
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

複数入力を持つ拡張R-tree検索アルゴリズムを用いたPUB/SUBシステ
ムの平均応答時間の改善

王　波涛† 張　旺† 喜連川　優†

† 東京大学　生産技術研究所 〒 153–8505 東京都目黒区駒場 4–6–1
E-mail: †{botaow,zhangw,kitsure}@tkl.iis.u-tokyo.ac.jp

あらまし Publish/subscribeシステムはユーザに対して興味があるイベントを随時送信している。一般的に、イベン

トが起こる確率は時間によって変化し、予測ができない。一定の時間内にイベントが何も起こらなかったり、複数の

イベントが同時に発生することは良く起こる。複数のイベントが同時に発生した時、その平均レスポンスタイムは作

業の処理順序に依存する。本論文は始に R-treeを用いた複数イベントのためのフィルタリングアルゴリズムを提案す

る。各々のイベントの負荷に関する情報を用いることで、処理時間が短いイベントから処理を行い、平均レスポンス

時間を向上させる。さらに、インデックスが動的に変化する環境下で、サイズの異なるイベント集合のための自己適

応モデルの提案と評価を行う。

キーワード Publish/Subscribe, Event Filtering, Multiple Inputs, R-tree

Adaptively Improving Average Response Time of Pub/Sub System

Based on Extended R-Tree Search Algorithm with Multiple Inputs

Botao WANG†, Wang ZHANG†, and Masaru KITSUREGAWA†

† Institute of Industrial Science, The University of Tokyo
Komaba 4–6–1, Meguro-ku, Tokyo, 153–8505 Japan

E-mail: †{botaow,zhangw,kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract Publish/subscribe system captures the dynamic aspect of the specified information by notifying users of interesting events

as soon as possible. Generally the rate of event arriving is time varying and unpredictable. It is very possible that no event arrives

in an unit time and multiple events arrive in another unit time. When multiple events arrive at same time, the average response time

of events filtering depends on the sequence of filtering events which have different workloads. In this paper, we first propose an event

filtering algorithm with multiple inputs (multiple events) based on R-tree. With information of relative workload of each event, event by

event filtering can be executed with short-job first policy which improves average response time of multiple jobs. Further a self-adaptive

model is proposed and evaluated to filter set of events with different sizes on dynamically changed index.

Key words Publish/Subscribe, Event Filtering, Multiple Inputs, R-tree

1. Introduction

Publish/subscribe system provides subscribers with the
ability to express their interests in an event in order to be no-
tified afterwards of any event fired by a publisher, matching
their registered interests [7]. It captures the dynamic aspect
of the specified information. Efficient event filtering with a
faster response time is very important for event processing
with multiple steps like join, and is one of important factors
to provide good service for subscribers.

Generally the rate of event arriving is time varying and
unpredicatable. For example, traffic monitoring, ticket reser-
vation, internet access, stock price, ect.. In contrast to stable
rate, it’s very possible that a batch of events arrive in one

unit time and no event arrives during another unit time.（注1）

In the context of publish/subscribe system, even many
index techniques such as multiple one-dimensional indexes
based [5] [8] [10] [14] [16] and multidimensional index based
[15] have been proposed for event filtering, all these tech-
niques are designed to filter events one by one. They can not
deal directly with batch events in a fast average response
time if those events arrive at same time with different work-
loads. Meanwhile, we found that event filtering based on
multidimensional index [15] [17] is more efficient and flexible

（注1）：Even logically for most of the events, there exist absolutely dif-

ferent arriving times, in this paper, we regards the events arriving in

the same unit time as the events arriving at same time. For example,

positions reported every 30 seconds or the stock prices sampled every

second.

— 1 —



than that based on multiple one-dimensional indexes. In or-
der to improve average response time of event filtering in
above case, in this paper, we first propose a R-tree [4] [9]
based event filtering algorithm with multiple inputs which
are events arriving at same time. A cost model to estimate
relative workloads of these events is built to arrange the fil-
ter order of these events with Short-Job First (SJF) policy.
Further, because the input size representing the number
of events arriving at the same time and index size repre-
senting the number of subscriptions kept in index, change
dynamically, an adaptive model is proposed to filter events
with average response time always same as or close to the
possible best time.

