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Abstract One very important application in the data mining domain is frequent pattern mining algorithm. Var-

ious researchers have worked on improving the efficiency of this computation, mostly focusing on algorithm-level

improvement. More recent work has explored on architecture specific optimization to reduce the gap between pro-

cessor and memory speed. This paper studies our attempt to reduce memory access overheads for Compressed

FP-Tree (CFP-Tree) mining algorithm. In this paper we present optimization of cache conscious data structure

over CFP-Tree and show our intensive experiments, then qualifying the potential benefits.
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1. Introduction

Frequent Itemset Mining (FIM) is one of fundamental
problems in data mining which aims to discover groups of
items or values that co-occur frequently in a dataset. Follow-
ing the first work by Agrawal et al. [1], over the last decades,
many FIM Implementations (FIMI) have been proposed in
the literature. Furthermore it also has many applications
in important business scenes such as market basket analy-
sis [1], intrusion detection [3], inferring pattern from web ac-
cess log [4] and software bug detection [5].

In the same time frame, processor speeds have increased
almost double every year according to the Moore’s law. How-
ever DRAM speeds have not kept up. Hence this widening
gap between processor and DRAM becomes increasingly crit-
ical to the application performance. Despite the fact that
processor technology has developed rapidly, it is very likely
even the most efficient FIMI algorithms still grossly under-
utilize modern processor capabilities [6].

We evaluated the performance of data mining algorithm,
Compressed Frequent Pattern Tree (CFP-Tree) mining algo-
rithm in Pentium-4 processor. As shown in table 1, CFP-
Tree experiences high L3 cache miss rate and the CPI is
also far diverged from the optimum performance that the
processor can provide. The experiments illustrate an impor-
tant point. Advanced architectural designs, even those pos-
sessing intelligent mechanisms for hiding memory latency,

do not necessarily translate to improved application perfor-

mance. Architecture specific optimization is rather necessary
to boost such data mining applications.

In this paper, we present an approach to improve the
cache performance of CFP-Tree mining algorithm. First, we
improve the cache performance of this algorithms through
the design and implementation of CFP-Array data struc-
ture. Second, with this cache conscious data structure, we
also demonstrate how to extends the use of hardware and
software prefetching in reducing the memory access latency.
Our experiments evaluation reveals that, cumulatively, these
techniques result in a speedup up to 4.2 on a modern-day

processor.

Table 1 Cache performance of CFP-Tree algorithm

Dataset CPL L3 Misses/1K instr.
Kosarak 7.09 5.04
Accidents 2.88 4.42
Smallwebdocs 6.99 9.78
Bigwebdocs 7.73 14.35
Webdocs 3.42 5.02

2. Background and Related Work

Agrawal et al. [1] introduced a problem of mining associa-
tion rules among sets of items with given minimum specified
confidence in large database. He also proposed the first effi-
cient algorithm, called Apriori, to solve this problem which
repeatedly generates the candidates for finding all the fre-

quent itemsets.



Briefly, the problem description by Argrawal is as fol-
lows [1], [2]: Let I = {41,%2,...,in } be a set of n items, and let
the database D = {T1,T5,...,Tm} be a set of m transactions,
where each transaction T is a subset of I. An itemset = C I of
size kis known as k-itemset. The support of z is Z;’;l (12 C
T;), or informally speaking, the number of transactions in D
that have z as a subset. Here frequent pattern mining can be
defined as a task to find all z € D that have support greater
than minimum support value, minsupp. An association rule
is an implication of the form 7:z; — 22, with 1,220 C I and
71 N 22 = (). Each association rule r has a support defined as
support(r) = support(z1 U z2)/support(z1). Once all frequent
itemsets and their support are known, the association rules
generation is straightforward. Hence, the problem of mining
association rules is reduced to the problem of determining
frequent itemsets and their support.

Following this first work, many algorithms have been pro-
posed in order to improve the efficiency. And the most
outstanding improvements over Apriori would be a method
called FP-growth (frequent pattern growth) that succeeded
in eliminating the candidate generation[10]. It scans the
database only twice and uses compact data structure called
FP-tree (frequent pattern tree) to summarize the original
transactions.

