
DEIM Forum 2011 D5-5

IO Path Management with Application Hint for Database Systems on

SSDs

Yongkun WANG†, Kazuo GODA†, Miyuki NAKANO†, and Masaru KITSUREGAWA†

† Institute of Industrial Science, the University of Tokyo
4—6—1 Komaba, Meguro—ku, Tokyo 153—8505 Japan

E-mail: †{yongkun,kgoda,miyuki,kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract Flash SSD is being incorporated in many enterprise storage platforms recently. Traditional storage

systems are mainly composed of hard disks, and the IOs are optimized based on the characteristics of hard disks.

In the case of the flash SSD, the performance characteristics are quite different from that of hard disk. Therefore,

it is necessary that the existing system should be examined and tuned to maximize the performance benefit of flash

SSDs. In this paper, we employed a small piece of information from the application and then optimized the IOs

along the IO path for flash SSDs. The information from the application is captured in our optimization, we called

it “application hint”. Our experimental evaluation showed that the IO time can be considerably reduced, hereby

the performance of whole system can be improved greatly.

Key words

1. Introduction

Flash SSDs are drawing more and more attention in the

storage world recently. With the characteristics of excelent

read performance, good sequential write performance, and

low power consumption, it is being incorporated into the en-

terprise storage platform. However, the access characteristics

of flash SSD are quite different from that of the traditional

hard disks. Simply incorporating into the existing system

may not maximize the performance benefit, because the cur-

rent system has been tuned for a long time for hard disks.

There are a lot of publications to optimize the application

performance on SSDs. Generally, these optimizations can be

categrized into two types; one is to essentially changing the

existing applications to fit for the flash SSD, such as [7] [8]

, another is to keep the existing system untouched and ig-

nore the application, only considering the IOs at the block

level [11].

In this paper, we employed method of keeping the existing

system untouched, but utilizing a small piece of information

captured from the upper application, to optimize the IOs

along the IO path. Our experimental evaluation shows that

this method can improve the performance significantly.

The rest of this paper will organize as follow: section 2

will give a brief introduction to flash SSD. Section 3 will in-

troduce the IO path management by application hint. Sec-

tion 4 will provide a comprehensive experimental evaluation.

Section 5 will give an extend discussion of our optimization

method. The related work will be summarized in Section 6.

Finally, our conclusion and the future work will be provided

in Section 7.

2. Flash SSDs

NAND Flash memory is a kind of EEPROM (Electri-

cally Erasable Programmable Read-Only Memory). There

are three operations for NAND flash memory: read,

write(program), erase. The read and write operations are

very fast, while the erase operation is time-consuming. The

data cannot be updated in place; when updating the data,

the entire erase-block containing the data must be erased be-

fore the updated data is written in. This “erase-before-write”

design leads to the relatively poor performance of random

write.

Recently, the large capacity flash memory is starting to ap-

pear in the market. Large capacity flash memory chips are

assembled together as the flash SSD (Solid State Drive), with

dedicated control system, emulating the traditional block de-

vice such as hard disk. Inside the flash SSD, the control

system contains the mapping logic called Flash Translation

Layer (FTL) which manages the address mapping, making

the flash SSD appear to be a block device. The flash memory

chips connect to the control system with multiple channels

which can operate in parallel.

(a) Mtron Sequential (b) Mtron Random

Fig. 1 IO Performance of SSD

3. IO Path Management with Application

Hint

3. 1 IO Path Management

There has been a long history for the IO path optimiza-

tion in the existing system, mainly due to the performance

mismatch between the CPU and disk-based storage system.

The system along the IO path is well tuned so that the

IOs are well organized to maximize the performance of hard

disk-based systems. The optimization techniques include the

caching, merging, sorting and so on. The optimization can

be implemented at the file system layer, block IO layer and

IO scheduler layer. Some storage systems are much more

complicated with multi-tier controllers, the IOs are further

optimized in these controllers. These optimizations at dif-

ferent layers are usually separated from each other to avoid

coupling and keep flexiblility.

In our design, we try to capture the a small piece of infor-

mation from the application, we call it “Application Hint”,

then use it for the IO optimization in the subsequent layers

along the IO path. We will introduce the application hint in

detail in next section.