The rest of this paper is organized as follows. Section 2
introduces the background and motivation. Section 3 intro-
duces the algorithm to improve average response time. Sec-
tion 4 proposes the adaptive model. In Section 5, the event
filtering algorithm and the adaptive model are evaluated and
analyzed in a simulated environment. Section 6 discusses the
related work. Finally, conclusion and future work are given
out in Section 7.

2. Background and Motivation

As introduced in [15] [17], multidimensional index (R-tree
[4] [9] or UB-tree [2] [3]) based event filtering is feasible and
is much efficient and flexible than that based on the popu-
lar multiple one-dimensional indexs based technique - count
algorithm [16]. Fig.1 shows a snapshot of performance differ-
ence with two examples.（注2）

Meanwhile, SJF is one well-known policy used to improve
average response time while scheduling multiple jobs. The
critical thing is to estimate workloads correctly.

Even UB-tree and R-tree have different partition strate-
gies, the search algorithms of both index structures traverse
multiple paths from root node to leaf nodes. Apparently,
the number of the multiple search paths reflects workload
relatively. Our motivation is that make use of this property
to estimate workload of each event so as to improve average
response time of events filtering with SJF policy in the case
that events arriving at same time.

1

10

100

1000

10000

100000

1e+06

1e+07

400000 800000 1.2e+06 1.6e+06 2e+06

m
a
tc

h
in

g
 t
im

e
(m

s)

number of subscriptions

matching time per event

count 
brute force 

Rtree 
ubtree 

Optimized ubtree

(a)

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

8 16 24 32 40

m
at

ch
in

g 
tim

e(
m

s)

number of dimensions

matching time per event

count 
brute force 

Rtree 
ubtree 

Optimized ubtree

(b)

図 1 Performance examples of event filtering based on different
index techniques

Because UB-tree partitions space with space filling curve,
original UB-tree’s search algorithm is depth-first and no Min-
imum Bounding Rectangle (MBR) information is required
and kept inside its nodes, it’s not easy to use MBR of event

（注2）：For details, please refer to [15] [17].

to calculate the number of multiple search paths at speci-
fied middle levels of original UB-tree without accessing leaf
nodes. The structure of R-tree doesn’t have this problem.
For this reason, we choose R-tree as the basis of our pro-
posal in this paper.

3. Improve Average Response Time

3. 1 Basic Idea and Main Algorithm
The basic idea is that for the events arriving at same time,

the relative workloads are estimated respectively first based
on their different numbers of search paths on R-tree and then
do filtering event by event with SJF policy with assumption
that the more the number is, the higher the workload is.
Fig.2 shows the pseudo codes of the main algorithm. The

Begin BatchSearch(Root, EventArray, EventNumber, Level)
1     Estimate Workloads of EventArray into WorkloadTable;
2     For each item in WorkloadTable;
3        Read event and nodes located on the search paths at the Level;
4        Search R-tree starting from the nodes with the event;
5        Output results of current event;
6     ENDForLoop
End  BatchSearch

図 2 Main Algorithm-BatchSearch

algorithm is called BatchSearch. The input includes an
array of events EventArray and its size EventNumber.
The parameter Level controls the depth to estimate work-
load starting from root node Root. Line 1 estimates and
sorts workload by checking all input events simultaneously
to level Level. In WorkloadTable (to be introduced later),
the events are sorted in ascending order of the number of
search paths at level Level and the nodes on the search
paths are kept in the corresponding item of WorkloadTable.
Line 4 does event filtering (search of R-tree) with algorithm
similar to original R-tree search algorithm except that the
start point is not Root but the nodes gotten at line 3. The
results of each event are outputted immediately at line 5
without waiting for the ending of the filtering of last event
even they arrived at same time.

