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Abstract 
Discovery of evolving regions in large graphs is 
an important issue because it is the basis of 
many applications such as spam websites 
detection in the Web, community lifecycle 
exploration in social networks, and so forth. In 
this paper, we aim to study a new problem, 
which explores the evolution process between 
two historic snapshots of an evolving graph. 
The evolution process is simulated as a fire 
propagation scenario based on the Forest Fire 
Model. We propose two efficient solutions to 
tackle the issue which are grounded on the 
probabilistic guarantee. The experimental 
results show that our solutions are efficient 
with regard to the performance and effective 
on the well fitness of the major characteristics 
of evolving graphs. 
 
1. Introduction 
Graphs represent the complex structural 
relationships among objects in various 
domains in the real world. While these 
structural relationships are not static, graphs 
evolve as time goes by. Evolving graphs are 
usually in the form of a set of graphs at 
discontinuous time stamps, where the period 
between two adjacent time stamps may be 
quite long. Take the Web archive for example. 
Due to its large size, the Web or a part of it is 
periodically archived by months or even by 
years.  

While many of the existing studies have paid 
attentions to finding stable or changing regions 
in evolving graphs [1,3,5], only a few of them 
are about how graphs evolve. In this paper, we 
study a new problem, which is to model the 
evolving process between two historical 
snapshots of an evolving graph. Fig. 1 briefly 
shows our idea. G is an evolving graph which 
evolves from time t to t'. Suppose we have the 
graph snapshots at time t and t', and the real 
evolution details between these two snapshots 
are unknown. We would like to generate a 
series of virtual graph snapshots, as shown in 
the dotted parts in Fig. 1. 

Our approach adopts the Forest Fire Model 
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(FFM) [4], which has been demonstrated as 
successfully explaining the mechanism of 
dynamic systems [2]. The new edge linkage 
action can be thought of as fire propagation, 
and the nodes on the new edges are the origins 
of the fire. The virtual historical graph is then 
to be thought of as the snapshot on tracking 
how the fire propagates on the whole graph.  
 
2. Discovery of the Historical Snapshot 
Graph Problem 
Given two graphs, Gt and Gt+1, at time t and 
time t+1, the problem of discovering the 
historical graph snapshots involves tracing 
back the virtual graphs after inserting n new 
edges, where 1 ≤n ≤(|E(Gt+1)|-|E(Gt)|)=k, into 
the old graph Gt. In this paper, the issue of 
finding n-graphs is equivalent to discovering 
the burning out n-graphs, which is defined as 
follows: 
Definition 1: Burning Out n-Graph (BOG) 
Given two undirected graphs Gt=(Vt, Et) and 
Gt+1=(Vt+1, Et+1); a cost function CF(i, j) on edge 
(i, j) where i ∊ Vt ⋃ Vt+1 and j ∊ Vt ⋃ Vt+1; a 
user preferred number n of new edges, find the 
subgraph H of Gt ⋃ Gt+1 such that 
• The number of new edges on H is n 
• ∑(i, j) ∊ E(H)CF(i, j) is minimized. 

 
3. Proposed Approaches 
In this paper, we propose two approaches to 
discover the fastest burning out n-graphs. The 
bottom-up approach examines the candidates 
from scratch in a global view with the dynamic 



threshold guaranteed, while the leap-search 
approach proposes a density-oriented 
candidate selection strategy. 
 
3.1 The Bottom-Up Approach 
  We develop a bottom-up greedy algorithm to 
extract the burning out n-graphs. The 
algorithm follows the candidate generation and 
verification iteration. To accelerate the process, 
the threshold-based technique is proposed to 
prune the candidates early. 
 
Candidate generation: In each iteration, a k-
graph g is grown up to a candidate (k+1)-graph 
g' by introducing a new edge enew, where the 
following conditions hold: (1) enew is connected 
to some vertices in g; and (2) the fire spreading 
time t from g to vnew is minimized.  
Verification: If the burning out time of the 
candidate (k+1)-graph g' is greater by far than 
the best one, we turn to the next candidate 
subgraph. Otherwise, we update the fire 
energy of the new vertex and continually grow 
g' to a larger candidate graph with another 
candidate-generation-and-test iteration. 
 
3.2 The Leap Search Approach 

We present a leap-search based method for 
the extraction of burning out n-graphs. The 
method is efficient in processing graphs with a 
large n, where growing up the candidate 
subgraphs from scratch by using bottom-up 
growth can be time consuming. The approach 
is based on the density-oriented candidate 
selection strategy. The intuitive idea is that 
fire transfers fast in those regions where the 
energy density is high. The extraction process 
is also composed of candidate generation and 
verification iteration. 
 
Candidate generation: Starting from the nodes 
with the most fire energy, we grow them by 
selecting their nearest neighbors (w.r.t. the fire 
propagation time) until the number of the new 
edges in the subgraph is equal to n. In other 
words, we do not wait for other possible 
candidates to grow up. During the growing 
process, we record the least time necessary to 
transfer the fire. 
Verification: We check the bottleneck nodes of 
the fire propagation in these subgraphs (as 
indicated by the least time), greedily find the 
neighbors which can remedy the weak edges 
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on spreading the fire, and then update the 
least time value. Through a recursive process, 
we finally determine the first burning out 
regions with the least n new edges. 
  We propose several efficient strategies to 
fasten the process for the two approaches. Both 
algorithms only need to test and update a 
small number of candidate graphs, which lead 
to good scalability with respect to the 
cardinality of the datasets and the value of n. 
 
4. Experiments 
We compare our two algorithms, bottom-up 
and leap-search, with a naive method. The 
result on efficiency is shown in Fig. 2. Note 
that the execution time on the Enron dataset is 
in logarithm format. We can see that our 
solutions are much faster than the naive one, 
about one to two orders of magnitude (as 
shown in Fig. 2 (a)). For the huge Web dataset, 
the naive algorithm can not finish in 
reasonable time. Between our two approaches, 
the leap-search performs better than the 
bottom-up when the number of new edges n 
becomes larger. The reason is that for large 
value of n, growing graphs from scratch by 
evaluating all the neighbors is time consuming.  
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