it is required to migrate some branches from PE1 to PE2
of key range say 40-50, thus there will be rooms to accommodate the branches of key
range 15-25 into the root of PE1 without need for being physical fat. While the
branches of key range 15-25 are being stored in the memory of PE1, there is a

possibility to migrate these branches (or some of them) from PE1 to PE0, if it is
required. Since there is no disk access, the corresponding migration cost is dominated
by the communication cost between PE1 and PE0 and thus it speeds up migration
issues between PE1 and PE0. Such buffering effect at PE1 can be generalized across
the PEs so that it can provide fast access, and, migration at each of the PEs. Therefore
using the PE memory if the fat condition is occurred at its root can reduce the cost of
having a physical fat structure at a PE. The fatness property of the underlying index
can be viewed as a temporary status that could be occurred at some PEs while data is
being reorganized. Without loosing the generality we assume that the underlying
index is basically Btree that can support bulk-migration without essence of being
physically fat. However, to evaluate the performance of the proposed technique
without any benefits due to buffering effect at each of the PEs, in our simulation we
select the physical Fat-Btree structure [11] as the underlying index. So that the
structure with its physical fatness represents the worst case of our reorganization.

4 Online Heat Balancing

Online heat balancing is done in four basic steps: monitoring PE workload,
exchanging information between PEs, calculating new distribution and making the
work migrating decision, and the actual data migration. In this section, we first clarify
our consideration to the workload. Then we present a new algorithm to calculate a
new heat distribution from the current one
 The workload is reflected by a metric, called heat [3]. We define the heat of a range
R = {Rmin .. Rmax} as the access frequency of R during a certain period of time. A
range R as a logical quantity can be determined by any physical object in the system
such as a data page, an index branch, and an index (sub)tree. The cost of maintaining
heat statistics on R is dependent on its physical object. The highest cost can occur, if
we maintain statistics for each of the data pages. This roughly requires maintaining
statistics for every possible point in a given range. The minimal cost could be
achieved if we maintain statistics for each tree (PE) in the system, and it requires
information proportional to the number of PEs. Although it is simple, but it gives
inaccurate estimation in the workload. There are mid-cost approaches, e.g.,
maintaining heat statistics for each index branch or for each sub-tree at a root node.
These approaches give a compromise solution in terms of cost and accuracy. In our
simulation, we use one such mid-cost approach in which heat statistics information is
maintained for each sub-tree of a root node at a PE. To minimize the required
information, uniform heat distribution is assumed in the deeper levels. In principle,
we assume the workload estimation is a “design parameter” that depends on the
applications and their requirements.

4.1 The Full-window Algorithm: Algorithm Basic

Since data is range partitioned across the PEs, we can only move data from one PE to
its neighboring PEs which hold the preceding or succeeding ranges. This migration

rule has two exceptions, the first deals with the rightmost PE, RMPE, which can only
migrate data with its left neighbor, while the second deals with the leftmost PE,
LMPE, which can only migrate data with its right neighbor. Two main observations
formulate the proposed algorithm; the first one is related to using the disk-cooling
algorithm (DCA) [8] with the assumed range partitioning strategy, while the second is
related to the migration exceptions at the RMPE and the LMPE.

Observation (1): Instability of the DCA.