3. 2 Data Structures

��������� 	�

������
��
� ��������
�����

�����

Item

Workload  Table

(a) WorkloadTable

Intersect Buffer at level L

List of  EventIDs
corresponding to
1st item 

List of  EventIDs
corresponding to
last item 

1st item last item 

 R-tree node  at level L on the search path

(b) IntersectBuffer

図 3 Data Structures Used in BatchSearch

WorkloadTable is an array of items with structure shown

— 2 —



in Fig.3-a. Each item corresponds to one event of Even-
tArray. The Workload in Fig.3-a is the number of nodes
located at the ending of search paths stopped at the spec-
ified Level. WorkloadTable is filled and sorted at line 1
of Fig.2 by function named EstimateWorkload. A data
structure named IntersectBuffer (Fig.3-b) is used to record
events whose MBRs intersect with those of items of one R-
tree node which is located in the paths from root to the
specified level. Because the algorithm to estimate workload
is similar to the depth-first search of R-tree, at any time
while estimating workload, each level corresponds to only
one intersect buffer.

The number of items in one intersect buffer is same as that
of one R-tree node. The 1st item of intersect buffer corre-
sponds the 1st item of R-tree node. The content of the 1st
item of IntersectBuffer is the list of eventIDs whose MBRs
intersect with that of the 1st item of the R-tree node. The
others items have similar contents.

Begin EstimateWorkload(Root, EventArray, EventNumber, Level)
1   Set IntersectBuffer of level 0;
2   BatchIntersect(Root, EventArray, 1, Level);
3   Sort WorkloadTable in ascending order;
End EstimateWorload

Begin BatchIntersect(CurrentNode, EventArray, CurrentLevel, Level)
1   Get the item which CurrentNode corresponds to from IntersectBuffer
2          of CurrentLevel-1 and read all eventIDs into EventList;
3   IF CurrentNode is leaf Node or CurrentLevel  >= Level
4      Add WorkloadTable with CurrentNode and EventList;
5   ELSE
6       Reset IntersectBuffer of CurrentLevel;
7       For each item in CurrentNode
8          For each event in EventList
9              Check MBR intersection of current item with current event
10             If intersect
11                Insert eventID into the corresponding item of
12                             IntersectBuffer of CurrentLevel;
13             ENDIf
14          ENDForLoop    
15      ENDForLoop
16      For each item of CurrentNode
17         BatchIntersect(Item’s SubNode, EventArray, CurrentLevel+1, Level);
18      ENDForLoop
19  ENDIf
End BatchIntersect

図 4 Algorithm of Estimating Workload

The algorithm to fill WorkloadTable is shown in Fig4. In
function EstimateWorkload, line 1 intializes the Intersect-
Buffer of level 0 where there is only one item with one pointer
pointing to the Root node and all events are assumed to in-
tersect with MBR of this item. The SJF can not be benefited
by BatchSearch with Level valued 0, because all work-
loads have same value 1. Line 2 call a recursive function
BatchIntersect to fill WorkloadTable, level 1 means check-
ing from root node. Line 3 sorts WorkloadTable according
to the number of search paths in ascending order.

In function BatchIntersect, line 1-2, read one item from
IntersectBuffer of last level (the level nearer to root) and gets
all event IDs kept in the item. That item corresponds to the
item of R-tree node at last level which includes the pointer
pointing to CurrentNode. Line 3 checks the ending condi-
tion of recursive search and line 4 adds the WorkloadTable
with the event IDs gotten at line 1-2 and CurrentNode.
Line 6-15 fill intersect buffer of CurrentLevel. Line 16-18
search next level by accessing subnodes of CurrentNode.

4. Model of Adaptive Search

For same batch events, the performance of BatchSearch

���������

�
	�� ����
���� � ����
����

����� ����� � ����� ����� �
������� ������!"����� ���

#%$ �&
'�(�*)�+ $�,.- ����� �0/21 �43���� � 30)�� -

576"�8���292��:�� �;, ) 	�� �
��� ���

!��(6"�8�

<�- �����'� 	�- ��)292�>=?���

5 @

�A	 � - �����B� 	�-�, ���2=?���C=D���

� �4������EF���>9�30��GIHJ

図 5 Changing of Average Response Time and Adaptive Model

depends on the value of Level. At the same time, the num-
ber of events arriving at same time is not fixed, the size of
index changes dynamically also. In this section, we will pro-
pose a self-adaptive model in order to filter kinds of events
with average response time same as or close to the possible
best time.

