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Abstract. IP-SAN and iSCSI are expected to remedy the problems of
FC-based SAN. iSCSI has a structure of multilayer protocols. A typ-
ical configuration of the protocols to realize this system is as follows:
SCSI over iSCSI over TCP/IP over Ethernet. Thus, in order to improve
the performance of the system, it is necessary to precisely analyze the
complicated behavior of each layer. In this paper, we present an IP-SAN
analysis tool that monitors each of these layers from different viewpoints.
By using this analysis tool, we experimentally demonstrate that the per-
formance of iSCSI storage access can be significantly improved by more
than 60 times.

1 Introduction

The size of data processed by computer systems is increasing rapidly; thus,
the large maintenance costs of storage systems have become one of the crucial
issues for current computer systems. Storage consolidation using a Storage Area
Network (SAN) is one of the most efficient solutions to this problem, and it has
been implemented in many computer systems. However, the current-generation
SAN based on FC has few demerits; for example, 1) the number of FC engineers
is small, 2) the installation cost of FC-SAN is high, 3) the FC has distance
limitation, and 4) the interoperability of the FC is not necessarily high. The next-
generation SAN based on IP (IP-SAN) is expected to remedy these issues. The
IP-SAN employs commodity technologies for a network infrastructure, including
Ethernet and TCP/IP. One of the promising standard data transfer protocols
of IP-SAN is iSCSI [1], which was approved by the IETF [2] in February 2003.
However, the problems of low performance and high CPU utilization have been
identified as the demerits of IP-SAN [3-5]. Thus, improving its performance and
maintaining low CPU utilization [3, 6] are the critical issues regarding IP-SAN.
In this paper, we discuss the performance issues of IP-SAN.

iSCSI is a protocol through which the SCSI protocol is transferred over
TCP/IP; thus, the protocol stack of IP-SAN is “SCSI over iSCSI over TCP /IP
over Ethernet.” In order to improve the performance of iSCSI storage access,
detailed information of all these layers is required because each of them may
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have an influence on the end-to-end performance. We propose an iSCSI anal-
ysis system and demonstrate that it can identify the causes for the decline in
performance, which can be improved by resolving them.

The remainder of this paper is organized as follows. Section 2 introduces the
iSCSI analysis system. Section 3 describes an actual application of this system
and its role in improving the performance improvement. Section 4 mentions
related work and compares them with our research. Finally, section 5 concludes
this research and projects future work.

2 iSCSI Analysis System

In this section, we explain our iSCSI monitoring system. This system can monitor
the internal states of each layer in an IP-SAN protocol stack. We developed an
iSCSI analysis system by inserting the monitoring code into these layers. The
functions of this monitoring system are as follows: 1) protocol translation (SCSI,
iSCSI, and TCP/IP); 2) visualization of packet transmission with timeline; 3)
monitoring behavior of the TCP flow control; 4) detection of packet loss; and 5)
generation of the iSCSI storage access with a pseudo iSCSI initiator driver. An
overview of our analyzing system is shown in Figure 1. We have discussed these
functions in detail in the following subsections.

2.1 Protocol Translation

In this subsection, we describe the function of protocol translation in our analyz-
ing system. With this function, the recorded iSCSI traffic data can be translated
into human-readable text data. The iSCSI PDU format and an example of the
translation are shown in Figure 2. In the case of “SCSI Command Read,” the
iSCSI PDU has a format as shown in the lower left part of Figure 2. An example
of the hexadecimal dump of a transferred Ethernet packet with 100 byte data
in an actual iSCSI storage access is shown in the “Transferred Packet” at the
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upper left part of Figure 2. The first 52 bytes written in a smaller font (bytes
1-52) construct the IP and TCP headers, and the remaining 48 bytes written in
italics (bytes 53-100) construct the iISCSI PDU.

The translation function translates each of these fields into human-readable
values and sections of the translated texts are shown in the upper right part of
Figure 22. In this case, it can be observed that the packet implies SCSI Command
Read with a data length of 32 KB.

