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Abstract. The unprecedented growth and increased importance of ge-
ographically distributed spatial data has created a strong need for effi-
cient sharing of such data. Interestingly, the ever-increasing popularity
of peer-to-peer (P2P) systems has opened exciting possibilities for such
sharing. This motivates our investigation into spatial indexing in P2P
systems. While much work has been done towards expediting search in
file-sharing P2P systems, issues concerning spatial indexing in P2P sys-
tems are significantly more complicated due to overlaps between spatial
objects and the complexity of spatial queries. Incidentally, existing R-
tree-based structures for distributed environments (e.g., the MC-Rtree)
are not adequate for addressing the sheer scale, dynamism and hetero-
geneity of P2P environments. Hence, we propose the P2PR-tree (Peer-
to-Peer R-tree), which is a new spatial index specifically designed for
P2P systems. The main features of P2PR-tree are two-fold. First, it is
hierarchical and performs efficient pruning of the search space by main-
taining minimal amount of information concerning peers that are far
away and storing more information concerning nearby peers, thereby
optimizing disk space usage. Second, it is completely decentralized, scal-
able and robust to peers joining/leaving the system. The results of our
performance evaluation demonstrate that it is indeed practically feasible
to share spatial data in a P2P system and that P2PR-tree is able to
outperform MC-Rtree significantly.
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1 Introduction

Spatial data occurs in several important and diverse applications associated with
geographic information systems (GIS), computer-aided design (CAD), resource
management, development planning, emergency planning and scientific research.
During the last decade, tremendous improvements in data gathering techniques
have contributed to an unprecedented growth of available spatial data at geo-
graphically distributed locations and this coupled with the trend of increased
globalization has created a strong motivation for the efficient global sharing
of such data. Interestingly, the growing importance and ever-increasing popu-
larity of peer-to-peer (P2P) systems such as Napster[10] and Kazaa[7], which



have the capability of facilitating data sharing among hundreds of thousands of
distributively-owned computers worldwide, has opened new and exciting possi-
bilities for global sharing of spatial data. This motivates our investigation into
spatial indexing in P2P systems. Interestingly, spatial data sharing in P2P sys-
tems can be of tremendous benefit to users looking for a hotel room or a museum
or some landmark within a certain spatial location.

While much work has been done towards expediting search in file-sharing
P2P systems [3, 11, 14], issues associated with the indexing of spatial data in P2P
systems have received little attention. Understandably, several challenging issues
such as overlaps between spatial objects, avoidance of data scattering and the
complexity of spatial queries make the problem of spatial data indexing in P2P
systems significantly more complicated than that of sharing files. Incidentally,
spatial indexes have been extensively researched in centralized environments
(e.g., the R-tree[6], the R*-tree[l], the R*-tree[13]) as well as in traditional
distributed domains such as clusters (e.g., the dR-tree [9], the M-Rtree[8] and the
MC-Rtree [12]). Existing R-tree-based techniques use centralized mechanisms in
which a centralized ‘master’ node supervises and directs queries to all other nodes
in the system. However, we believe that such centralization is not appropriate
for P2P systems partly due to the fact that all updates and searches passing
through a centralized peer may result in severe performance problems (and even
more so if the centralized peer goes offline!) and partly due to the fact that it is
practically extremely challenging to maintain updated information about other
peers at a centralized peer when data can be added/deleted autonomously by
any peer in the entire system or peers can join/leave the system anytime. In
essence, a completely decentralized spatial indexing technique, which is scalable
enough to handle hundreds of thousands of peers and also dynamic enough to
deal with peers joining/leaving the system anytime, is called for.

This paper proposes the P2PR-tree (Peer-to-Peer R-tree), which is a new
spatial index specifically designed for P2P systems. The main features of P2PR-
tree are two-fold.

1. It is hierarchical and performs efficient pruning of the search space by main-
taining minimal amount of information concerning peers that are far away
and storing more information concerning nearby peers, thereby optimizing
disk space usage.

2. Tt is completely decentralized, scalable and robust to peers joining/leaving
the system, thereby making it well-suited to P2P environments.

We conducted simulation experiments to test the effectiveness of P2PR-tree for
spatial select (window) queries. The results indicate that it is indeed practically
feasible to share spatial data in a P2P system and that P2PR-tree is able to
outperform MC-Rtree significantly. The remainder of this paper is organized as
follows. Section 2 discusses related work, while Section 3 discusses the problem
context as well as our proposed scheme for spatial indexing in P2P environments.