4. 1 Performance Analysis
While dealing with events arriving at same time, line 1

of main algorithm BatchSearch is a kind of overhead com-
pared to the processing with original R-tree search algorithm
event by event without workload estimation. The overhead
becomes larger with the value increment of Level. At the
same time, because the higher the Level is, the more accu-
rate of workload estimation is, the efficiency of SJF become
more and more better with the value increment of Level
also. For the same batch events, the average response time
based on BatchSearch is a function of Level L. Their re-
lationships can be described in the follows:
ARTime(L) = ETime(L) + TETime/Efficiency(L)

ARTime is the average response time. ETime is the time
to estimate workload. TETime is the total execution time
of processing all events. It is a constant related to the to-
tal workloads of all events and doesn’t change with Level.
Efficiency is the efficiency of SJF. It’s the ratio of response
time gotten at leaf level to the response time gotten at level
L under policy of SJF using number of paths to estimate
relative workloads. The larger it is, the shorter the averager
response time is. Because it has shape of concave as shown
on the leaf of Fig.5 with mark ”Ideal and logical”. The
best level exits for the batch events with same event number
and it should be located between level 0 to level TreeHeight-
1. The best level changes for different number of input events
and size of index.

In order to get best average response time, the Batch-
Search should run with Level valued best level.

4. 2 Adjust Best Level Dynamically According to
Statistic Information

The adaptive model is shown on the right of Fig.5, it is
built for filtering of batch events with same event number
arriving at same time. For events with different sizes (num-
bers), their statuses will be kept in different buffers, for ex-
ample, entries of a status buffer array for batch events with
different sizes. The main function of the model is to adjust
best level dynamically for filtering of different batch events
with different numbers and sizes of index.

If the current level is best level, we call the system is stable.
In stable status, the BatchSearch is executed with Level
valued best level. The number of update operations (insert
and delete) is monitored in stable status. After some update
operations, the height of index tree or data distribution of
index maybe be changed, it is necessary to check the best
level or adjust it if it changes. The system becomes unsta-
ble then. The Threshold shown in Fig.5 is the number to
determine the time when the system enters unstable status
from stable status.

— 3 —



In unstable status, the best level can be checked by trying
all levels with same events naively, but it’s not acceptable
for an dynamic system in practice. This overhead is not ne-
glected for a higher index tree or batch events with larger
number.

Our model is that check current level and its upper and
lower levels (totally 3 levels) based on the ”Ideal and log-
ical” changes of BatchSearch performance. In unstable
status, for events arriving batch by batch with same size at
different time, BatchSearch process these batches of events
with Level value changed in a way of round-robin loop. The
input contents of BatchSearch change in the sequence of
arriving time like
(EventArrayNo1, CurrentLevel),

(EventArrayNo2, CurrentLevel − 1),

(EventArrayNo3, CurrentLevel + 1), ...,

(EventArrayNo3N, CurrentLevel + 1).
N is the counter of loop. So in unstable status, system does
events filtering with Level values same as or close to the best
level.

Besides filtering these batchs of events in unstable status,
the average response times of three different levels (called
CTime, UTime, LTime in Fig.5 which correspond to the
average response time of current level, upper level,lower
level) are summed up and checked when the loop ends. If
CTime < UTime && CTime < Dtime is true, the system
will enter stable status, because the current level is the best
level for BatchSearch based on the ”Ideal and logical”
changes of BatchSearch. And the current update operation
counter is recorded for the update checking in stable status.
Otherwise, moves the current level towards to the direction
of best level according to the ”Ideal and logical” changes
of BatchSearch performance and restarts a new loop.

