
DEIM Forum 2009 E7-5

A Performance Study of Non-In-Place Update Based Transaction

Processing on NAND Flash SSD

Yongkun WANG†, Kazuo GODA†, and Masaru KITSUREGAWA†

† Institute of Industrial Science, the University of Tokyo

4–6–1 Komaba, Meguro–ku, Tokyo 153–8505 Japan

E-mail: †{yongkun,kgoda,kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract NAND flash memory is one of the most aggressively scaled technologies among electronic devices re-

cently. The massive increase in the capacity makes flash memory possible for enterprise applications, such as

the database system. However, the characteristic of erase-before-write makes flash memory very challenging for

the database management. A non-in-place update technique may be exploited to overcome the erase-before-write

problem. In this paper, we provide a careful performance study of utilizing the non-in-place update technique for

transactional database applications running on the flash memory. We deliberately design the experiment of the en-

terprise database system on flash memory, with a careful study on the performance gain, and reveals some insights

into the enterprise applications built on the flash memory. In particular, we carefully tune the system to gain the

superiority to the existing ones. We describe experiments in detail showing the benefits of utilizing non-in-place

update on flash memory.

Key words NAND Flash Memory, SSD, LFS, Transaction Processing

1. Introduction

Flash memory is a kind of EEPROM (Electrically Erasable

Programmable Read-Only Memory), invented at Toshiba in

1980 [1]. With many favorable features such as non-volatile,

lightweight, high speed on read and write, it is widely used

as the storage media for digital camera and portable devices,

such as MP3/MP4 player, PDA, 3G Mobile Phone,etc.

According to the difference of the connections to the indi-

vidual memory cells, the flash memory can be divided into

two types: NOR and NAND. NOR allows random-access on

a bit-wise basis, while NAND must be read on a block-wise

basis, with typical block sizes of hundreds to thousands of

bits. NAND flash memories are accessed much like block de-

vices such as the hard disk, and thus viewed as a potential

replacement of the hard disk. In this paper, we refer NAND

flash memory as flash memory hereafter.

Recently, the flash memory is one of the most aggressively

scaled technologies among electronic devices. Along with

the decreasing of the price, the large capacity flash mem-

ory is now starting to appear on the market. flash memory

SSD (Solid State Drive) begins to be equipped in the laptop.

Compared to the traditional magnetic hard disk, the flash

memory SSD is lightweight, noise free, vibrate resistant, tem-

perature endurable and no mechanical parts, which make it

a very promising storage media for computer system.

The massive increase in the capacity also makes flash mem-

ory available for enterprise applications, such as the database

system. However, so far as some time-critical enterprise ap-

plication is concerned, the research is still limited. When it

comes to the enterprise application, the main advantage of

the flash memory is the read performance. Obviously, how-

ever, the disadvantage is the out-of-place update, resulting

in the ineffective performance of random write, especially

the small size frequently random write. This disadvantage

is fatal to those critical applications such as OLTP running

on the bank system. For this reason, any rash behaviors on

the critical enterprise application to hug the new technology

without carefully considering on the drawbacks will eventu-

ally result in the disaster.

It is clear that the flash memory is entering the enterprise

storage field gradually. A thorough understanding about the

performance of enterprise applications on flash memory is

a very pressing matter of the moment. A lot of literatures

have reported the performance about flash memory in cur-

rent computer system. However, in the case of enterprise

database systems, especially the OLTP, it may not be a good

choice to make direct use of flash memory, as shown by our

experiment in Figure 5, and reported in [15]. The perfor-

mance of database system is not improved significantly af-

ter simply replacing the hard disk with flash memory, even

worse under the workload with highly intensive transactions.

Therefore, people expect better techniques to fully utilizing

the flash memory.

In this paper, we carefully study the out-of-place update

characteristics of the flash memory, and provide the perfor-

mance analysis for the enterprise database system running on

the flash memory SSD. Our contribution can be summarized

as follow:

• We summarize the benefits and potential problems of

flash memory for enterprise applications such as the database

system.