Motivated by the FP-growth success, another variant of
FP-Growth called Compressed FP-Tree(CFP-Tree)[9] has
been proposed. This approach tries to compress the orig-
And in

some extreme characteristic of dataset, the number of nodes

inal FP-Tree by removing the identical subtrees.

in a CFP-Tree can be up to half less than the corresponding
FP-Tree.

However, as pointed out by Goethals[11], the pointer-
based nature of the FP-tree and CFP-Tree requires costly
dereferences. Therefore as the gap between processor and
main memory is getting larger, straight forward implementa-
tion of FP-Tree and CFP-Tree like data structures will suffer
from high CPI and cache misses rate. In this paper we will
describe an attempt to reduce the memory access overheads
for a CFP-Tree based algorithm and show the experiments

result.
3. Compressed FP-Tree

Compressed FP-tree is an extension of FP-Tree algorithm.
There are several modifications from FP-Tree in constructing
CFP-tree. The HeaderTable of CFP-tree includes four parts:
index, item-id, count and pointer to the root of each item’s
subtree. Items are in an descending order of their frequency
in CFP-Tree. Unlike FP-Tree that stores the item-ids in the
tree, in CFP-Tree the item-ids are mapped to an ascending

sequence of integers that are the same as the array index

in HeaderTable, which reduces the occupied space of item
identifier.

In CFP-Tree constructions, all subtrees of the root of FP-
Tree (except the leftmost branch) are collected together at
the leftmost branch of CFP-Tree as much as possible. And
each node consists of five fields: item-id, count array, par-
ent pointer, child pointer and nodelink pointer. Item-id
stores the converted original item label (index in the Head-
erTable). Meanwhile parent, children and nodelink pointers
store the pointers to the parent node, child node and next
node with the same item-id respectively. The count array
records counts of itemsets in the path form the root to that
node and index of the cells in the count array corresponds
to the level numbers of the nodes above. One major dif-
ference of CFP-Tree algorithm compared to FP-Tree is that
CFP-Tree based algorithm avoids creating conditional CFP-
Trees, hence for each frequent item, only one local CFP-Tree
is created. The CFP-Tree algorithm is describe in Figure
1. Table 2 lists the sample dataset and Figure 2 shows the

corresponding CFP-Tree(left).

Table 2 A dataset with minsupp = 2

Tid Items

13 45 6 79

2 |1 3 4 5 13

311 2 45 7 11

4 |1 3 4 8

5 |1 3 4 10

4. Cache Conscious Optimization on
CFP-Tree

In order to improve the memory access performance, some
works have been done on FP-growth algorithm. Gothing [8]
proposed cache-conscious FP-Tree (CC-Tree). His idea is to
reallocate the FP-Tree nodes in sequential memory space in
depth-first order. Meanwhile Wei[7] proposed FP-Tree ag-
gregation, lexicographic ordering and differential encoding
to store the item id. And more recent work by Li-liu[6]
proposed cache conscious FP-Array to improve the cache ef-
ficieny of FP-growth algorithm.

Among those proposed optimization techniques, to the
best of our knowledge, cache conscious FP-Array is currently
the best method to improve the cache access effieciency. It
gains the largest performance improvement compared to the
other proposed methods. In this paper we will design and
implement cache conscious optimization on CFP-Tree algo-
rithm using the similar techniques presented in the FP-Array.

To improve the performance of CFP-Tree algorithm, first

we transform the original CFP-Tree into an array based



CFP-Tree CFP-Array
HeaderTable 0
index item count pointe e index count
04[5 ] « 1 , o5 {10,0A0)
T 1 [ 2 | «— 2 T | 4 B.CAT)
2 |3 |4 | o] i 1 g L 2 | 4 {8.CA.21{2.CA 1} [GTzJo[s]1Jo[3]z]1]0]
3 |5 | 3 | o [0]-7(4 3 | 3 [{7.CA3}{1.CA2}{4CA2}
12
Al ]2 8 7 —— (4 4 | 2 [{6.CA4L{0.CA3}{3.CA3}
@ -
2 E/f Node Array Item Armray
i
{9l
n 3 ChA is the corresponding count array from the original GFP-Tree
0]
o]
0
[0}

Fig. 2 CFP-Array(Right) After CFP-Tree(Left) Transformation

Input: Transaction Database D, minimum support minsupp

Output: Set of all frequent patterns

Phase 1: Construct CFP-Tree from a database

(1) Scan the database D once, gather frequency of all items.