Because for every events filtering , the input EventArray
of BatchSearch is different, so it’s possible that the time
gotten at different levels doesn’t change ”ideally and logi-
cally” when the loop counter N is very small, for example 1.
In this case as the line of ”Unideal and practical” shown
in Fig.5, it is possible for system to enter stable status, even
the current level(A) is not best level(B). It is also possi-
ble that CTime > UTime && CTime > LTime is true as
shown at level(C). The adaptive model can not work well
in this case. But, if the value of loop counter N is bigger
enough, the ”Unideal and practical” line will change in
the same concave shape or close up to ”Ideal and logical”
line statistically. The adaptive model is expected to work
well if the loop number is big enough, It’s managable for a
long time running pub/sub system.

When system starts, the status is unstable. The current
level can be set with any value allowable, for example Tree-
Height/2. At last, the system will become stable, because
the filtering operation is more frequent than the update op-
eration in pub/sub system and the best level changes slowly
with increment of index size shown in later evluation.

5. Results of Evaluation

5. 1 Environment
The algorithm is designed for main memory structure and

evaluated in a 12D space.（注3） Both subscriptions and events
are created randomly. The index size (number of subscrip-
tions) changes from 0.5 million to 3.0 millions. The input

（注3）：The performance doesn’t change drastically if the number of

dimension is located in a reasonable range as shown in Fig.1

size (number of events arriving at same time) changes from
2 to 128. The algorithm is implemented on R*-tree（注4）with
index node capacity 10 and leaf node capacity 20. The hard-
ware platform is Sun Fire 4800 with 4 900MHz CPUs and
16G memory. The OS is Solaris 8.

5. 2 Evaluation of BatchSearch Algorithm

0

1

2

3

4

5

6

7

8

9

10

11

12

13

500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

B
es

t L
ev

el

Number of subscriptions

Tree Height
 Input Size=2
Input Size=8

Input Size=64
Input Size=128

(a) Best level of different

size of index

0

5

10

15

20

25

30

35

40

2 8 32 128

A
ge

ra
ge

 R
es

po
ns

eT
im

e(
s)

Size of Input

IndexSize=1m, BatchSearch
IndexSize=1m Sequential

IndexSize=1m, time to estimate
IndexSize=2.5m, BatchSearch

IndexSize=2.5m, Seuential
IndexSize=2.5m, time to estimate

(b) Effectness of Batch-

Search with different size

of input

0

50

100

150

200

250

0 1 2 3 4 5 6

T
ot

al
 R

es
po

ns
e 

T
im

e(
s)

Level value of BatchSearch 

loop=4, Same events
loop=4, Different events

loop=16, Same events
loop=16, Different events

loop=64, Same events
loop=64, Different events

(c) Loop counter and best

level (input size =4)

0

5000

10000

15000

20000

25000

30000

35000

40000

0 1 2 3 4 5 6

T
o
ta

l R
e
sp

o
n
se

 T
im

e
(s

)

Level value of BatchSearch 

loop=4, Same events
loop=4, Different events

loop=16, Same events
loop=16, Different events

loop=64, Same events
loop=64, Different events

(d) Loop counter and

best level (input size=64)

図 6 Evaluation Results of BatchSearch Algorithm

The evaluation results are shown in Fig.6. Fig.6-a shows
that the best level changes slowly with increment of index
size. It means the Threshold of Fig.5 can be set very large,
for example 100,000 in the case that insert operation is more
frequent than delete operation.

Fig.6-b compare the average response time of Batch-
Search algorithm to that which just inputs events to origi-
nal R*-tree in a random sequence. Further, it shows that the
cost to estimate workload (algorithms shown in Fig.4 can be
neglected compared to average response time. It also shows
that the larger the size of input is, the more the average
response time can be improved. The reason is that for the
events with uniform distribution of workloads, the the larger
the size of input is, the more the SJF can be benefited. The
maximum is nearly up to 50% in our evaluation.