• We analyze the non-in-place update technique, intro-

ducing three rational methods of applying the non-in-place

update technique to the flash memory in a systematic view.

Besides, we point out the possible problem to be considered

necessarily when utilizing this technique.

• We make a performance study of enterprise database

system on flash memory in terms of the non-in-place update,

using the TPC-C benchmark to generate the comprehensive

measurements of transaction throughput. The concrete ex-

periments are designed with an enterprise database product.

We reveal the superiority of non-in-place update on flash

memory by carefully tuning the experiment system.

The rest of this paper will organize as follow: Section 2

will present the benefit and issue of flash memory for trans-

action processing system. In Section 3, we will introduce the

non-in-place update based database system on flash mem-

ory. The deliberately designed experiment will be described

in Section 4. Section 5 will summarize the related work. Fi-

nally, our conclusion and the future work will be provided in

Section 6.

2. Issue of Flash Memory with Transac-

tion Processing

Unlike the traditional hard disk, which has an approxi-

mately symmetric read and write speed, flash memory, on

the contrary, has a substantial variation in the speed of read

and write, as shown by our raw device test in Table 1. The

average response time of read, whatever in sequential or ran-

dom mode, as well as that of the sequential write, is about

two orders of magnitude faster than that of the hard disk.

Instead, the average response time of the write in random

mode, is comparable or even worse than that of the hard

disk. This is primarily because the flash memory cannot be

updated in place, a time-consuming block erase operation

having to be performed before the write operations, as dis-

closed in Table 2 [11]. For the sake of better performance,

the size of erase block is usually large, about several hun-

dred KB, leading to a expensive time cost of erase operation

Table 1 Average response time (µs) of the flash memory SSD

and hard disk with the transfer request size of 4KB. Ex-

periment setup is the same as that in Section 4. 1 except

here the hard disk and flash memory SSD is used as a raw

device. Benchmark program is Iometer 2006.07.27 [19].

Hard Disk Flash Memory SSD

Read Write Read Write

Sequential 127 183 94 75

Random 13146 6738 106 8143

Table 2 Operational flash parameters of Samsung 4GB flash

memory chip

Page Read to Register 25µs

Page Program (Write) from Register 200µs

Block Erase 1.5ms

Serial Access to Register (Data bus) 100µs

compared to that of flash read.

The ineffective random write performance of flash mem-

ory could be painful for some transaction processing applica-

tions, such as the enterprise database systems, specially the

OLTP. In these applications, the intensive random write is

sometime the main stream of disk I/O. Though the operating

system has an efficient buffer policy to cache the individual

write operations into a bulk update, some critical applica-

tions such as the bank system enforce the data to be flushed

into disk to ensure the safety of data. Therefore, it would be

problematic for the existing transaction processing systems

to run on the flash memory directly, as reported in [15]. Our

experiment also illustrates this points in Figure 5 that the

performance is not improved, even worse than that of the

hard disk sometime by directly using the flash memory SSD

as the main storage media of data, though the flash mem-

ory has a fine performance on read and sequential write. A

better solution is required to fully exploit the benefit of flash

memory SSD.

By far, the research of improving the random write perfor-

mance on flash memory focuses on reducing the time caused

by the erase operations when data is being updated fre-

quently. A non-in-place update technique is introduced to

put off the erase operations as long as there is free data

blocks on flash memory. Hence, exploiting the non-in-place

update on enterprise system could be a promising alternative

on flash memory. In the next section we will not only analyze

the reason of the improvement but summarize the possible

methods of utilizing the non-in-place update technique on

flash memory.

3. Non-In-Place Update Based Database

System on Flash Memory

As described in previous section, the performance is not

improved to utilize the flash memory directly for enterprise

database system. A tactful way is to introduce the non-in-

place update for enterprise system on flash memory to im-

prove the overall performance. The idea of the non-in-place

update technique, arisen from the log-structured file system

described in [2], with an implementation called Sprite LFS.