To balance a given heat across the PEs, the existing techniques, such as [5, 11], use
the DCA as the balancing algorithm. The DCA was introduced as an efficient general-
purpose algorithm for balancing disk arrays. In the DCA, the hotspot disk is first
selected as the migration source, and, the coldest disk is selected as the migration
destination. By making this decision, it generates a new hotspot disk, if there is, at
which the process can be repeated until all disks are heat-balanced. If we apply the
DCA to the PEs with the assumed range-partition strategy, then, the procedure for
selecting the coldest PE will be shorten as checking the right and the left neighbors of
the hotspot PE. The colder neighbor will be selected as the migration destination.
 The algorithm is simple but it has some unsatisfactory cases that can be occurred
during balancing. For example, assume a system of 4 PEs with a heat distribution of
(PE0: 200,PE1: 50, PE2: 115, PE3: 35) and a threshold heat of 110 (10 % above the
average heat). The first scan gives PE0 as the hotspot, and heat of 90 is migrated to
PE1 at which the heat will become 140. The second scan gives PE1 as the hotspot and
its colder neighbor is PE0. Heat of 30 is migrated from PE1 to PE0. Thus some heat is
returned back to PE0 by which the balancing process will be entered into endless loop
and most of the work is consumed in useless migrations between PE0 and PE1
without distributing the given heat to other cold PEs. Such instability case occurs
because the heat of PE2 is higher than the threshold heat which in turn blocks heat
migration to other cold PEs, e.g. PE3. With the assumed range-partitioning strategy
the DCA does not have a mechanism that can stop such useless migrations or a
special mechanism that can deal with heat distributions that contain some blocking
cases as in the given example. Such mechanism is important in shared nothing
environments, where migrations of large data without any beneficial effect
dramatically degrade their performance. Therefore, the DCA can not provide a fast
balancing with full guarantee in its convergence and in general its local view to a
system can lead to long convergence which slowdowns a system to adapt itself to a
given access pattern. The observation gives the motivation to develop a new
algorithm so that fast balancing can be achieved without doubt in its convergence and
its convergence can further be tuned to fit a range of requirements.

Observation (2): The Rightmost and the Leftmost PEs.

Since the data are initially range partitioned across all the PEs, the RMPE must be
heat-balanced by one of the following two cases:
1. If the heat at the RMPE is larger than the average heat, then it is required to

migrate its excess heat to its left neighbor PE (LNPE).

2. If the heat at the RMPE is less than the average heat, then it is required to achieve
its missing heat from its LNPE. .

In the first case, we refer to migration as a direct migration, since we can directly
initiate heat migration from the RMPE to its LNPE, while in the second case, it
completely depends on the heat at its LNPE as follows:
2.1 If its LNPE does not have such missing heat then it is required to achieve heat

from other neighbors to the LNPE, which in turn suggests a recursive approach.
We refer to this migration as stacked migration, because we can not initiate
migration unless its LNPE has such heat. We push this information into a stack
called the migration stack by storing its components: source, destination, and,
missing heat.

2.2 If its LNPE has this missing heat; then migration can be directly initiated from
the LNPE to the RMPE, and therefore we have a direct migration case.

The above cases (from 1 to 2) find exactly the decision to balance the RMPE, and,
they can be used also to find exactly the decision to balance the LMPE.
Based on this observation, assume we have a system of N PEs and we divide the PEs
into two groups: left group and right group, see Fig. 1. We formulate the idea by first
considering the system’s RMPE (LMPE) with its LNPE (RNPE) and recording the
proper decision to balance it, and, if it is necessary push the generated decision into
the migration stack. Then, by dropping virtually these PEs from the system, there will
be new RMPE and LMPE at which we can find the proper decisions to balance them
with their neighbors as before, and therefore the process can be repeated until the
system virtually consists of two PEs. At this point, it is easy to know exactly the
migration decision that should be taken between the left and the right groups. Using
the migration stack, we pop decisions by sequentially traversing the right group from
left to right direction, and, the left group from right to left direction. Note that an
empty stack indicates the definite algorithm termination. During traversing the PEs
we store a generated decision into a structure called the migration table so that we can
additionally know from the table what is the decision sequence to balance a system.
Obtaining such sequence will help global balancing schemes in their scheduling to
migration jobs while balancing a system.

Fig. 1 gives the algorithm notation, mechanism and high-level description. It
shows two pointers called right pointer and left pointer, one for each group. The right
pointer is initially pointed to the RMPE and it traverses its group from the right to the
left direction. While the “left pointer” is initially pointed to the LMPE and it traverses
its group from the left to the right. During these traverses, the current excess/missing
heat at each pointer (PE) is recorded as well.