3. 2 Application Hint

We call a certain information from the application the “Ap-

plication Hint”, which can be used as a reference for the op-

timization in the subsequent layers. Regarding the IOs in

the data intensive applications, syncing the data and mark-

ing a checkpoint are good examples as the application hint.

In this paper, we will utilize the checkpointing as the appli-

cation hint to optimize the IOs.

The eligibility of the checkpointing as the application hint

can be seen as following:

Until the checkpointing, the dirty data can be deferred in

the buffer as long as possible, because the log has been writ-

ten into the disk by the Write-Ahead-Logging (WAL) design.

Therefore, the safty of dirty data is ensured to some extent

by the WAL.

The deferred writes can be processed according to the char-

acteristics of the storage media, hereby the IO performance

can be improved. Once the system crashes, the deferred dirty

Fig. 2 IO Path Management with Application Hint

data in buffer can be restored to some extent by the WAL.

The WAL design is currently employed in some systems,

such as the database systems and journal-enabled file sys-

tems. We will focus on the database systems in this paper.

3. 3 System Design

As shown in Fig. 2, we capture a small piece of information

from the application, the application hint (checkpointing in-

formation), and do the optimization in our optimization sys-

tem, then destage the IOs to persistent storage as soon as

possible. The existing application keeps untouched.

Only the IOs on data are optimized. The log IOs are keep

untouched, the recovery and restore mechanism is still main-

tained by the database itself. The time for log writes is a

small part of that of the total writes. In our experiments,

the logging destination is different from that of data.

3. 3. 1 IO Optimization Techniques

• Grouping Group the reads and writes by deferring

the writes until the application hint, as shown in Fig. 2.

Therefore, the reads and writes are divided into groups sep-

arated by the application hint.

• Converting Convert the random IOs into sequential

IOs. As shown in Fig. 3(a).

• Coalescing Merge the IOs which overlap or partial

overlap with each other based on the application hint. As

shown in Fig. 3(b).

• Aligning Combine and align IO requests into larger

blocks, as shown in Fig. 3(c). The aligning is based on the

Converting.

The slow erase operations are performed based on the unit

of erase blocks. If a write request is across the border of two

adjacent erase blocks, both of the erase blocks may possibly

need to be perform the slow process of “copy data, apply

changes, erase block, write back”. The cost is not justified

for a small write request. Therefore, we align the write re-

quests into large and uniform request size. The cost of erase

operations will be amortized. In section 4. 3, we will see that

another benefit of the aligning is that the device bandwidth

is fully utilized.

In Fig. 3(c), the original requests are cut and assembled

(a) Converting (b) Coalescing (c) Aligning

Fig. 3 Optimization Techniques

into uniform large request size, which is dividable to the

block size. There are two writes across the block borders, it

has been cut into two pieces and aligned in different requests.

To maximize the benefits, the precedence of these opti-

mization techniques, when using them together, is grouping

firstly, then coalescing, next converting, and aligning at last.

The benefits for flash SSD is threefold:

（ 1） By address converting, random writes are converted

into sequential writes, expensive erase operations are avoided

or amortized. Obsolete data blocks will be cleaned by the

garbage collection process at the background.

（ 2） Since the writes are deferred and flushed in batch,

the reads are separated from writes, the “bathtub” effect is

reduced. Therefore, the high pure read performance can be

fully utilized.

（ 3） By aligning to large requests, the erase operations

are avoided to some extent and amortized by large requests,

and device bandwidth is fully utilized.

3. 3. 2 Implementation Options

There are various options to implement the optimization

techniques with application hint described in section 3. 3. 1.

The IO path along the kernel shows that we can have dif-

ferent optimizations at different layers, such as Virtual File

System (VFS) layer, Block IO (BIO) layer and Device Driver

layer. It is adaptive to the concrete DBMS. For instance,

some DBMS supports raw device; the IO at the system call

level is consistent with that at the device driver level, there-

fore, we can start the optimization from the system call level.

We also can simply apply our optimization at the device

driver level. In practice, the optimization can be assembled

in a kernel module, then loaded into a running kernel, hereby

the existing system keeps untouched.