Instead of seeking and updating in-place for each file and In-

ode, the LFS will collect all write operations and write them

into a new address space continuously. The principal feature

of LFS is that a large number of data blocks are gathered

in a cache before writing to disk in order to maximize the

throughput of collocated write operations, thereby minimiz-

ing seek time and accelerating the performance of writes to

small files. Though log-structured file systems optimize write

performance by some detriment of scan performance [10], this

feature is greatly helpful on flash memory to make up for the

inefficient random write performance since the read perfor-

mance is about two orders of magnitude higher than that of

erase operations. The overall write performance is hereby

improved.

Therefore, the non-in-place update based database system

on flash memory could have potential performance gain. In

this case the flash memory is usually written sequentially

through all the way, with a background process reclaiming

the obsolete data blocks into the pool of available data block.

On the basis of non-in-place update, all the update opera-

tions are performed by writing the data pages into the new

flash pages, and the erase operations are not required right

beforehand as long as the free flash pages are available. Thus,

the overall throughput of transactions can be improved along

with the step-up of I/O by reducing the instantly erase oper-

ations. Though some detriment of read performance, provid-

ing that the read performance of flash memory is about two

orders of magnitude faster than that of the erase operations.

The key design of non-in-place update based system can

be seen in Figure 1. Here the free space management is

implementated by dividing the storage media into storage

units called segment, which is usually much bigger than the

size of block using by the operating system. Within each seg-

ments, the data and Inode are written sequentially like a log.

A special data structure called Superblock will be stored in

the fixed area, to hold the static configuration information

such as number of segments and segment size. New data

blocks of files and directories along with Inode are written

sequentially in each segment, as shown in Figure 2. When

updating a data block, the data block is read into cache from

its segment, and applied the changes, then written to a new

segment with other data blocks together. The old data block

will be obsolete and can be cleaned in the near future by a

daemon process.

��� ������	
��
 ����
����������� �������

� �������

� �������

� �� ������� �����������

 ������� ��

!���

 	
��
� ��

"��!�	
��
� �������

 ����� ��	
� ����
�����#�$%&

'(%)

Fig. 1 Managing the free space by segments in Log-structured

file system

* + * + * , -./
 0123456

789

!
:;<=>;=<?@

ABC?

:D:;?EFGHIJ FGHIK

* * + * * + 0123 * + ,LMNMOPQLILGR OPQLISMT4U6

V8WX?W;B8WUC

BW

!
YCU>?

=Y@U;? 5U:?@

ABC?

:D:;?EFGHIJ FGHIKLGRJ LGRKLGRJ LGRK

Fig. 2 Files and Directories are written sequentially in Log-

structured file system

From a macro view of system, there are several possible

methods to utilize the non-in-place update on flash memory,

described as follow:

• Traditional DBMS on traditional file system on Log-

structured FTL

• Traditional DBMS on log-structured file system on

simple-mapping FTL

• DBMS with log-structured storage access implementa-

tion on traditional file system on simple-mapping FTL

All of these methods could be successful solutions to reach

high throughput of database transaction processing on flash

memory. In this paper, we only have the performance study

and experiment evaluation on the second method. Evalua-

tion on the rest methods is beyond the scope of this paper,

and possibly provided in the later literatures by us with fur-

ther research.

It is to be noted here that a concern on the non-in-place

update technique is the design and settings of GC (Garbage

Collection). Since the non-in-place update technique con-

sumes free flash pages faster than other methods, the obso-

lete data pages (garbage) should be reclaimed by fine timing

policy to the pool of available data blocks to ensure there is

free pages available anytime when there are write requests.

The GC strategy will have direct influence to the overall per-

formance of system. A better GC strategy can emulate to

the upper level system that the free data blocks are always

available, with minimum cost of CPU time.