Case example

Assume a system of 8 PEs with the following heat distribution PE0: 200, PE1: 50,
PE2: 115, PE3: 25, PE4: 260, PE5 20, PE6: 50 PE7 30. Assume further it is required
to balance the system so that the heat at each of the PEs = 100 (average heat). The
algorithm starts with its left pointer is pointed to PE0 while its right pointer is pointed
to PE7. At PE0 a direct decision is generated as (source=PE0, destinnation=PE1,
required heat =100) and the excess heat at PE1 becomes 50. At PE7 a decision of
(PE6, PE7, 70) is pushed in the migration stack because PE6 does not have the

missing heat of PE7 (70). The excess heat at PE6 becomes –120. By advancing both
pointers, the new LMPE is PE1 while the new RMPE is PE6. At PE1 a direct decision

HeatType GetDecision(PE, Neighbor,ExcessHeat)
// Balance the given PE with its neighbor. Identify
// the generated decision by source, destination,
// excess heat & type of decision (direct or stacked)
if(Decision.Type==”Direct”) Store(Decision);
else PushDecision(MigrationStack,Decision);
Calculate the new excess heat and return it.

void StackedDecisions(MigrationStack, MigrationTable)
while(! EmptyStack(MigrationStack))
 Decision = PopDecision(MigrationStack);
 Store(Desicion); // in the migration table

Algorithm Full_Window (PeMin,PeMax)
// PEmin and PEmax covers the system PEs..Full window
 RP=PeMax;// Right Pointer pointed to the RMPE
 LP=PeMin;// Left Pointer pointed to the LMPE
 RightExcess=LeftExcess=0 //reset excess heats
 MigrationStack=CreateStack();Done=0;
 while(!Done)
 LeftExcess=GetDecision(LP,LP+1,LeftExcess);
 if(RP<=LP)Done=1;
 else{RightExcess=GetDecision(RP,RP-1,RightExcess);
 LP++;RP--;}
 StackedDecisions(MigrationStack,MigrationTable);

Fig. 1. The full-window algorithm: its notation, mechanism, and high level description.

Table 1. The generated migration table for the given example

Decisions Sequence Source Destination Required Heat Comment
1 PE0 PE1 100 Direct
2 PE2 PE3 50 Direct
3 PE2 PE3 65 Direct
4 PE4 PE3 10 Direct
5 PE4 PE5 200 Direct
6 PE5 PE6 120 Stacked
7 PE6 PE7 70 Stacked

of (PE1, PE2, 50) is generated and the excess heat at PE2 becomes 65. At PE6 a
stacked decision is generated as (PE5, PE6, 120) and the excess heat at PE5 becomes
–200. By advancing both pointers, a direct decision of (PE2, PE3, 65) is generated

LMPE RNPE

System PEs
(Full-window)

Left group Right group

Left Pointer Right Pointer

RMPERNPE
Pointer movementPointer movement

and the excess heat at PE3 becomes -10. A direct decision of (PE4, PE5, 200) is
generated and the excess heat at PE4 becomes 10. The next step gives a direct
decision of (PE4, PE3, 10). Since each pointer completes its traverse to its group, then
it uses the migration stack to extract the pushed decisions so far. Sequential pop
operation completes the sequence to balance the system as given in Table 1. These
pop operations are equivalent to traversing the PEs in the opposite direction to that of
the first traverse, see Fig. 1. If this migration table is issued to the system, then in one
step it distributes the given heat as evenly as possible across the PEs.

The full-window algorithm is basically distinguished from the DCA in two
respects; its utilization to the assumed range-partitioning strategy, and, its global view
to a system. Both give the exact solution to balance a system without any possibility
of unstable cases while balancing. Consequently it gives the chance to do the required
work as fast as possible (or as required) with full guarantee in its convergence. The
above algorithm can be also extended in many ways, for example, instead of
considering the whole PEs (full-window), it possible to derive other derived
algorithms that based on some PEs (partial-window) which supports local balancing
schemes rather than the global ones. We will consider such partial-window algorithms
with their features and advantages in a future work.