4. Experimental Evaluation

In this secton, we firstly present the experiment setup,

next provide the performance overview. Then we present

Table 1 Configuration of DBMS

Data buffer size 8MB

Log buffer size 5MB

Data block size 4KB

Data file 5.5GB, database size is 2.7GB

Log flushing method flushing log at transaction commit

our evaluation method, and the evaluation on each optimiza-

tion techniques step by step, and finally the summary of the

overall improvement and analysis.

4. 1 Experiment Setup

We built the TPC-C [9] benchmark system. We used a

commercial(Com.) DBMS, the configuration is shown in Ta-

ble 1. Log files are located to another dedicated flash SSD.

The commercial DBMS supports the raw device, so we set

the data tablespace on the raw device, so that the OS buffer

is bypassed, the database IO requests are consistent with

the requests processed by the device. Therefore, we can do

the optimization on the the DBMS requests and optimize it

along the IO path.

4. 2 Performance Overview

We firstly present the transaction throughput, shown in

Fig. 4. We can see that the transaction throughput is very

close to each other among the cases of placing data on raw

devices (raw dev), on device with ext2 configured with syn-

chronous IO (ext2 sync), and on device with ext2 configured

with asynchronous IO (ext2 asynch). Compared to the raw

device and ext2 cases, the nilfs2 case (nilfs2 sync) can help

to improve the transaction throughput at more than sixfold,

which is consistent with the results reported by [12] [13].

4. 3 Evaluation Method

In order to clarify the influence of the IO response time

in the total transaction processing time, we studied the re-

sponse time of IO requests. Since the OS and file system

buffer is exclude in the raw device case, the IOs are consis-

tent between the system call layer and the device driver layer.

Fig. 4 Transaction Throughput of Comm. DBMS on Mtron SSD

Fig. 5 Sum of the IO Response Time

Because the IOs can be queued deeply by multiple threads

submitting the IO simultaneously, hereby the response time

values of IO requests are overlapped each other. We then

replay the IOs one-by-one (queue depth is one) on raw de-

vice with the same configuration, therefore, we obtained the

individual response time of each requests. The summary of

response time of each requests is the total time spent on the

IO in the execution.

We captured the read and write requests on data in a pe-

riod of 600 seconds in the raw device case with different

checkpoint intervals, the replay these requests one-by-one

with the same configuration. Fig. 5 shows the summary

of the IO response time, which is very close to the total ex-

ecution time (600s). This confirmed that the system is “IO

Bound”. Besides the data IO time, the rest time is used

for the logging and other application behavior such as data

processing or threads contention. It is clearly that if we re-

duce the IO time, the overall performance will be improved

greatly. In the following sections, we will focus on using the

application hint with IO optimization techniques to reduce

the IO time, hereby improving the overall performance.

4. 4 Evaluation of Optimization Techniques

In this section, we examined the performance benefit of

each optimization technique step by step, then we provided

the overall improvement with analysis.

4. 4. 1 Grouping

The purpose of the Grouping is (1) collecting the writes

in batch and (2) separating the reads and writes to alleviate

the “bathtub” effect. For (2), Fig. 6 shows the performance

improvement on reads after grouping. The improvement is

as expected, the speedup is 3.33-3.61x in all the cases.

The grouped writes will be further optimized as shown in

the following sections.

4. 4. 2 Converting

We then studied the optimization of application hint with

Converting discussed in section 3. 3. 1. The purpose of Con-

verting is to convert the random writes into sequential writes,

hereby (1) increase the throughput and (2) reduce the cost

of erase operations. Fig. 7 shows the improvement is 46.08x

to 53.07x.

4. 4. 3 Coalescing

The purpose of Coalescing is to reduce the amount of

writes. Fig. 8 shows the performance improvement by ap-

plied IO optimization techniques, 1.52x to 2.02x. Coalescing

reduced the duplicate write requests within the checkpoint.

With the longer checkpoint interval, more writes can be co-

alesced, therefore, more improvement can be obtained.

4. 4. 4 Aligning

The purpose of the Aligning is to (1) reduce the cost of

erase operations caused by the requests across the erase block

border, and (2) fully utilize the bandwidth of device.

The aligning is performed on the basis of the converting

optimization.