������ ��������		

����
����

���

����
�������������� !"# � $�� % ��� &'()*+,-&.))/+, 012- 3/2 4% ���5 %*2 6�����5�"" � ��7% 899 / :��;!"# <��# 6 1=>= 9'.*?@A +��6 ��BC $�"#���� � DB#5 A�@@��# E�� 7=!� .- &- 8 �"6&.1 �<�# F%..7G/ 8..*2 +��6 ��BC H���I� JKLM �" � %')'&(

N	�
O

���/>7PQ/1GF89814$9'8R1=>= 9'.*9%*2

S��T

�����+B#��5B+�1F%&.F-9'8R-1=>= 9'.*-F%..7G/-9%/ $��5 -F8.*29*?9*?

U#5 �" # 1DB#�5 > �:B"�� G$&../?&../?

Fig. 3 System Configuration

We will discuss the influence of the GC settings in our

experiment described in next section.

4. Experimental Evaluation

We now describe a set of experiments that validate the

efficiency of the non-in-place update technique and compare

them against the traditional alternative. We use the popu-

lar TPC-C [16] as the benchmark, though it cannot exactly

emulate the real production workload [17], it discloses the

general business process and workload, supported by the

main hardware and software database system providers in

the industry. The main experiment, transaction throughput

of TPC-C benchmark, illustrates the considerable improve-

ment on flash memory. In addition, we discuss the influence

of GC in our experiment with a test case.

4. 1 Experiment Setup

We build a database server on an enterprise level Linux

system, with dual-core Intel Core 2 Duo 1.86GHz (1066MHz

FSB, 4MB L2 cache, 64-bit) CPU and 2GB RAM. The flash

memory SSD is MTRON MSP7535 32GB SLC flash memory,

connected to the computer system with SATA 3.0Gbps hard

drive controller. Figure 3 gives the view of our experimental

system.

As for the basic settings of the database system in our case,

the buffer cache is 8MB, with a 4KB block size. The block

size is set by our previous empirical experiment, in which we

performed a low level disk IO test, with a raw device test

program written by us. Therefore, we choose the optimal

request size as the DB block size which is around 4KB.

In order to verify the non-in-place update technique on

flash memory, we choose a traditional log-structured file sys-

tem, NILFS2 [8] [18], as an intermediate layer between the

DBMS and flash memory SSD. As a comparison, we choose

the EXT2 file system as the representative of a fully-fledged

file system running on the Linux server system.

Logical Database FilesLogical Database Files

Table 1

Table 2 Index 2

Index 1

Data TablespaceData Tablespace Log SpaceLog Space

Log 1

Log 2

Temp

Space

Temp

Space

Data File

(5.5GB)

System Information File (800MB)

Meta File 1

(10MB)

Temp File

(200MB)

Log File 1

(50MB)

Table n Index m

Log File 3

(50MB)

Log File 2

(50MB)

Meta File 2

(10MB)

Meta File 3

(10MB)

Log 3

Physical Database FilesPhysical Database Files

Flash SSD

File System (EXT2 or NILFS2)

(10MB) (10MB) (10MB)

Fig. 4 System Storage Hierarchy on Flash Memory SSD

The storage hierarchy is shown in Figure 4. Above all,

we format the flash memory SSD with EXT2 file system, on

which we build the database instance, with all the related

files together, such as the data files and log files. Thus, all

the activities of this instance are confined within the flash

memory SSD. We refer this system as “EXT2”, as well as

taking it as the suffix in the figures of the subsequent part

of this paper. Similarly, we format the flash memory SSD

with NILFS2, on which we build the same instance as EXT2

system. We refer this system as “NILFS2”hereafter.

4. 2 Transaction Throughput

Transaction throughput is an important measure of per-

formance for database system. In this test, we use threads

to simulate the virtual users. Each virtual users will have

a dedicated warehouse during the execution of transactions.