The SCSI CDB field with a size of 16 bytes is allocated in the range from
bytes 33-48 in the iSCSI PDU. The fields in the range from bytes 43-48 in the
PDU are padding data because the length of the SCSI CDB is 10 bytes in our
experimental environment. The “Data Segment Length” and “Expected Data
Transfer Length” in the iSCSI PDU are of one byte each while that of the SCSI
CDB is 512 bytes. Consequently, both the “Expected Data Transfer Length” in
the iSCSI header, which is 0x8000 [bytes], and the “Data Length” in the SCSI
CDB, which is 0x40 [512 Bytes], are of 32 [KB]. As shown in this section, our

analyzing system enables easy understanding of the transferred data using the
iSCSI protocol.

2.2 Visualization of Packets Transmission

The transferred packets in the network can be visualized on a timeline with the
visualization function. An example of visualized packet transmissions is shown
in Figure 3. It shows the packet transmission of the iSCSI sequential read when
the one-way latency time is 16 ms and the block size in the iSCSI PDU (“block
size in the PDU” will be discussed in Section 3.3) is 32 KB. There are 5 cycles
of “SCSI Command Read” iSCSI PDU and “Data-in” PDU with a data unit
of 32 KB for the read command (this sequential read cycle is termed as “Seq.
Read Cycle”). Figure 3 shows that a significant amount of idle time results while
waiting for the network I/O. Further, the network utilization is considerably low.

3 TCP/IP header and some fields in iSCSI PDU are omitted in Figure 2.



Figure 4 shows the packet transmission and the states of the TCP flow con-
trol of the iSCSI sequential read when the one-way latency time is 16 ms and the
block size in the iSCSI PDU is 4 MB. The figure indicates the size of the TCP
congestion window, transition of the state machine of Linux TCP implementa-
tion, and events that occurred in the TCP while implementing in kernel space.
In this case, the figure shows the iSCSI PDUs of the “SCSI Command Read”
and “Data-in” for the read command. It can be observed in the figure that the
target attempted to transmit a large amount of data on receiving the read com-
mand leading to congestion of the local device. The TCP implementation then
reduced the size of the TCP congestion window.

2.3 Monitoring TCP flow Control

The TCP implementation has a flow-controlling function. In most cases, since
the TCP implementation functions in the kernel space, users are not allowed
to monitor its behavior. The monitoring functions of the TCP flow control in
our analyzing system enables the monitoring of this behavior in user space by
adding a monitoring code into the TCP implementation. This is the only function
that depends on system implementation in the iSCSI analysis system. Our TCP
flow control monitoring system is implemented with Linux TCP implementation.
With this function, the size of the TCP congestion window, various events in the
TCP implementation such as congestion detection, and the state transition of the
Linux TCP can be monitored from the user space. Linux TCP is implemented as
a state machine. The state transition shown in Figure 4 (transition from “Open”
to “CWR”) is monitored by this function. The TCP flow control has a direct
influence on iSCSI performance; thus, it is important to consider this function
for improving iSCSI performance.

2.4 iSCSI Access Generation

The analyzing system also has a function for iSCSI access generation. The iSCSI
driver is usually installed as a SCSI HBA driver. It is then driven by a generic
SCSI driver and other OS implementations. Consequently, the users cannot cre-
ate the iSCSI PDU based on their requirements. In the case of Linux, since a
raw device and certain driver implementations divide a single block issued by
the I/O command into multiple small blocks, the users cannot issue an iSCSI
read command with a large block size. This limitation does not originate from
the iSCSI protocol but from the OS implementation. The iSCSI access gener-
ation function enables the iSCSI access without the OS limitation affecting it.
The generator directly establishes a TCP/IP connection with iSCSI target im-
plementation using a socket API and transmits and receives the iSCSI PDU
according to the iSCSI protocol. With this generator, the users can create the
iSCSI PDU based on their requirements and can measure the performance of
the iSCSI storage access.
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3 Performance Improvement

In this section, we present the performance evaluation of iSCSI sequential storage
accesses in a long delayed network and the results of the analysis from our system.
We also identify the causes of performance decline. In addition, we demonstrate
how performance can be improved.