! Irrespective of how a centralized peer may be selected, no guarantee can be provided
about the peer remaining online all the time.



Section 4 reports our performance evaluation. Finally, we conclude in Section 5
with directions for future work.

2 Related Work

The problem of spatial indexing has motivated several research efforts. In this
regard, the R-tree [6] is one of the most popular spatial index structures. Each
spatial data object in the R-tree is represented by a Minimum Bounding Rectan-
gle (MBR). Leaf nodes in the R-tree contain entries of the form (oid, rect) where
oid is a pointer to the object in the database and rect is the MBR of the object.
Non-leaf nodes contain entries of the form (ptr, rect) where ptr is a pointer to a
child node in the R-tree and rect is the MBR that covers all the MBRs in the
child node. Variants of the R-tree include the R*-tree [13] and the R*-tree [1].

R-tree-based distributed spatial indexes include the M-Rtree [8], MC-Rtree
[12] and the dR-tree [9]. In case of the M-Rtree, all the internal nodes of the
parallel R-tree are stored at one single dedicated machine that is regarded as the
master server, while the leaf nodes are declustered across several other machines.
The leaf level at the master server contains the (MBR, siteid, pageid) tuples for
each global leaf node. In order to identify the page and site where the leaf
page is located, the (siteid, page id) is used. An improvement to the M-Rtree
is the MC-Rtree where the master node contains only the client ids of the data
nodes (and not page ids), while the data rectangles are kept indexed by R-trees
in the client machines. Intuitively, MC-Rtree exploits parallelism better than
the M-Rtree since the client machines find the page ids in parallel. The dR-
tree uses an R-tree-based two-tier indexing mechanism which facilitates efficient
data migration and load-balancing in clusters. More recently, an R-tree-based
indexing structure for P2P systems has been proposed in [5] in the context
of sensor networks. The proposed index structure in [5] can be interpreted as
a P2P version of the centralized R-tree. However, our work differs from the
proposal in [5] in several ways. Here, we state only two of the major differences.
First, our approach is completely decentralized without any notion of cluster
leaders, while the work in [5] assumes the existence of cluster leaders. Second,
the execution of nearest neighbour queries have been optimized in [5], while we
focus on optimizing window queries.

3 Distributed Spatial Indexing in P2P environments

This section first discusses the context of the problem and then proposes the
P2PR-tree for efficiently locating objects in spatial P2P environments.
Problem Context

Given a set of hundreds of thousands of geographically distributed and distribu-
tively owned data providing peers, the problem is to search efficiently for a given



spatial object such that the queried object can be retrieved within response times
that would be acceptable to most users.

Every peer has a globally unique identifier peer—id (when a peer leaves the
system and then joins the system, the ID remains preserved.) We need to adopt
any existing identification scheme used for P2P systems. Every peer stores data
concerning certain spatial regions. Note that spatial attributes usually remain
relatively static, but non-spatial attributes may change e.g., a hotel’s geograph-
ical location can be reasonably expected to remain the same over a significantly
long period of time, but the number of available rooms in the hotel can change
very frequently. Moreover, every incoming query is assigned a unique identifier
Query_id by the peer P; at which it arrives. Query_id consists of peer_id and tm,
where tm is a distinct number generated by P; using the time of arrival of the
query as a seed. Observe that this ensures uniqueness of Query-id since more
than one query cannot arrive at the same peer at exactly the same time. We
define a peer P; as relevant to a query @ if it contains at least a non-empty
subset of the answers to (), otherwise P; is regarded as irrelevant w.r.t. Q). Note
that it is possible for more than one peer to store information concerning the
same spatial region and possibly even the same spatial objects. Moreover, it is
not necessary that each peer indexes all the spatial objects that are within the
covering MBR of the region that it indexes. This may be primarily attributed
to the fact that the owner of each peer autonomously decides the spatial objects
about which he wishes to store information. We shall henceforth designate the
covering MBR, of the region indexed by a peer as the peerMBR of that peer.