Unlike the real user, virtual users in our test do not have

the time for “Key and Think”, for the purpose of getting

intensive transaction workload. We gradually increase the

number of warehouses as well as the number of virtual users

to match. The result of transaction throughputs is shown in

Figure 5. Here the tpm denotes the transactions-per-minute,

in which the performance metric is expressed by counting in

all types of transactions. It can be seen that the transaction

throughput on flash with EXT2 file system is comparable,

even worse than that on hard disk with EXT2, which veri-

fies our perspective that it is not beneficial for transactions-

intensive applications by directly utilizing the flash mem-

ory. Remarkably, a significant improvement of the transac-

tion throughput can be found on flash with NILFS2: the

transaction throughput is up to 7 times higher than that on

flash with EXT2, which manifests that non-in-place update

based transaction processing system can undergo dramatic

���������������������������
�� �� �� �� ��

tp
m

Number of warehouses and virtual users

�		
 ��
� �		
������ �����
��
� ���� �
������

Fig. 5 Comparison of transaction throughput in tpm on hard

disk (HDD) and flash memory SSD (Flash) with different

file system. The transaction throughput on flash memory

SSD with NILFS2 (denoted by Flash-NILFS2, which is

non-in-place update based) is up to 7 times higher than

that with EXT2 which is in-place update based.

improvements on flash memory.

4. 3 IOPS

IOPS (Input/Output operations Per Second) is a impor-

tant measure used by I/O measurement applications such as

Iometer [19]. Generally, the IOPS can help us to better un-

derstand the performance of I/O system. The specific num-

ber of IOPS varies greatly depending upon the variables the

tester enters into the program, such as the queue length and

data block sizes. In our test, we examine the total number

of transfers per second that were issued to physical devices.

A transfer is an I/O request to a physical device. Multiple

logical requests can be combined into a single I/O request

to the device. So a transfer is of indeterminate size. Our

trace result is shown in Figure 6, in which the IOPS denot-

ing the I/O request per second. As disclosed in Figure 6, the

total IOPS of EXT2, either on hard disk or flash memory, is

around 400. By comparison, the total IOPS on flash memory

with NILFS2 is outstanding: up to 6 times higher than that

on EXT2. It implies that the non-in-place update system

can handle more requests at a time.

Besides the number of I/O requests per second, Figure 7

shows the average time for I/O requests issued to the de-

vice to be served, which includes the time spent by the re-

quests in queue and the time spent servicing them. When

the number of warehouses and virtual users is small, the I/O

request is combined by short and frequent reads and writes,

the service time of NILFS2 is only about one-fourth of that

of EXT2. Though along with the increase of warehouses and

virtual users, the I/O request tends to become longer, the

non-in-place update based system is still superior over the

in-place update based system. Since the response time is

��������������������

��� ��� ! ��� �"#$%&! %' ()* ��� ! %' ()* �"#$%&! ��� ��� ! ��� �"#$%&! %' ()* ��� ! %' ()* �"#$%&! ��� ��� ! ��� �"#$%&! %' ()* ��� ! %' ()* �"#$%&! ��� ��� ! ��� �"#$%&! %' ()* ��� ! %' ()* �"#$%&! ��� ��� ! ��� �"#$%&! %' ()* ��� ! %' ()* �"#$%&!�� �� +� ,� ��
IO

P
S

Number of warehouses virtual users

-./01 .123

Fig. 6 IOPS

4546474
8494:4;4
<4

54 64 74 84 94A
v

e
ra

g
e

 R
e

sp
o

n
se

 t
im

e
 (

m
s)

Number of warehouses and virtual users

=>> ? @AB6=>>?CDEFG6FHIJK ? @AB6FHIJK ? CDEFG6
Fig. 7 Average Response Time

cut down greatly by non-in-place update, the OLTP appli-

cations, which is required to respond immediately to user

requests, could be benifited a lot.

4. 4 CPU Utilization

In this section we discuss the CPU Utilization in order

to analysis the bottleneck of our experimental system. The

CPU Utilization is monitored when the transactions run-

ning in the steady state. The startup and terminated ef-

fect is eliminated. We sampled 100 times during a period

of around two-third of the whole execution time. Then the

average of CPU Utilization is obtained and shown in Figure

8, in which the CPU Utilization is divided into four portions:

user, system, iowait and idle, indicating the CPU time spent

on user application, kernel, wait for I/O complete and idle.