4.2 The Migration-workload Parameters: Speed and Distribution

If a migration table generated by the above algorithm is issued to the given system
then in one step it balances the PEs as evenly as possible. This one-step
reorganization does the whole work in a short time that may be accepted by some
requirements and rejected by the others, depending on their acceptance to its effect.
Although the one-step reorganization gives the capability for the fastest adaptation to
access patterns, but it can lead to slow responses (during reorganization) at some PEs
at which there are large amount of data movement and high arrival rates of users’
queries. During reorganization, users of such PEs are considered as the victims of the
fastest reorganization. The number of victims increases as the skew of access patterns
increases. This can be considered as the main disadvantage of the one–step
reorganziation. Many requirements usually give some threshold in the required heat
distribution and they also allow balancing in incremental ways rather than that of the
one step. Thus, we view the requirement space as a 2-dimentional space of two
parameters; one represents the speed requirement and the other represents the heat-
distribution requirement. The current objective is to introduce such parameters in the
balancing process so that migration decisions are correlated to a requirement.
Assume a migration entry of the migration table can be represented by:

typedef struct {PeType Source;
 PeType Destination;
 HeatType RequiredHeat;
 void* Others;} MigrationTableEntryType;

Since a system migration workload is proportionally related to the summation of the
component “RequiredHeat” across the migration table, thus, controlling this
component by some parameters (requirements) gives a direct correlation between
requirements and migration decisions.

First we consider the speed parameter, α, we introduce this parameter into the
component “RequiredHeat” by the following normalization (transformation):
“RequiredHeat”= α * “RequiredHeat”, 0≤ α ≤1.0. So that for α=0, it implies
dropping (or postponing) the encountered entry, while for α=1.0 it implies a full
acceptance/speed for such entry. For 0<α<1.0 it implies we divide the current entry
(job) into M small sub-jobs, where M=1/ α. If these M sub-jobs are issued one by
one in periodic ways or whenever it is possible, then we achieve balancing in
incremental ways, which certainly is reflected on a system speed to adapt itself to an
access pattern. Although incremental balancing can lead to slow adaptation but it
partitions the whole work into small jobs so that we can avoid the disadvantage of the
one-step reorganization, especially under highly skew environments. Thus in general,
any migration job can be postponed or incrementally issued or completely issued to a
system depending upon its assigned α. For the sake of simplicity we select to unify α
across the migration table so that one value of α gives one effect on the balancing
speed (and the system response). Since the steady state of the M-step reorganization
should be equal to that of the one-step as a result of its integration effect, then we can
satisfy a heat distribution requirement (steady state) over a range of α.
 Second we consider the heat-distribution parameter, ζ, we assume requirements on
heat distribution are given as; balance a system so that heat at each of the PEs does
not exceed some threshold value, (1+ ζ%) average heat. Note that the migration table
has been constructed so far with the assumption of ζ=0. Because a ζ requirement
gives the maximum allowable heat at hotspot PEs, we process the migration table by
focusing on hotspot PEs. By picking up all the PEs that have heat higher than the
threshold heat and modify (adjust) the component “RequiredHeat” so that the
resultant heat at each of these PEs does not exceed the threshold heat. Then
simulating the migration effect on the modified entries will generate new hotspot PEs
by which the process can be repeated until a ζ requirement is satisfied across the
migration table. This heat modification procedure can be sequentially done by;
picking up the current hotspot PE and extracting a sub-table from the current table so
that the sub-table contains all entries in which this hotspot PE is a source or a
destination. We modify the “RequiredHeat” components in this sub-table so that the
resultant heat of the current hotspot PE does not exceed the threshold heat. Simulating
the migration effect in the current sub-table generates a new hotspot PE at which the
process can be repeated until all entries in the migration table are modified according
to the given ζ. The modification of the “RequiredHeat” component across the
migration table implies also dropping some entries at which their sources are balanced
in term of the given ζ requirement. The general structure of such procedure is;