The P2PR-tree

In case of P2PR-tree, the universe is first divided statically into a set of blocks
(each block being a rectangular tile). The set of blocks will constitute level 0 of
our proposed index as we shall see later. Each block is statically divided into a set
of groups (each group is a rectangular tile) and the set of groups constitute level 1
of our index. Each group is dynamically divided into further rectangular tiles and
these set of tiles, designated as subgroups, forms level 2 of our index. Depending
upon the circumstances, subgroups may be dynamically divided further into sets
of rectangular tiles, which we shall designate as subgroups of level 3. Note that
we shall use the term subgroups generically throughout this paper to indicate
sets of rectangular tiles which form level ¢ of our index, where i > 2.

The static decomposition of space has an important advantage from the per-
spective of P2P systems. Whenever a new peer joins the system, it just needs
to contact one peer which will inform it about the covering MBRs of the blocks
and at least one peer in each block. Using this block structure information, the
peer can decide which block(s) it belongs to. (In case the region indexed by a
peer overlaps more than one block, the peer will be assigned to both blocks.)
Once the peer knows its block(s), it contacts one peer inside its block for the
group-related MBR information and at least one peer inside each group. Using
the group structure information, the peer will know which group it belongs to.
Once the peer assigns itself to that group, it finds out which subgroup it should



assign itself to and so on. Note that this strategy optimizes disk space usage
significantly by maintaining minimal information about peers that are far away
and more detailed information concerning peers that are nearby. Interestingly,
this kind of static decomposition of space is able to deal efficiently with peers
joining and leaving the system. On the other hand, if we had dynamically di-
vided the universe into blocks, information about any splits in blocks would
have to be sent to an extremely large number of peers. Moreover, in case of
a dynamic way of dividing the universe into blocks and groups, it would have
been extremely challenging to keep the block-related and group-related informa-
tion updated, given the dynamic nature of P2P systems. However, the dynamic
method of splitting is an attractive option when the number of peers is low since
the dynamic method can deal with highly skewed data distributions which the
static technique cannot. Hence, for levels other than block and group levels, we
perform dynamic decomposition of space, as we shall see shortly. Notably, the
maximum number of peers in a group is pre-specified at design time and we shall
denote it by G prar. Moreover, the maximum number of peers in subgroups (at
different levels of the distributed index) is also specified at design time and we
shall refer to it as SGprqaz-

Assume the universe is divided into 4 blocks, namely b1,b2,b3,b4. Now let us
take a closer look at a specific block, say bl, to understand detailed issues con-
cerning how P2PR-tree works. Figure 1a depicts the distribution of peerMBRs in
each of the 4 groups (namely gl,g2,¢3,¢4) of b1, while Figure 1b presents the cor-
responding index structure. In Figure 1, P1,P2 P3,P4, P5,P6, P8, P9,P10 denote
the peerMBRs of peers whose peer_ids are 1,2,3,4,5,6, 8,9,10 respectively. In Fig-
ure 1b, B1,B2,B3,B4 represent the covering MBRs of b1,b2,b3,b4 respectively,
while G1,G2,G3,G4 represent the covering MBRs of g1,g2,¢3,¢4 respectively. For
the sake of clarity, we display the index structure with special emphasis only on
G1 and G2. Observe that the number of peerMBRs in each group is not the same
e.g., while G1 has 4 peerMBRs, G3 has only 1 peerMBR. This kind of skew oc-
curs primarily because the static decomposition of space is not based upon the
actual data distribution during run-time. Given that peers may join/leave the
system at any time, the number of peerMBRs corresponding to a given group
can be reasonably expected to keep changing dynamically, the implication being
that skews among groups are inevitable because it is not feasible to have a priori
knowledge concerning the dynamically changing data distributions in each of
the groups. Similarly, a moment’s thought indicates that such data skews may
also occur at any other level of our distributed index. Interestingly, it is also
possible for a peerMBR to overlap multiple groups e.g., P3 overlaps both G1 as
well as G2. In case a peerMBR, overlaps more than one group, the corresponding
peer will be assigned to both the groups. Hence, in the index structure shown in
Figure 1b, P3 appears twice since P3 has been assigned to both G1 and G2. Note
that we define Py, the level of a peer, based upon its position in the distributed
index e.g., P, in case of peer 6 is 2 in Figure 1b.