The main portion of CPU Utilization of hard disk and flash

memory SSD on EXT2 is spent on wafting for the comple-

tion of I/O (iowait), which implies that the system is possi-

bly “IO-Bound”. However, the CPU Utilization of flash on

NILFS2 contrasts strongly in the ratio of four portions with

�����������������
������	��
������

���
���� ���
������ �� ���
���� �� ���
������ ���
���� ���
������ �� ���
���� �� ���
������ ���
���� ���
������ �� ���
���� �� ���
������ ���
���� ���
������ �� ���
���� �� ���
������ ���
���� ���
������ �� ���
���� �� ���
�������� �� �� �� ��

C
P

U
 U

t
il

iz
a

ti
o

n

Number of warehouses and virtual users

��� ����� !�"�#$#"�%�&#� '
Fig. 8 CPU Utilization, non-in-place update based system (de-

noted by Flash-NILFS2) reduces the CPU time spent on

waiting for I/O complete.

the other cases: a uniform distribution of CPU time is ob-

served, caused by the cutback of the CPU time spent on I/O

wait, and balanced by more CPU time moved to running the

user applications.

4. 5 Disk Buffer Cache

Although we have limited the buffer cache of the database

system to a very small size, there is still some influence from

the disk buffer cache, as long as we use the file system to

manage the data blocks written to the disk drive. At this

moment, we cannot eliminate the influence of system buffer

cache like using a raw device. A negative but efficient ap-

proach is to test the system with bound physical memory.

Figure 9 shows the result with 1GB and 512MB physical

memory in the same experiment system described in Sec-

tion 4. 1. Though the available system memory is reduced

sharply, the speedup of performance by the non-in-place up-

date technique is still above 4 and around 2 respectively,

which demonstrates the superiority of the non-in-place up-

date technique under the extreme conditions.

4. 6 Influence of Garbage Collection

We now discuss the influence introduced by the different

settings of GC on NILFS2. In Section 4. 2, no cleaning oc-

curs during the execution, so the measurements represent

best-care performance.

In order to protect the data for recovery, in NILFS2 file

system, the recent checkpoints are protected from GC dur-

ing the period given by a GC parameter “protection period”;

GC never deletes checkpoints whose age from its creation

time is less than the value given by the protection period.

The default protection period is 3600 seconds with 5 seconds

cleaning interval, in this condition the snapshot will eat up

the disk space by the writes of highly intensive transactions.

The disk becomes full, although lots of data blocks are not

()*+
,-./

)(*(+(,(-(
sp

e
e

d
u

p

Number of warehouses and virtual users

*01
 234567)01

 234567 -)*21 234567

Fig. 9 Performance speedup with different amount of physical

memory

valid and should be reclaimed.

Once the GC is enabled for reclamation, our main con-

cern is whether it has a remarkable influence on the perfor-

mance of transaction processing. According to the design of

NILFS2, the following settings might have influence on the

performance, which also apply to other log-structured file

system generally.

• The protection period. The data blocks whose age is

longer than this period will be cleaned. If this period is too

long, the old data blocks will not be cleaned in time. As a

result, the free data blocks will be eaten up quickly, which

will cause frequently erase operations for the new coming

data. Therefore, the advantage of the non-in-place update

technique will lost. On the contrary, if this period is too

short, the CPU will be busy with the cleaning of the old

data blocks and snapshots. Consequently, the bandwidth of

the system will be wasted. In a word, a better policy on this

setting is required.

• The number of segments per clean. This setting de-

notes how fast the cleaning is. With larger number, the

cleaning can be performed quickly, with higher CPU cost.

• The cleaning interval. This is the time interval be-

tween the GC is invoked to collect the obsolete data accord-

ing to the protection period. Too long or too short cleaning

interval will have the same influence as the protection period.