Fig.6-c and Fig.6-d show the changing of response time
which are calculated with same and different events gotten
at different levels. The input with different events is used to
simulate the performance in unstable status. There the index
size is 1.5 million and the height of tree is 7. The difference
of Fig.6-c and Fig.6-d is the input size. Boths figures show
that the smaller the loop counter and input size are, the bit-
terly the time based on different events changes on different
levels. They also show that with increment of loop counter,
the trembling of response time ”Unideal and practical”

（注4）：Version 0.62b. http://www.cs.ucr.edu/ marioh/spatialindex

— 4 —



which is introduced in Fig.5 and captured clearly in Fig.6-c
(loop=4 or loop=16, Different events), becomes more and
more stable with shape of ideal concave and merge into the
line gotten with the same events at each level.

5. 3 Evaluation of Adaptive Model
Logically, the performance of stable status is better than

that of unstables stable if the Level of BatchSearch func-
tion is the best level. The effectness of the adaptive model
in stable status has been shown in Fig.6-c and Fig.6-d in last
section. This section mainly shows the results related to the
performance of unstable status and the best level when the
system becomes stable status.

Fig.7-a shows the performance of unstable status compared
to the performance without using the adaptive model (same
as the ”No BatchSearch” performances shown in Fig.6-b)
and the possible best performance. There, the size of in-
dex changes from 0.5 million to 2.6 millions, the Threshold
is 300,000, and the loop counter is 64. The initial value
of current level is TreeHeight/2 + 1. The TreeHeight is 7
when the index size is 0.5 million. When the system becomes
stable, 300,000 objects (subscriptions) are inserted into the
index. So Fig.7-a show the performance of unstable status.

We can find that performance with the adaptive model
is much better than the performance without the adaptive
model, the performance differences are almost at same level
as those shown in Fig.6-b which are gotten at stable status.
The performance of the adaptive model even in unstable sta-
tus is very close to the possible best performance as shown in
Fig.7-a We can say that with the adaptive model, the arrays
of events can be filtered with response time close to the pos-
sible best time. The difference can be neglected compared
to the performance without adaptive model.

0

0.5

1

1.5

2

2.5

3

3.5

0 500 1000 1500 2000 2500 3000 3500

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e(

s)

Sequential Number of Event Arrays

Time with Adaptive Model
Possible Best Time 

Time without Adatpive Model

(a) Performance of unsta-

ble status (input size=8)

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500 3000 3500

Le
ve

l

Sequential Number of Event Arrays

Current Level
Best Level 
Tree Height

n1 n2 n3 n4 n5 n6 n7

(b) Changing of current

depth(input size = 8)

0.65
0.67
0.69
0.71

0.73
0.75
0.77
0.79
0.81
0.83
0.85

0.87
0.89
0.91

500 1000 1500 2000 2500 3000 3500

A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e
(s

)

Number of Loop Counter

Level=1
Level=2
Level=3
Level=4
Level=5

(c) Performance of Differ-

ent Levels (same events)

0.65
0.67
0.69
0.71

0.73
0.75
0.77
0.79
0.81
0.83
0.85

0.87
0.89
0.91

500 1000 1500 2000 2500 3000 3500

A
ve

ra
g

e
 R

e
sp

o
n

se
 T

im
e

(s
)

Number of Loop Counter

Level=1
Level=2
Level=3
Level=4
Level=5

l1 l2 l3

(d) Performance of Dif-

ferent Level (different events)

図 7 Results of Adaptive Model Evaluation

Corresponding to Fig.7-a, fig.7-b shows the changing of
current level while system changes from unstable status to

stable status. The dash lines labeled n1, n2, n3, n4, n5, n6
and n7 are points in stream of input event arrays which are
input and filtered sequentially. There the system becomes
stable with current index size and enters unstable status af-
ter inserting 300,000 objects (subscriptions). It shows that
the current level becomes same as the best level when sys-
tem enter stable status at points n2, n3, n4, n5 and n7 in
Fig.7-b. But, at points n1 and n6, the current level values
(both are 4) are different from the best level value (3). It
means that the Level of BatchSearch function isn’t the
best depth. Fig.7-c shows the performance difference com-
pared to the possible best performance in this case. Fig.7-d
shows the reason why nonbest level is gotten possibly when
system becomes stable status.

