
A study on Historical Web Graph Extraction
Zhenglu Yang and Masaru Kitsuregawa

Institute of Industrial Science
University of Tokyo

Abstract
Discovery of evolving regions in large graphs is
an important issue because it is the basis of
many applications such as spam websites
detection in the Web, community lifecycle
exploration in social networks, and so forth. In
this paper, we aim to study a new problem,
which explores the evolution process between
two historic snapshots of an evolving graph.
The evolution process is simulated as a fire
propagation scenario based on the Forest Fire
Model. We propose two efficient solutions to
tackle the issue which are grounded on the
probabilistic guarantee. The experimental
results show that our solutions are efficient
with regard to the performance and effective
on the well fitness of the major characteristics
of evolving graphs.

1. Introduction
Graphs represent the complex structural
relationships among objects in various
domains in the real world. While these
structural relationships are not static, graphs
evolve as time goes by. Evolving graphs are
usually in the form of a set of graphs at
discontinuous time stamps, where the period
between two adjacent time stamps may be
quite long. Take the Web archive for example.
Due to its large size, the Web or a part of it is
periodically archived by months or even by
years.

While many of the existing studies have paid
attentions to finding stable or changing regions
in evolving graphs [1,3,5], only a few of them
are about how graphs evolve. In this paper, we
study a new problem, which is to model the
evolving process between two historical
snapshots of an evolving graph. Fig. 1 briefly
shows our idea. G is an evolving graph which
evolves from time t to t'. Suppose we have the
graph snapshots at time t and t', and the real
evolution details between these two snapshots
are unknown. We would like to generate a
series of virtual graph snapshots, as shown in
the dotted parts in Fig. 1.

Our approach adopts the Forest Fire Model

Fig. 1 Example Graphs

(FFM) [4], which has been demonstrated as
successfully explaining the mechanism of
dynamic systems [2]. The new edge linkage
action can be thought of as fire propagation,
and the nodes on the new edges are the origins
of the fire. The virtual historical graph is then
to be thought of as the snapshot on tracking
how the fire propagates on the whole graph.

2. Discovery of the Historical Snapshot
Graph Problem
Given two graphs, Gt and Gt+1, at time t and
time t+1, the problem of discovering the
historical graph snapshots involves tracing
back the virtual graphs after inserting n new
edges, where 1 ≤n ≤(|E(Gt+1)|-|E(Gt)|)=k, into
the old graph Gt. In this paper, the issue of
finding n-graphs is equivalent to discovering
the burning out n-graphs, which is defined as
follows:
Definition 1: Burning Out n-Graph (BOG)
Given two undirected graphs Gt=(Vt, Et) and
Gt+1=(Vt+1, Et+1); a cost function CF(i, j) on edge
(i, j) where i ∊ Vt ⋃ Vt+1 and j ∊ Vt ⋃ Vt+1; a
user preferred number n of new edges, find the
subgraph H of Gt ⋃ Gt+1 such that
• The number of new edges on H is n
• ∑(i, j) ∊ E(H)CF(i, j) is minimized.

3. Proposed Approaches
In this paper, we propose two approaches to
discover the fastest burning out n-graphs. The
bottom-up approach examines the candidates
from scratch in a global view with the dynamic

threshold guaranteed, while the leap-search
approach proposes a density-oriented
candidate selection strategy.

3.1 The Bottom-Up Approach
 We develop a bottom-up greedy algorithm to
extract the burning out n-graphs. The
algorithm follows the candidate generation and
verification iteration. To accelerate the process,
the threshold-based technique is proposed to
prune the candidates early.

Candidate generation: In each iteration, a k-
graph g is grown up to a candidate (k+1)-graph
g' by introducing a new edge enew, where the
following conditions hold: (1) enew is connected
to some vertices in g; and (2) the fire spreading
time t from g to vnew is minimized.
Verification: If the burning out time of the
candidate (k+1)-graph g' is greater by far than
the best one, we turn to the next candidate
subgraph. Otherwise, we update the fire
energy of the new vertex and continually grow
g' to a larger candidate graph with another
candidate-generation-and-test iteration.

3.2 The Leap Search Approach

We present a leap-search based method for
the extraction of burning out n-graphs. The
method is efficient in processing graphs with a
large n, where growing up the candidate
subgraphs from scratch by using bottom-up
growth can be time consuming. The approach
is based on the density-oriented candidate
selection strategy. The intuitive idea is that
fire transfers fast in those regions where the
energy density is high. The extraction process
is also composed of candidate generation and
verification iteration.

Candidate generation: Starting from the nodes
with the most fire energy, we grow them by
selecting their nearest neighbors (w.r.t. the fire
propagation time) until the number of the new
edges in the subgraph is equal to n. In other
words, we do not wait for other possible
candidates to grow up. During the growing
process, we record the least time necessary to
transfer the fire.
Verification: We check the bottleneck nodes of
the fire propagation in these subgraphs (as
indicated by the least time), greedily find the
neighbors which can remedy the weak edges

Fig. 2 Evaluation on efficiency

on spreading the fire, and then update the
least time value. Through a recursive process,
we finally determine the first burning out
regions with the least n new edges.
 We propose several efficient strategies to
fasten the process for the two approaches. Both
algorithms only need to test and update a
small number of candidate graphs, which lead
to good scalability with respect to the
cardinality of the datasets and the value of n.

4. Experiments
We compare our two algorithms, bottom-up
and leap-search, with a naive method. The
result on efficiency is shown in Fig. 2. Note
that the execution time on the Enron dataset is
in logarithm format. We can see that our
solutions are much faster than the naive one,
about one to two orders of magnitude (as
shown in Fig. 2 (a)). For the huge Web dataset,
the naive algorithm can not finish in
reasonable time. Between our two approaches,
the leap-search performs better than the
bottom-up when the number of new edges n
becomes larger. The reason is that for large
value of n, growing graphs from scratch by
evaluating all the neighbors is time consuming.

Reference
[1] N. Bansal, F. Chiang, N. Koudas, and F. W. Tompa.
Seeking stable clusters in the blogosphere. In VLDB,
2007.
[2] C. Henley. Self-organized percolation: A simpler
model. Bull. Am. Phys. Soc., 1989.
[3] A. Inokuchi and T. Washio. A fast method to mine
frequent subsequences from graph sequence data. In
ICDM, 2008.
[4] R. C. Rothermel. A mathematical model for
predicting fire spread in wildland fuels. USDA Forest
Service, Ogden, UT, Tech. Rep., 1972.
[5] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu.
Graphscope: parameter-free mining of large time-
evolving graphs. In KDD, 2007.