FitZetaRequirement(MigrationTable,ζ)
 while((HotSpot=PickUpHotSpotPE(ζ))!=empty) do
 ST=ExtractSubTable(MigrationTable,HotSpot);
 while(E(ST)!=empty) do ModifyHeat(E.RequiredHeat);
 SimulateEffect(ST);

The introduced parameters α and ζ give the capability to cover a wide range of
balancing requirements in terms of heat distribution and balancing speed. The

requirements space includes the most restrictive ones, e.g. α=1, and, ζ=0. These basic
parameters and the basic algorithm fulfill our objective of this paper. In the next
section we report our simulation results.

5 Simulation Results

In this section, we describe our experiments to study the performance of online data
reorganization using the full-window algorithm. We evaluate the system performance
where the metric used is the impact on the response time of queries and the system
migration workload. Table 2 shows the major parameters and their used values. We
first create an initial Fat-Btree with the tuple key values generated using a uniform
distribution (space-balanced). Then we generate range queries using Zipf-distribution
skew defined by the skew factor (τ) of the Zipf-distribution. Thus, there are more
range queries are issued at one PE than the other PEs, depending on the skew factor τ.
A query range is selected to be equal that of an index branch so that the workload is
based on the assumed migration unit (an index branch and its corresponding data
pages). The heat skew initiates the migration of branches between the PEs, depending
on the given ζ requirement. We model each of the PEs as a resource and the queries
as entities. We assume heat balancing is done in centralized scheme and it is initiated
every 100*N queries, where N is the PEs number.

Table 2. The major parameters and their values

Parameter Default Value Variation
System Parameters:
Number of PEs in the cluster
Network bandwidth
Time to read or write a page

16
120 Mbits/s
8 ms

32, 64.

Database Parameters
Number of records
Index node size
Data page

2.1 millions (2MB)
4KB, key=4 Bytes.
4KB

Query Parameters
Zipf distribution of decay factor (τ)
Hot spot location
Mean arrival rate
Mean service rate

0.3
at PE0
20
500 ms

0.1 → 0.9
PE0 → PE15
10 for skew variation experiment

Requirement Parameters.
Speed parameter (α)
Heat distribution parameter (ζ)

1/4
10 %

0, 1/64, 1/32, 1/16,1/8, 1.
0, 5, 15, 20, 30%.

It has been observed that balancing using the DCA leads to unstable balancing cases
especially under skew of τ > 0.1 which in turn limits our consideration to access
pattern skew and balancing speed as well. Thus we exclude the DCA results from our
discussion relying on the fact of the full-window algorithm always gives the exact
solution without any unstable cases. In the first set of experiments, we study the effect
of the full-window parameters (α, ζ) on the system performance. Figure 2 shows the

full-window capability to fit a wide range of requirements including the most
restrictive one (α=1.0, ζ=0.0). Figure 2.a traces the hotspot’s response time, which
indicates also the system capability to adapt itself to access patterns under various
requirements on the balancing (adaptation) speed. Note that α=0 represents the
hotspot response without heat balancing (space-balanced), while α=1 represents that
response with one-step reorganization. As shown this response can be controlled to a
desired level by tuning the parameter α. We express the migration workload at a PE
as the total time during which the encountered PE has been involved in migration
issues as source or destination. Figure 2.b shows the migration workload at each of
the PEs. The bell-like curves are obtained as a result of distributing heat by migrating
index branches (and the corresponding data pages) from the hot PEs (e.g. PE0, PE1)
to other cold PEs (e.g. PE10, PE11) through some PEs (e.g. PE3, PE4), in a ripple
mechanism. As shown this ripple mechanism is mainly dependent on the ζ
requirement, where ζ=0 represents distributing the given heat as evenly as possible
(the highest migration workload). As requirements relax this restrictive heat
distribution, the ripple-migration effect can be reduced accordingly.