The difference of Fig.7-c and Fig.7-d is that whether the
same event arrays or different arrays are applied to the dif-
ferent levels close to the best level. The index size is 1.1
millions. Loop counter is the loop counter defined in Section
4.2. The average response time are calculated on accumu-
lating total response time and the value of its corresponding
loop counter. The Fig.7-c shows that the performance of
level 3 (best level) are better and close to those of two neigh-
bor levels, level 2 and level 4. Especially, the performance of
level 4, which is the current level when system become stable
at points n1 and n6 shown in Fig.7-d, is very close to that of
level 3.

From Fig.7-d, we can find that the reasons why the current
level is different from the best level when system becomes
stable are that 1) the performance of the best level is very
close to those of its two neighbor levels, and 2)the value of
loop counter is too smaller.

For example, in Fig.7-c, the performances of levels 2, 3
and 4 are 0.708093s, 0.684761s and 0.692080s when the loop
counter is 2000, there the loop counter is large enough to
capture the representative performance. The performance of
level 3 and 4 is less than 1.07%. At the same time, as shown
in Fig.7-d, where different event arrays are filtered at these
three different levels, the performance of the best level is not
always smaller than those of its two neighbor levels when the
loop counter is smaller (less than 2000).

In Fig.7-d, at point of l1 (Loopcounter = 320), the perfor-
mance of levels 2, 3, 4 are 0.689795s, 0.689983s, 0.716901s,
there the performance of level 2 is better that of best
level 3, and at point of l2 and l3 (Loopcounter=1216 and
1280) are 0.722000s, 0.709347s,0.709328s and 0.721254s,
0.710612s,0.708728s where the performances of level 4 are
better than that of best level 3. In summary, when the
counter loop is smaller, the performances of different lev-
els change a little bitterly. The possibility is high for the two
adjacent and close performance lines to intersect each other.

That’s reason why the current level (shown in Fig.7-b, in-
terval between n5 and n6 ) changes closely to the best level
when index size is 2,000,000, the loop counter is 64 there.
But when loop counter become larger, for example 2000, the
Fig.7-c and Fig.7-d have same and stable performance dif-
ference.

Because the loop counter is managable in practice, we can
say that if the loop counter is larger enough, the system will
enter stable status with the best level or the level (in the case
that loop counter is not larger enough) with performance
very close to that of the best level.

6. Related Work

A lot of algorithms related to event filtering have been

— 5 —



proposed. They are proposed for publish/subscribe sys-
tems [1] [8] [11] [14] [15] [16], for continuous queries [5] [6] [12]
and for active database [10].

Predicate indexing techniques have been widely applied.
There, a set of one-dimensional index structures are used to
index the predicates in the subscriptions. Mainly, there are
two kinds of predicate indexing based algorithms: counting
algorithm [16] and Hanson algorithm [10]. They differ from
each other by whether or not all predicates in subscriptions
are placed in the index structures. [16] is an Information Dis-
semination System (IDS) for document filtering.

In [14] [15], multidimensional index based event filtering is
proved to be feasible and efficient. It’s the basis of this paper.

The testing networking based techniques initially pre-
processes the subscription into a matching tree. Differ-
ent from predicate index, [1] and [11] built subscription trees
based on subscription schema. For the reason of space and
maintenance, they are impractical for pub/sub application.

Event filtering is one critical step of continuous queries.
In [5], predicate index is built based on Red-Black tree, there
algorithm is similar to bruteforce that scans the Red-Black
tree for event filtering each time. [12] implemented routing
policies to let faster operators filter out some tuples before
they reach the slower operators. In [13], queries are opti-
mized based on rate of input.

The problem of multiple events arriving at same time with
different workloads is not considered in above techniques.

7. Conclusion and Future Work

In this paper, for pub/sub system, we first proposed an
event filtering algorithm with multiple events as input based
on R-tree. The relative workload of each event is estimated
according to the number of search paths. Short-Job First
policy is utilized to improve the average response time. Fur-
ther an adaptive model is designed to filter multiple events
arriving at the same time with average response time always
close to the best time for different input sizes and changing
index size. According to the evaluation results, the average
response time can be improved maximumly up to nearly 50%
with our algorithm and the adaptive model can work well
with average response time same as or close to the possible
best time in both stable and unstable statuses.