(2) Sort items based on their frequency in descending order.

(3) Construct the left most branch of the tree.

(4) Scan the database a second time: for each transaction, remove in-
frequent items and sort the transaction, insert the transaction starting
from the node pointed by HeaderTable with the same index as the first
item in the transaction. Increment the count array and each inserted
node is linked to its respective node link.

Phase 2: Mine the CFP-Tree by calling CFPMining()
CFPMining(CFP-Tree, suffix)

For each item « in the HeaderTable of CFP-Tree

(1) Output a U suffix as frequent

(2) Find all frequent items in the conditional pattern base C for «
(3) If there is no frequent item in C, end this loop iteration

(4) Generate Local CFP-Tree 7.

(5) If 7 has only one path, output any sub set of items in this path,
end this loop, otherwise mine 7 by calling CFPMiningLocal().
CFPMiningLocal(Local CFP-Tree, Local HeaderTable, suffix)

For each item f in the HeaderTable of Local CFP-Tree 7

(1) Output B U suffix as frequent

(2) Find all frequent items in the conditional pattern base C for 8
(3) If there is no frequent item in C, end this loop iteration

(4) Generate Local HeaderTable .

(5) CFPMiningLocal(r, v, 8 U suffix)

Fig. 1 CFP-Tree Algorithm

data structure, which we named Compress FP-Array (CFP-
Array). Figure 2 shows the CFP-Array(right) after trans-
forming the original CFP-Tree(left). With this transforma-
tion we reallocate the original CFP-Tree in contiguous mem-
ory space. There are no pointers in the CFP-Array, and
thus, the pointer based tree data structure is eliminated af-
ter the transformation. In CFP-Array there are two arrays,
item array and node array. The item array works essentially
as the replication of CFP-Tree. Each list in the node array
is associated with one frequent item, while each element in
the node array corresponds to an FP-Tree node, which has
three members: begin position of the item in item array, ref-

erence of count array, and transaction size. This separation

of node array and item array yields more compact data size
because node size is much smaller than the original node size
in CFP-Tree (we only store the item-ids in the item array).
The other four members in the node of CFP-Tree, e.g. child
pointer, nodelink pointer, parent pointer and count array are
converted into the corresponding members in the node array,
which is not along the critical path. Moreover, to further op-
timize the CFP-Array data structure, we dynamically choose
the node size ranging from 4 bytes to 1 byte in the item ar-
ray according to the total frequent items in use. Figure 3
shows the algorithm of transforming the CFP-Tree into the
CFP-Array in depth-first order.

To further utilize the ability of current modern processors
we also extend the use of hardware and software prefetch-
ing capabilities to bring the data onto the cache before it
is needed by the processor. Software prefetching initiates
a data prefetch instruction to the processor, which specifies
the address of a data word to be brought into the cache.
In contrast, hardware prefetching employs special hardware
which records memory access patterns of the application and
prefetches data on a best effort basis. Figure 4 shows the
algorithm of accessing the cache-conscious CFP-array that

uses hardware and software prefetching.

5. Experiments

In this section we will briefly describe our experiments. In
these experiments we used a machine with 2 cores Intel Xeon
processors which are running at 3.2GHz with 2GB physical
memory. Each core are equipped with 8KB L1 data cache,
512KB unified L2 cache and 1 MB L3 unified cache. The
cache line sizes are 64 bytes for the L1, L2 and L3 caches.
Furthermore, we used the Intel VTune performance analyzer
to collect the cache performance numbers. Throughout this
section, we will compare the execution time of a CFP-Array
based algorithm with that of a CFP-Tree based algorithm.

Table 3 and 4 show the datasets used in our evaluation.