Now let us understand how the index is modified in response to new peers
joining the system. Figure 2a depicts what happens when two new peers join the
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Fig. 1. Illustrative example depicting our indexing scheme

system with their respective peerMBRS P20 and P30. For this example, let us
assume the values of G4, and SGprqz to be 4. Observe that P30’s joining the
system is straightforward since it does not result in an overflow. However, P20’s
joining is significantly more complicated since its joining causes an overflow
in G1, thereby causing G1 to split further into subgroups SG1 and SG2. For
splitting purposes, we propose to adopt an existing clustering technique[2] for
performing node splitting in R-trees. The main idea behind the proposal in [2]
is that the node splitting problem in R-trees is essentially a problem of finding
a good set of clusters and the proposal also moves beyond the traditional two-
way node splitting of R-trees to make node splitting more flexible, the prime
objective being to find real clusters as opposed to two groupings.

Observe that the node splitting caused P1 and P2 to move from level 2
to level 3 of the index. From Figure 2b, it is clear that P2PR-tree does not
provide global height-balance. In Figure 1b, we have shown the information
that P1 maintains to facilitate search. As we see from Figure 1b, P1 maintains
information concerning the entire covering MBRs of each of the blocks, namely
B1,B2,B3,B4 and the covering MBRs of all the 4 groups in its own block (i.e.,
G1,G2,G3,G4) in addition to the peerMBRs P2,P3,P4. Observe from Figure 2b
how the information maintained by P1 is changed after splitting occurs.

Search mechanism

Now we shall discuss how efficient search can be conducted via P2PR-tree. For
our search mechanism, every query is associated with a @)r, the significance of
@ being that it determines which level of the distributed index the query is
currently traversing. When a new query is issued to any peer in the system, its
Q@1 is 0 and whenever a query is forwarded to peer(s) at another level of the
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distributed index, the value of @), is incremented by one. This guarantees that
queries traverse down the distributed index and precludes the possibility of any
query traversing up the index. Whenever a query @) arrives at any peer P; in the
system, P; checks whether its peerMBR intersects with @ and if so, P; searches
its own R-tree, returns results (if any) and the search is terminated. Otherwise,
P; checks the value of @Q;, associated with @ and depending upon the value of
Qr, P; forwards @ to the relevant block(s) or group(s) or subgroup(s) or peer(s)
as the case may be. (If @y, is 0, @ should be forwarded to the relevant block(s);
if Qg is 1, @ should be sent to relevant group(s); if Qr is 2, Q must be sent to
relevant subgroup(s) and so on.)

P; sending @ to a particular block B; constitutes @ being sent to one peer in
that block. Note that this implicitly assumes that every peer knows at least one
peer in each block. While the system is operational and the peers issue queries
to each other, it is likely that more peers will interact and come to know each
other. Hence, over a period of time, it might be possible for a peer in a specific
block to know N peers in each of the other blocks. Given that P; knows IV
peers at block B; to which it wishes to forward @, P; first sends @ randomly
to any one peer P; among the N peers that it knows. If it does not receive an
acknowledgement message from P; within a pre-specified maximum time limit,
designated as TIME_OUT, P; forwards the query to another peer among the N
peers that it knows. In case all the NV peers that P; knows in B; are unavailable,
P; will not be able to forward ) to B;. For the sake of convenience, we shall
henceforth refer to the set of N peers that a peer knows in each block (or
in each group/subgroup) as the routing peers or simply routers. Note that the
mechanisms for sending a query to a particular group or subgroup are essentially
similar to that of sending a query to a specific block.



4 Performance Study

We conducted simulation experiments to evaluate the performance of our pro-
posed indexing strategy. Our simulation environment comprised a machine run-
ning the Solaris 8 operating system. The machine has 4 CPUs, each of which
has a processing power of 900 MHz. Main memory size of the machine is 16
Gigabytes, while the total disk space is 2 Terabytes. For all our experiments, we
divided the universe into 10 blocks and we divided each block into 10 groups.
Moreover, we set the value of TIME_OUT to 20 seconds. Transfer time between
peers (inter-block) was randomly varied between 80 ms to 120 ms, while the
transfer time between peers (inter-group) was varied between 45 ms to 55 ms.
Transfer time between peers within the same group/subgroup was randomly var-
ied between 10 ms to 15 ms. Note that an interarrival rate of n queries/second
implies that n queries were issued in the entire P2P system every second. By
availability of 2%, we mean that at any given time, a peer has an x/100 proba-
bility of being online (available). Furthermore, the number of routers being set to
y means that each peer knows y peers (for routing purposes, hence we designate
them as routers) in each block in the system and y routers in each group of its
own block and y routers in each subgroup of its own group and so on.