In the future, we will evaluate adaptive model with real
data in different update scenarios and data skew related to
index structure.

文 献
[1] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and

T. D. Chandra. Matching events in a content-based sub-

scription system. In Proceedings of the eighteenth annual

ACM symposium on Principles of distributed computing,

pages 53–61. ACM Press, 1999.

[2] R. Bayer. The universal b-tree for multidimensional index-

ing. Technical Report TUM-I9637, Technische Universitat

Munchen, November 1996.

[3] R. Bayer and V. Markl. The ub-tree: Performance of mul-

tidimensional range queries. Technical Report TUM-I9814,

Technische Universitat Munchen, June 1998.

[4] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.

The R*-tree: An efficient and robust access method for

points and rectangles. In Proceedings of the 1990 ACM SIG-

MOD International Conference on Management of Data,

pages 322–331. ACM Press, 1990.

[5] S. Chandrasekaran and M. J. Franklin:. Streaming queries

over streaming data. In VLDB 2001, Proceedings of 27th

International Conference on Very Large Data Bases, pages

203–214. ACM Press, 2002.

[6] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Niagaracq:

a scalable continuous query system for internet databases.

In Proceedings of the 2000 ACM SIGMOD international

conference on Management of data, pages 379–390. ACM

Press, 2000.

[7] P. T. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermar-

rec. The many faces of publish/subscribe. Technical Report

Technical Report DSC ID:2001, Swiss Federal Institute of

Technology, January 2001.

[8] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross,

and D. Shasha. Filtering algorithms and implementation for

very fast publish/subscribe systems. In Proceedings of the

2001 ACM SIGMOD international conference on Manage-

ment of data, pages 115–126. ACM Press, 2001.

[9] A. Guttman. R-trees: A dynamic index structure for spatial

searching. In SIGMOD’84, Proceedings of Annual Meeting,

pages 47–57. ACM Press, 1984.

[10] E. N. Hanson, C. Carnes, L. Huang, M. Konyala,

L. Noronha, S. Parthasarathy, J. B. Park, and A. Vernon.

Scalable trigger processing. In Proceedings of the 15th In-

ternational Conference on Data Engineering, 23-26 March

1999, Sydney, Austrialia, pages 266–275. IEEE Computer

Society, 1999.

[11] A. Hinze and S. Bittner. Efficient distribution-based event

filtering. In R. Wagner, editor, 22nd International Confer-

ence on Distributed Computing Systems (ICDCS- 2002),

Workshops: 1st International Workshop on Distributed

Event-Based Systems(DEBS), IEEE Computer Socienty,

2002.

[12] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman.

Continuously adaptive continuous queries over streams. In

Proceedings of the 2002 ACM SIGMOD international con-

ference on Management of data, pages 49–60. ACM Press,

2002.

[13] S. Viglas and J. F. Naughton. Rate-based query optimiza-

tion for streaming information sources. In Proceedings of the

ACM SIGMOD International Conference on Management

of Data, pages 37–48, 2002.

[14] B. Wang, W. Zhang, and M. Kitsuregawa. Design of

b+tree-based predicate index for efficient event matching.

In Web Technologies and Applications, 5th Asian-Pacific

Web Conference, APWeb 2003, Xian, China, April 23-25,

2003, Proceedings, pages 537–547, 2003.

[15] B. Wang, W. Zhang, and M. Kitsuregawa. UB-Tree

based efficient predicate index with dimension transform for

pub/sub system. In Database Systems for Advances Appli-

cations, 9th International Conference, DASFAA 2004, Jeju

Island, Korea, March 17-19, 2004, Proceedings, pages 63–

37, 2004.

[16] T. W. Yan and H. Garcia-Molina. The sift information dis-

semination system. ACM Trans. Database Syst., 24(4):529–

565, 1999.

[17] W. Zhang. Performance analysis of Ub-tree indexed pub-

lish/subscribe system. Master’s thesis, Department of In-

formation and Communication Engineering, The University

of Tokyo, 2004.

— 6 —