To demonstrate the disadvantages of the one-step reorganization (α=1.0), we first
trace the average response time at each of the PEs during reorganization and we
record the PE responses that almost dominate the system response during
reorganization. As shown in Figure 3 (left), PEs other than the hotspot like PE2 and
PE4 have slow responses because at these PEs there are high migration workloads and
high arrival rates of users’ queries. Such effect under the considered skew (τ=0.3) can
not be avoided with the given requirement of the fastest balancing. Users of PE2,
PE4, and PE6 during reorganization are the victims of the fastest balancing. However,
if requirements allow incremental balancing under high skew environments, then by
lowering α, e.g., α=0.25, such effect can be avoided as shown in Figure 3.(left). It
shows the system response is dominated by the main hotspot PE, as a result of
partitioning the whole work into 4 steps. The experiment indicates also the advantages
of the incremental balancing under high skewed environments.

With the assumed range partitioning strategy, it has been observed that the system
migration workload (and response) is dependent on hot-spot locations in the system,
where the RMPE and the LMPE do not have much freedom in their migration
direction like the other PEs. Figure 4 affirms such dependency on hotspot locations,
where we express the system migration-workload as the summation of the migration
workload at each of the PEs. It shows also that the ratio of the maximum migration
workload to its minimum is about 2.5. This high ratio indicates the main problem of
the given range-partition configuration which is mainly selected to simplify the
implementation of the first-level index, and consequently, the search operations.
However it gives us the motivation to consider another configuration in a future work
so that migration decisions are mainly correlated to access patterns skew rather than
to their favorite locations in a system. It shows also that we select the hotspot at PE0
(the worst case of the migration workload) to evaluate the proposed technique.

To demonstrate the scalability of the proposed strategy, we study the system
migration-workload under different environments of skewed access patterns, and,
number of PEs. Figure 5 shows that as the access pattern skew increases the system’s
migration workload increases in a nearly linear relationship. It demonstrates also the

superiority of the full-window algorithm in dealing with access patterns over a wide
range of skew. We repeated the experiment for different numbers of PEs for clusters
of 32 and 64 PEs. It shows that as the number of PEs increases, the migration
workload increases which in turn emphasis the need for heat balancing.

6 Conclusion

In this paper, we have developed a heat-balancing technique for Btree indexed
database over shared-nothing parallel systems. It demonstrates that finding the exact
solution for heat balancing avoids unstable cases while balancing, and, long
convergence time. This gain gives a system the capability to adapt itself to access
patterns as fast as required. Through its parameters, the technique can cover a wide
range of balancing requirements in terms of heat distribution and balancing speed
over a wide range of access pattern skew. It can be used for data placement with the
goals of optimal system performance and it is useful for dealing with both advanced
DBMS such as office document management or WWW servers, and relational
database systems. In these application data declustering can be exploited by an
appropriate mapping of documents/records into index keys. Apart from complexity,
the simulation results are a first step toward gaining quantitative insight into the
performance of our technique. Developing techniques that automate data placement in
shared-nothing systems is a crucially important problem. We believe that the
proposed technique is a promising approach toward solving this problem.

References
1. Achyutuni, K. J., Omiecinski, E., Navathe, S. B.: Two techniques for On-line Index

Modification in Shared Nothing Parallel Databases. Procs ACM SIGMOD (1996)
2. Boral, H., et al: Prototyping Bubba, a Highly Parallel Databse System, IEEE Trans. On

Knowledge and Data Eng., Vol. 2, No. 1, March (1990)
3. Copeland, G., Alexander, W., Boughter, E., Keller, T.: Data Placement in Bubba. Proc. of

ACM SIGMOD Conference, pages 99-108, (1988)
4. DeWitt, D.J. and Gray, J.: The Future of High Performance Database Systems.