Actually, so far there is no appreciable change in the re-

sult compared with that without GC after we choose a more

greedy GC setting and redo the experiments. Table 3 shows

the experimental results of the test with a greedy GC settings

of (1, 2, 5), in the sequence of (protection period, number of

segments per clean, cleaning intervals). We will go further

on exploring the influence under various GC settings.

Table 3 Performance Metrices of NILFS2 based transaction

throughput on flash memory with GC for 10 warehouses

and 10 virtual users.

tpm IOPS

Average

Response Time (ms)

of I/O Request

No GC 9983

reads: 406

1.02writes: 1792

total: 2198

GC(1, 2, 5) 9933

reads: 384

1.82writes: 1856

total: 2240

5. Related Work

Our study draws on the concepts and principles in tradi-

tional log structured file systems and flash-based technolo-

gies. In this section, we discuss the relevant examples of prior

work in these areas.

5. 1 LFS

Sprite LFS [2] introduced the concept of log-structured file

system design. Instead of seeking and updating in-place for

each file and Inode, the LFS collects all write operations and

write them into a new address space continuously. Though

log-structured file systems optimize write performance to the

detriment of scan performance [10], this feature is greatly

helpful on flash memory to make up for the inefficient ran-

dom write performance since the read performance is about

two orders of magnitude higher than that of erase operations.

5. 2 Flash-based Technologies

By a systematical “Bottom-Up”view, the research on flash

memory can be categorized as follow:

Hardware Interface This is a layer to bridge the oper-

ating system and flash memory, usually called FTL (Flash

Translation Layer). The main function of FTL is mapping

the logical blocks to the physical flash data units, emulating

flash memory to be a block device like hard disk. Early FTL

using a simple but efficient page-to-page mapping [5] with a

log-structured architecture [2]. However, it requires a lot of

space to store the mapping table. In order to reduce the

space for mapping table, the block mapping scheme is pro-

posed, using the block mapping table with page offset to map

the logical pages and flash pages [6]. However the block-copy

may happen frequently. To solve this problem, Kim improve

the block mapping scheme to hybrid scheme by using a log

block mapping table [7].

File System Most of the file system designs for flash mem-

ory are based on Log-structured file system [2], as a way to

compensate for the write latency associated with erasures.

JFFS, and its successor JFFS2 [3], are journaling file systems

for flash. The JFFS file systems are not memory-efficient

for storing volatile data structures, and require a full scan

to reconstruct these data structures from persistent storage

upon a crash. JFFS2 performs wear-leveling, in a somewhat

ad-hoc fashion, with the cleaner selecting a block with valid

data at every 100th cleaning, and one with most invalid data

at other times. YAFFS [4] is flash file system for embedded

devices. It treats handling of wear-leveling akin to handling

bad blocks, which appear as the device gets used.

Database System Previous design for database system

on flash memory focused on the resource-constraints envi-

ronment such as the embedded systems or sensor networks,

in a log-structured behavior. FlashDB [12] is a self-tuning

database systems optimized for sensor networks. It can

switch between two modes: disk mode, much like regular

B+ trees, using for frequently read or infrequently write;

log mode, employed a log-structured approach, using for fre-

quently write. LGeDBMS [13], is a relational database sys-

tem for mobile phone.

For enterprise database design on flash memory SSD, In-

Page Logging [14] is proposed. The key idea is to co-locate a

data page and its log records in the same physical location.

Our work belongs to the system design on flash memory,

on the basis of which, we are engaged in researching on the

solutions for enterprise database system with complicated

transaction management, by exploiting a non-in-place up-

date technique for storage.

6. Conclusion and Future Work

For transaction processing system on flash memory, we

describe a non-in-place update technique to improve the

transaction throughput. In a non-in-place update based sys-

tem, the write operations are performed sequentially; while

the GC cleans the obsolete data in the background. This

strategy greatly reduces the frequency of time-consuming

erase operations for applications with intensive write oper-

ations, thereby resulting in improved overall performance,

espeically the transaction throughput. We use a traditional

log-structured file system to build a test model for exami-

nation. We then validated this technique with a set of ex-

periments and showed that the non-in-place update based

system can considerably speed up the transaction through-

put on flash memory.