3.1 Experimental Setup

In this subsection, we describe an experiment conducted to evaluate the iSCSI
performance and its environment.

We evaluated the performance of the iSCSI storage access in a heavily delayed
network by performing the following experiment. The experimental system is
shown in Figure 5. The iSCSI initiator and iSCSI target are constructed using
PCs. A network delay emulator, which is constructed by FreeBSD dummynet [7],
is placed between the initiator and the target. Further, the initiator and target
establish a TCP connection over the dummynet in order that a simulated delayed
network is realized between them. The initiator and dummynet are connected
with a cross cable of 1 gigabit Ethernet. Further, the dummynet and target are
also connected with a cross cable. Both the initiator and target are constructed
by a Linux OS, and the dummynet is constructed by FreeBSD. The detailed
specifications of the initiator and the target PCs are as follows: CPU Pentium 4
2.80 GHz; main memory 1 GB; OS Linux 2.4.18-3; and NIC gigabit Ethernet card
Intel PRO/1000 XT Server adapter. The detailed specifications of the dummynet
PC are as follows: CPU Pentium 4 1.5 GHz, main memory 128 MB, OS FreeBSD
4.5-RELEASE, and NIC Intel PRO/1000 XT Server Adapter x 2.

We employed the iSCSI implementation, which is distributed by the interop-
erability laboratory in the University of New Hampshire [8,9]. This iSCSI im-
plementation is termed as “UNH” implementation. The detailed specifications



and configurations of the iSCSI implementation used for the evaluation are as
follows: iSCSI initiator and target: UNH IOL Draft 18 reference implementation
ver. 3; iSCSI MaxRecvDataSegmentLength, iISCSI MaxBurstLength, and iSCSI
FirstBurstLength: 16777215 bytes.

The initiator establishes the iSCSI connection with the target, and a bench-
mark software is implemented to measure the performance. The benchmark soft-
ware iterates by issuing system call read () to the raw iSCSI device on the ini-
tiator OS. This call is single-threaded. The size of the TCP advertised window is
2 MB. The iSCSI target runs in memory mode. It can be regarded as a storage
device with exceptional performance.

3.2 Basic Performance Measurement

“Socket Tx256” and “iSCSI (UNH) 500 KB Tx256” shown in Figure 6 are ob-
tained by the experiment described in Section 3.1. We refer to this experiment
as “Exp. A.” The horizontal axis represents the one-way delay time between
the initiator host and the target host. The vertical axis represents the measured
throughput. “0 ms” implies that the network delay was not intentionally gener-
ated by the dummynet. In this case, the network delay with the physical device
is approximately 100 us. The “iISCSI (UNH) 500 KB Tx256” shown in the fig-
ure represents the throughput of the iSCSI sequential read, while the “Socket
Tx256” represents the throughput of simple socket communication by means of
which the initiator and target hosts establish the TCP/IP connection and trans-
mit data through the socket API in the same environment. This simple socket
connection is referred to as “pure socket.” The block size specified at system call
read () is 500 KB, and this block size is termed as “System Call Block Size.” The
maximum throughput of the “pure socket” is approximately 40 [MB/s] because
this value represents the performance limit of the dummynet PC.

The results obtained indicate the following: 1) The iSCSI performance is
severely low although considerably high-performance socket communication is
achieved in the same environment and 2) The iSCSI performance decreases as
network latency increases. In the following subsections, the reasons for the per-
formance decline of the iSCSI are discussed.

3.3 Analysis of iISCSI Access

In this subsection, we present the analysis of the iSCSI storage access, as dis-
cussed in Section 3.2. Figure 2 shows the results of the protocol translation of the
iSCSI PDU in the experiment. Figure 3 shows the visualized packet transmission
in the experiment.