Communication of ACM, 35(6), 85-98, (1992)
5. Lee, M. L.,Kitsuregawa, M., Ooi, B.C., Tan, K, Mondal, A.: Towards Self-Tuning Data

Placement in Parallel Database Systems, Proc.. ACM SIGMOD pages 225-236 (2000).
6. Ozsu M., Valduriez., P.: Principles of Distributed Database Systems, Prentice Hall, (1991)
7. Salzberg, B., A. Dimock. Principles of transaction-based on-line reorganization. Procs. of the

18th Inter. Conf. on VLDB, pages 511-520, (1992)
8. Scheuermann, P., Weikum, G., Zabback, P., Adaptive Load Balancing in Disk Arrays.

Proceedings of the 4th Inter. Conf. FODO, (1993)
9. Seeger B. and Larson P. Multi-Disk B-trees. ACM SIGMOD Conf.1991, 436-445
10. Tamura, T., Oguchi, M., Kitsuregawa, M.: Parallel Database Processing on a 100 Node PC

Cluster: Case for Decision Support Query Processing and Data Mining. Proc. Of SC97:
High Performance Networking and Computing, (1997)

11. Yokota, H., Kanemasa, Y., Miyaazaki, J.. Fat-Btree: An Update-Conscious Directory
Structure. Procs. of IEEE the 15th IEEE Conf. on Data Engineering, pp. 448-457, (1999)

12. Zou C., Salzberg, B.: .On-Line Reorganization of Sparsely-Populated B+ Trees. Procs.
ACM, pages 115-124, (1996)

13. Valduriez, P.,: Parallel Database Systems: Open Problems and New Issues, Distributed and
Parallel Databases 1, No. 2, 137-165, Kluwer Academic Publishers, Boston, MA (1993).

(a) (b)

Fig. 2. The effect of the full-window parameters (α, ζ) on (a) the average response time of the
hot spot PE (α effect) (b) the PE migration workload (ζ effect).

Fig. 3. The effect of the one-step (left) and M-steps (right with α=0.25)
reorganizations on the PEs that dominate the system response.

Fig. 4. The effect of the hotspot location Fig. 5. The scalability of the proposed
on the system migration workload. technique.

0

5000

10000

15000

20000

25000

30000

35000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Zipf skew factor

S
ys

te
m

 m
ig

ra
tio

n
w

or
kl

oa
d

in
 s

ec
on

ds

16 PEs
32 PEs
64 PEs

0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14

Hot spot location

S
ys

te
m

 m
ig

ra
tio

n
w

or
kl

oa
d

in
 s

ec
on

d

τ=0.2
τ=0.3
τ=0.4
τ=0.5

0

10000

20000

30000

40000

50000

60000

0 1000 2000 3000 4000

Time in seconds

A
ve

rg
ae

 r
es

po
ns

e
tim

e
in

 m
s

PE0

PE2

PE4

PE6

System

0

5000

10000

15000

20000

25000

30000

0 500 1000 1500 2000 2500 3000 3500 4000

Time in seconds

H
ot

 s
po

t a
ve

ra
ge

 r
es

po
ns

e
tim

e
in

 m
s

α=0.0000
α=0.0156
α=0.03125
α=0.0625
α=0.125
α=0.25
α=1.0

0

50

100

150

200

250

0 2 4 6 8 10 12 14

PE

M
ig

ra
tio

n
w

or
kl

oa
d

in
 s

ec
o

nd
s

ζ=0.000

ζ=0.050
ζ=0.100

ζ=0.150
ζ=0.200

ζ=0.300

0

2000

4000

6000

8000

10000

12000

0 1000 2000 3000 4000

Time in seconds

A
ve

ra
ge

 r
es

po
ns

e
tim

e
in

 m
s

PE0

PE2

PE4

PE6

System