Algorithm: Transformation of CFP-Tree into CFP-array
Input: CFP-Tree T, number of items in item array L
Output: Item array IA, and node array NA
(1) Allocate sequential memory space for IA and set the iterator po-
sition of IA to L-1
(2) For each item a in T, allocate memory space for NA[«a]
(3) For each child node C of the root node in CFP-tree T
Visit(C, null, 0, IA, NA)
(4) Release memory space for T
Algorithm: Visit(N, S, 0, IA, NA)
Input: CFP-Tree node N, item stack S, depth D, Item array IA, and
node arrays NA
Output: None
(1) If N is neighbor node and have no children, copy items in S to IA
(2) Allocate an element from NA[item label of NJ, set the count array,
transaction size and begin position to node N's count, depth D, and
the iterator position of IA respectively
(3) Write the node N’s item label to the current iterator position in
IA
(4) For each child C of node N
Visit(C, S U item label of N, D41, IA, NA)
(5) If N has no child, decrease the IA’s iterator position by 1

Fig. 3 CFP-Tree Transformation Algorithm

Algorithm: CFP-Array Traversal

Input: Node arrays A, N: number of elements in A, [tem array I
Output: None

(1) For £ = 0 to N-1

(2) Prefetch(A[k+1].begin); // Software Prefetching

(3) Node=A[k];

(4) Begin=Node.begin; Count=Node.count; Length=Node.length;
(5)  For j = 0 to Count.length-1

(6) For i = 0 to Length-j

(7) Access I[i4+Begin]; // Hardware Prefetching

Fig. 4 CFP-Array Traversal

Accidents, Kosarak and Webdocs are the datasets from the
Frequent Itemset Mining Implementations Repository [13].
Webdocs is the largest dataset in the FIMI Repository con-
taining about 1.7 million transactions. Smallwebdocs and
Bigwebdocs are artificial datasets which are cut from Web-

docs to represent different sizes of FIM dataset. The 4"

and 5"

columns in table 3 lists the min-support for each
dataset and average effective transaction length (infrequent
l-items are pruned away). Meanwhile to show the specific
behavior of CFP-Array we also generated synthetic dataset.
We used IBM Synthetic Data Generator [14] to generate the
We generated two datasets, T60I200D100K and
T60I30KD100K; the first represents dense dataset and the

second represents sparse dataset.

dataset.

We first evaluated the CFP-Array optimization. Figure 5
shows speedups of CFP-Array based algorithm over CFP-
Tree based algorithm. From Figure 5, it is evident that we
achieved significant performance improvement due to spa-

tial locality optimization. It could obtain a speedup of 3.9

Table 3 Experiment Datasets

Name Num. Size | Min-Sup | Avg. Eff.
Of Trans. Trans. Len.
Kosarak 990000 31M 800 6
accidents 340000 34M 40000 28
smallwebdocs 230000 200M 20000 56
bigwebdocs 500000 460M 50000 49
webdocs 1690000 | 1,46G | 300000 23

Table 4 Synthetic Experiment Datasets

Name Trans. | Avg. Item | Num. Of Different | Size
Num. | Per Trans. Items

T60I1200D100K | 100000 60 200 17TM

T60I30KD100K | 100000 60 30000 35M

on average. When hardware prefetcher is enabled it pro-
vides an additional speedup up to 11%. And when hardware
prefetcher and software prefetcher are enabled it provides
an additional speedup up to 13%. Kosarak and Bigwebdocs
had the largest speedup. Kosarak gained large speedup pri-
marily due to its sparse dataset, hence the cache misses was
reduced significantly by transforming CFP-Tree into CFP-
Array. Meanwhile for Bigwebdocs it gained large speedup
due to its large dataset with long average of effective trans-
action length. In contrast the performance of Accidents was
not pronounced and even worse than that of the original
CFP-Tree because it held a relatively small working set.

Figure 6 describes our experiment result measuring the
speedup on Bigwebdocs dataset. It shows that CFP-Array
consistently outperforms the CFP-Tree baseline with the va-
riety of minimum support. We think lowering support values
allows more opportunities for CFP-Array to reduce the cache
misses and CPI and hence will increase the speedup.