In the near future, we plan to apply the non-in-place up-

date technique into different layers of the system and investi-

gate appropriate algorithms for different context. In partic-

ular, since there are many special factors of the transaction

processing system having influence over the performance, we

would like to take these factors into account for the design

of experiment next time.

References

[1] Fujio Masuoka, US patent 4531203, http://v3.espacenet.com/

textdoc?DB=EPODOC&IDX=US4531203

[2] M. Rosenblum and J. Ousterhout. The Design and Imple-

mentation of a Log-Structured File System. ACM Transac-

tions on Computer Systems, 10(1):26C52, 1992.

[3] Red Hat Corporation. JFFS2: The Journalling Flash File

System. http://sources.redhat.com/jffs2/jffs2. pdf, 2001

[4] C. Manning. YAFFS: Yet Another Flash File System.

http://www.aleph1.co.uk/yaffs, 2004.

[5] Atsuo Kawaguchi, Shingo Nishioka, and HiroshiMotoda. A

Flash-memory based file system. In USENIX Winter, pages

155C164, 1995.

[6] BAN, A. 1995. Flash file system. United States Patent, No.

5,404,485 (Apr.).

[7] KIM, J. S., KIM, J.M.,NOH, S.H.,MIN,S.L., AND CHO, Y.

K. 2002. A space-efficient Flash translation layer for com-

pact Flash systems. IEEE Trans. Cons. Elect. 48, 366C375.

[8] NTT, New Implementation of a Log-structured File System,

http://www.nilfs.org/en/about nilfs.html

[9] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D.

Davis, Mark Manasse, Rina Panigrahy, Design Tradeoffs for

SSD Performance, 2008 USENIX Annual Technical Confer-

ence

[10] Goetz Graefe. Write-Optimized B-Trees. In Proceedings

of the 30th VLDB Conference, pages 672-683, Toronto,

Canada, September 2004.

[11] Samsung Corporation. K9XXG08XXM Flash Memory

Specification. http://www.samsung.com/global/system/

business/semiconductor/product/2007/6/11/NANDFlash/

SLC LargeBlock/8Gbit/K9F8G08U0M/

ds k9f8g08x0m rev10.pdf, 2007.

[12] Suman Nath, Aman Kansal: FlashDB: dynamic self-tuning

database for NAND Flash. IPSN 2007:410-419

[13] Gye-Jeong Kim, Seung-Cheon Baek, Hyun-Sook Lee, Han-

Deok Lee, Moon Jeung Joe: LGeDBMS: A Small DBMS for

Embedded System with Flash Memory. VLDB 2006:1255-

1258

[14] Sang-Won Lee, Bongki Moon: Design of Flash-based

DBMS: an in-page logging approach. SIGMOD 2007:55-66

[15] Andrew Birrell, Michael Isard, Chuck Thacker, Ted Wob-

ber: A design for high-performance Flash disks. Operating

Systems Review (SIGOPS) 41(2):88-93 (2007)

[16] Transaction Processing Performance Council (TPC), TPC

BENCHMARK C, Standard Specification, Revision 5.10,

www.tpc.org

[17] Windsor W. Hsu, Alan Jay Smith, Honesty C. Young: Char-

acteristics of production database workloads and the TPC

benchmarks. IBM Systems Journal (IBMSJ) 40(3):781-802

(2001)

[18] Ryusuke Konishi, Yoshiji Amagai, Koji Sato, Hisashi Hi-

fumi, Seiji Kihara, Satoshi Moriai: The Linux implemen-

tation of a log-structured file system. Operating Systems

Review (SIGOPS) 40(3):102-107 (2006)

[19] Iometer, http://www.iometer.org/