The translation results indicate that the “SCSI Command Read” PDUs with
32-KB “PDU Block Size” were issued even though the benchmark software is-
sued the system call read() with a System Call Block Size of 500 KB. With
several OS implementations, the issued system calls are transmitted to the net-
work through the block or character devices, SCSI generic driver, iSCSI driver,
TCP/IP implementation, and Ethernet device driver. Such calls are rarely trans-
mitted to the network without being modified by these drivers. In other words,



the “System Call Block Size” is not always equal to the “PDU Block Size.” It
can also be observed that in our experimental environment, the block size of
the issued system call read() is divided into multiple 32-KB block reads and
transmitted to the target host.

The visualized figure (Figure 3) shows that when a large amount of time in
the “Seq. Read Cycle” is expended in waiting for the network I/0, the network
utilization is considerably low.

3.4 Discussion of Performance Decline

The analysis in Section 3.3 demonstrated that the System Call Block Size was
divided into multiple small (i.e., 32 KB) “PDU Block Size”; thus, the network
utilization is significantly low. The poor network utilization can be considered
as the most critical reason for the decline in performance. As shown in Figure 3,
the throughput of the iSCSI sequential read can be modeled as follows:

PDU Block Size

PDU Block Size (1)
werLayerThroughput

4 x OneWayDelay + o

A “Non-Idle ratio,” which is the ratio of the time spent for sending data to the
total “Seq. Read Cycle” time, can be modeled as follows:

PDU Block Size
LowerLayerThroughput

- 2)
PDU Block Size (
4 x OneWayDelay + LowerLayerThroughput

In these models,LowerLayerThroughput represents the throughput of the pure
socket. Consequently, the idle ratio with a 32-KB “PDU Block Size” is 84% for
a one-way delay of 1 ms; 91%, 2 ms; 95%, 4 ms; 97%, 8 ms; and 98%, 16 ms. By
using the analyzing system, we can identify that the reason for the performance
decline is poor network utilization caused by a small block size.

The division of the block size is not only due to the limitation of the iSCSI
protocol specification but also due to Linux OS implementation. As a result,
we measured the performance of the essential iSCSI storage access, which is
not restricted by any specific OS implementation, by using our iSCSI access
generator. The experimental results are indicated in Figure 6 as “iSCSI(KI)
nKB Tx256”. The experiments were carried out in the same environment and
termed as “Exp. B.”

“ISCSI(UNH) 500 KB Tx256” in the figure represents the performance with
the iSCSI sequential read access under the UNH iSCSI implementation. The
System Call Block Size is 500 KB (“PDU Block Size” is 32 KB, as mentioned
previously). The lines labeled as “iISCSI(KI)” represent the performance using
our pseudo iSCSI initiator. Their block sizes are recorded in the labels. The
“Socket Tx256” indicates the performance of the pure socket. “Tx” is mentioned
in section 3.5.

The following can be obtained from the results. 1) The performance of the
iSCSI increased significantly by increasing the read block size. 2) The perfor-
mance obtained by the iSCSI access with a large block is not sufficiently high.
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In the case of 16-ms one way delay, the throughput of “iSCSI(KI) 4 MB Tx256”
is 10.1 [MB/s], while that of “iISCSI(UNH) Tx256” is 0.47 [MB/s]. The perfor-
mance improved more than 20 times when the block size was increased. However,
the throughput of the pure socket was 25.2 [MB/s], and the performance of the
iSCSI is less than half that of the socket.

3.5 Analysis without Block Division

In this subsection, we analyze the behavior of the iSCSI storage access with a
large block size.

The transitions of the throughput and size of the TCP congestion window
of “ISCSI(KI) 4MB Tx256” and the “Socket Tx256” for a one-way delay of
16 ms are shown in Figure 7 and Figure 8, respectively. First, we found that
the obtained throughput and the size of the TCP congestion window vary syn-
chronously. The TCP implementation restricts the output throughput below
the CongestionWindowSize

RoundTripTime
tion occurs when the congestion window size is approximately 350 segments

and this size cannot be exceeded for the iSCSI access sequential read. However,
the congestion window size was approximately 850 segments in the case of the
socket communication. The burstness of traffic progressively weakens due to self-
clocking of the TCP during the pure socket communication. On the other hand,
in the case of the iSCSI access, the iSCSI driver is independently synchronized
using the SCSI Command Read and SCSI Response at the iSCSI layer. This
results in extremely bursty traffic that is generated when the target returns the
“Data-in” PDU for the “SCSI Command Read” PDU, as shown in Figure 4. As
a result, the traffic burstness persists. Therefore, the iSCSI traffic patterns easily
cause congestion and the throughput is restricted by the TCP implementation.