Each of the 1000 peers that we used in all our experiments stored more
than 200000 spatial objects. Each peer uses an R-tree for its own directory
management. As in existing works, we assumed that one R-tree node fits in a
disk page (page size = 4096 bytes). The height of each of the R-trees at each of
the 1000 data providing peers was 3 and the fan-out was 64. Our performance
study was conducted using a real dataset known as Greece Roads[4]. We had
enlarged this dataset by translating and mapping the data. The main metric
that we have used for the performance study is query response time.

Incidentally, existing works on spatial indexing have not really addressed
issues concerning P2P environments, let alone decentralized indexing techniques.
In order to compare our work meaningfully against existing works, we use MC-
Rtree as reference. Recall that MC-Rtree is one of the most efficient distributed
R-tree-based techniques. (We do not compare our approach with the M-Rtree
since the MC-Rtree has been shown to outperform the M-Rtree.) For the MC-
Rtree approach, we select a specific peer in every block as the block leader. Each
of these block leaders maintains an MC-Rtree which indexes the peerMBRs of all
the peers whose spatial regions are fully contained within their blocks or intersect
with their blocks. We ensured that every block leader had adequate disk space
for storing the MC-Rtree. For the sake of convenience, we shall henceforth refer
to this strategy as MC-Rtree.

Now let us study the effect of varying the zipf factor when the query in-
terarrival rate is fixed. In order to model skewed workloads, we used the Zipf
distribution over 1000 buckets to decide the number of queries to be directed to
each of the 1000 peers. We modified the value of the zipf factor to obtain varia-
tions in workload skew. Notably, a value of 1 for the zipf factor implies a heavily
skewed workload, while a value of 0 indicates a uniform workload distribution.
We generated window queries by enlarging the individual data MBRs at each of



the peers. Figure 3a indicates the results when the query interarrival rate was
fixed at 20 queries/second, while the results for query interarrival rate of 100
queries/second is shown in Figure 3b. The number of routers was set to 5 and
the availability was fixed at 65%.

From the results in Figure 3a, we find that as the skew increases, the average
response time also increases for the MC-Rtree. This occurs because every query
has to be routed through at least one of the centralized master peers which store
the MC-Rtree for their respective blocks. As a result, there are large job queues
at these centralized master peers, thereby causing significantly increased waiting
times at these peers which ultimately causes severely increased query response
times. The greater the workload skew, the more serious is the routing bottleneck.
In contrast, the decentralized nature of P2PR-tree implies that routing is per-
formed in a completely distributed fashion, thereby ensuring the absence of any
serious routing bottlenecks. This explains why P2PR-tree exhibits far superior
performance as compared to MC-Rtree. The same explanation is also applicable
to the results in Figure 3b. Observe that in Figure 3b, the actual values of re-
sponse times are much higher than in Figure 3a. This is because high interarrival
rates make the routing bottleneck associated with the centralized master peers
much more pronounced than in case of low interarrival rates. Incidentally, apart
from the routing bottleneck, MC-Rtree also needs to contend with individual
peers becoming bottlenecks due to a large number of queries being directed to
a few ‘hot’ peers (because of the highly skewed workload) within a short time
interval. Interestingly, the phenomenon of individual peers becoming bottlenecks
due to skewed workload at high interarrival rates also occurs in case of P2PR-
tree which explains why unlike the results in Figure 3a, the results in Figure 3b
indicate an increase (albeit slight) in the average response time for P2PR-tree
when the interarrival rate is high (i.e., 100 queries/second).

5 Concluding Remarks

The increased importance of geographically distributed spatial data coupled with
the popularity of P2P computing has motivated our research into spatial index-
ing in P2P systems. Since existing R-tree-based structures are not adequate for
P2P environments, we have proposed a new R-tree-based spatial index that is
well-suited to P2P environments. Our performance evaluation demonstrates that
it is indeed practically feasible to share spatial data in a P2P system. However,
this work has not addressed in detail issues concerning a single peer indexing
multiple regions that are far apart in space. Moreover, this work does not exam-
ine performance-related issues concerning a single query intersecting more than
one block/group/subgroup. We intend to investigate these issues in detail in the
near future. We also wish to make detailed performance comparisons with the
proposal in [5]. Furthermore, we intend to investigate issues concerning repli-
cation for performance as well as availability reasons and additionally, we plan
to examine issues concerning load-balancing in this context for improving user
response times.
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