Figure 7, 8, 9, and 10 describe the detail information about
cache utilization efficiency. The original CFP-Tree has very
high CPI. It is ranging from 2.88 until 7.73 depends on
the dataset. Meanwhile with CFP-Array transformation we
could reduce the CPI to 1.38. And when prefetching tech-
niques are applied it could reduce the CPI to 1.27. Hence
with CFP-Array and prefetching techniques we could get
much lower CPI than the original CFP-Tree.

Furthermore in terms of L1, L2 and L3 cache efficiency,
CFP-Array shows better performance over the original CFP-
Tree. At the first level cache, CFP-Array on average had
more than 90% L1 hit rate, meanwhile L1 hit rate was around
50% for the original CFP-Tree. At the second level cache
CFP-Array also showed some improvements. CFP-Array on
average had more than 99% L2 hit rate, meanwhile for the
original CFP-Tree L2 hit rate was only around 96%. And
in the last level cache, CFP-Array reduces the number of L3
misses rate significantly. The original CFP-Tree algorithm

had average of L3 misses rate around 7.72 MPKI, meanwhile
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Fig. 5 Speedups of CFP-Array based algorithms over CFP-Tree

algorithm

L3 misses rate for CFP-Array was only around 1.5 MPKI.
On average we could reduce the number of L3 misses rate by
factor of 5.

Figure 11 and 12 show CFP-Array speedups on synthetic
dataset. On dense dataset (T601200D100K), CFP-Array
speedup ratio is decreasing when we lower the minimum sup-
port. In the other hand, on sparse dataset (T60I30KD100K)
CFP-Array speedup ratio is increasing when we lower the
minimum support. In the dense dataset, we think that CFP-
Tree could compact the tree data structure enough. When
we lower the minimum support the dataset get more denser,
transforming CFP-Tree into array structure does not im-
prove the cache efficiency so much. Meanwhile in the sparse
dataset CFP-Tree could not so much compact the tree struc-
ture, so the tree is now become larger and sparser when we
lower the minimum support. Hence on sparse dataset trans-
forming CFP-Tree into compact array structure could give
more benefits.

Our finding of these experiments is that, cache-conscious
CFP-Array transformation makes the following benefits:

® By converting the CFP-Tree into CFP-Array in con-
tiguous memory space, once an item node is fetched into a
cache line, the next consecutive element in the item array will
likely reside in the same cache line. Hence it will reduces the
cache miss rate in the CFP-Array traversal.

® We extends the use of hardware prefetching and soft-
ware prefetching in CFP-array data structure. This could
be utilized to reduce the latency time between processor and

main memory when traversing CFP-Array.
6. Conclusion

In this paper we have presented cache-conscious optimiza-
tion techniques on CFP-Tree based algorithms to allevi-
ate the performance gap between the processor and main
memory. We implemented an approach to make the data

structure more contiguous and also presented the design of
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CFP-Array to take the advantage of hardware and software
prefetcher. Our idea is to transform the original CFP-Tree
into CFP-Array data structure to improve the spatial local-
ity as well as reducing the memory access overheads and
improving the cache utilization efficiency.

We also have presented some experiment results on a CFP-
Array based algorithm, and showed that it outperforms the
original straight forward implementation of CFP-Tree algo-
rithm. The experiments showed that it could reduce the
CPI and cache misses significantly, and thus also reduce

the execution time. We also showed that CFP-Array could
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Fig. 11 Speedups on T601200D100K

give more benefits when the dataset is sparse, in other hand
when dataset is dense the benefit is not necessarily well pro-
nounced. Finally as the gap performance between CPU and
memory continues to grow, it should be clear that the im-
portance of cache-aware algorithm design will grow equally.

For the future work, we would like to explore more deeply
the behavior of cache conscious frequent pattern mining al-
gorithms in large datasets. We would like to verify the ef-
fectiveness of the current cache conscious approach in a vast
variety of configurations. Another future work is to study

cache-conscious approach in other frequent itemsets mining
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Fig. 12 Speedups on T60I30KD100K

algorithms, such as LCM [12], and in the different processor

architectures, such as a GPU (Graphic Processor Unit).
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