In this case, the reason for the performance decline can be attributed to
the congestion in the local device and TCP flow control resulting from bursty
iSCSI traffic. The local device congestion occurs when the packet descriptors
are depleted in the local network interface card. This congestion can be avoided
by improving the tolerance of the NIC to bursty traffic by enlarging the buffer

. Second, Figure 7 shows that local device conges-



size of the NIC device driver. The number of packet buffers in the device driver
of the NICs used in this experiment environment (refer to Section 3.1) can be
regulated from 80 to 4096. In “Exp. B” described in Section 3.4, they were set
to the default value of 256.

The measured throughput with 4096 NIC device driver buffers are repre-
sented as lines that are labeled as “Tx4096” in Figure 6; this experiment is
referred to as “Exp. C.” In the labels in Figure 6, “Tx” represents the number
of packets that the device driver can buffer. Further improvement in the per-
formance was obtained by avoiding the local congestion. In the case of 4-MB
block size and 16-ms one way delay, the performance improved 2.81 times. The
performance in Exp. C improved 60.5 times that in Exp. A for a one-way delay
of 16 ms. The performance of the pure socket, which can be considered as the
performance limit of our experiment environment, was also improved by avoiding
the local congestion. In Exp. C, the performance decline by adopting the iSCSI
protocol was 12% below the system performance limit for a one-way delay of 16
ms, while it was 60% in Exp. B. Thus, a performance comparable to the system
limit can be achieved in the iSCSI storage access.

4 Related Work

Several studies have presented the performance evaluation of IP-SAN using
iSCSI [3,4,10-13].

Sarkar et al. [4] avoided the performance evaluation of the iSCSI. In particu-
lar, this study paid attention to the CPU utilization of the iSCSI storage access
since it is extremely crucial for IP-SAN. They experimented with the perfor-
mances of the iSCSI storage accesses using various block sizes in a LAN envi-
ronment. The work demonstrated that the TCP/IP processing consumed con-
siderable CPU resources. Further, they showed that the CPU utilization reached
100% at the peak throughput with block size of 64 KB.

Radkov et al. [13] presented a detailed comparison of the NFS and iSCSI.
Further, the comparison is very broad in scope. Their discussion not only includes
the performance and CPU utilization but also the number of network messages.
Both the micro- and macrobenchmarks were executed in some configurations
such as warm cache or cold cache and several network delays. It was shown
that the iSCSI and NFS are comparable for data-intensive workloads, while the
former outperforms the latter for meta-data intensive workloads.

These studies are obtained by executing various workloads outside the IP-
SAN system. Consequently, these studies do not reveal accurate behaviors inside
IP-SAN systems. Our work presents very exact behaviors inside the IP-SAN
system including those in kernel space, for example TCP flow controlling. As far
as we know, there is no published report discussing the performance of the iSCSI
through the examination of the TCP/IP behavior, particularly the congestion
window size and receive window size. This type of monitoring is a novel feature
of our work. In addition, we have also identified the causes for the performance
decline by employing the proposed system while the existing studies reveal the
experimental results. This is also a novel feature of our work.



5 Conclusion

In this paper, we proposed and implemented an iSCSI storage access analysis
system and demonstrated that the iSCSI performance can be significantly im-
proved by detailed analysis using the proposed system and resolving the issues
identified by the system. The proposed system can point out the reasons for the
decline in performance. In our experiment, the performance improved more than
60 times and was comparable to the system limit performance.

In future work, our objectives are as follows: 1) to measure the performance
of the iSCSI access using a real storage device; 2) to analyze not only single-
threaded sequential read access but also write access, random access; and multi-
ple access, and 3) to analyze the iSCSI storage access of some applications such
as DBMS.
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