We choose 64KB alignment, the reason is that 64KB is size

the SSD bandwidth beginning to get saturated, as shown in

Fig. 1(a). So we can maximize the utilization of bandwidth,

while keep the request size as smaller as possible.

With 64KB alignment, the further improvement compared

to the coalescing is showing in Fig. 9, about 1.58x to 1.83x

improvement can be observed.

4. 4. 5 Overall Improvement

We applied all the IO optimizations, that is, firstly group-

ing the IOs by application hint, then coalescing the IOs, next

converting the random writes into sequential writes, finally

aligning the IO requests into 64KB blocks.

As for the reads, the grouping has improved the read per-

formance greatly. We find that a large amount of reads are

repeated reads which can be served by the buffer (cache hit).

Only the reads on distinct address reach the device (cache

miss). We calculated the ratio of reads served by the buffer,

as shown in Table 2, which is consistent with the results

shown in [13].

Fig. 10 shows the total IO time after the full optimization,

note that the y-axis is logarithmic. The total read speedup

is 18.59x to 22.35x; speedup of writes is significant, from

Fig. 6 Read Improvement by Grouping

Fig. 7 Write Improvement by Converting

Fig. 8 Write Improvement by Coalescing

Fig. 9 Write Improvement by Aligning

Table 2 Cache hit ratio of reads (Rc
Rc+Rd

, where Rc is read from

cache, and Rd is read from device.)

Checkpoint Interval (s)

60 120 200 300 600

Cache hit % 84.43 82.01 81.64 83.69 82.28

Fig. 10 Overall Improvement by Application Hint (AH), y-axis

is logarithmic

128.03x to 169.24x; and the overall (read+write) speedup is

considerable, from 48.15x to 51.41x.

5. Discussion

5. 1 Logging and Recovery

The log are separated from data, and written to another

dedicated flash SSD. The logging process is very fast since

the write amount is small and writes are in a sequential man-

ner. It has been confirmed in Fig. 5 that the logging time

and IO time of other system files is a very samll part of the

total IO time. The percentage is very small, so the infect to

the overall speedup can be ignored.

About the recovery, once the system is crashed at some

point, the database can still use the conventional recovery

mechanism; reading the log data starting from the last check-

point, and recovering those data blocks with log. With our

optimization, the writes are deferred. Comparing with the

traditional non-deferred writes, our solution may lost more

dirty pages in buffer, hereby need to restore more data blocks

and taking longer time to recover.

5. 2 Buffer Usage

The buffer usage of deferred writes evaluated in section 4. 4

is shown in Table 3. When the checkpoint interval changes

from 60 seconds to 600 seconds, the maximum required buffer

increased around 5.03x, however, the speedup only is im-

proved 1.32x. Clearly the 60 seconds case is memory effi-

cient.

5. 3 SSD-specific Features

The wear-leveling is a special feature of the flash SSD. In

Table 3 Buffer Usage vs. Speedup

Checkpoint Interval (s)

60 120 200 300 600

Minimum Required

Buffer(MB)

31.33 60.58 95.43 135.89 196.84

Maximum Required

Buffer(MB)

39.10 71.43 101.36 141.61 196.84

Speedup 128.03 149.14 161.60 160.00 169.24

our optimization, we do not intentionally consider the wear-

leveling on the writes. Currently the SSD are well sealed by

the manufacture with their own firmware (FTL) to do the

address mapping and wear-leveling. It is hard for us to con-

trol each flash cell exactly. We believe that the “Converting”

in our optimization can do some balancing on the writes to

the flash cells, because the “Converting” will view the whole

disk as a circular log and distribute the writes across the

whole address space.

6. Related Work

6. 1 Flash-based Technologies

By a systematical “Bottom-Up”view, the research on flash

memory can be categorized as follow:

6. 1. 1 Hardware Interface

This is a layer to bridge the operating system and flash

memory, usually called FTL (Flash Translation Layer). The

main function of FTL is mapping the logical blocks to the

physical flash data units, emulating flash memory to be a

block device like hard disk. Early FTL using a simple but

efficient page-to-page mapping [3] with a log-structured ar-

chitecture [6]. However, it requires a lot of space to store the

mapping table. In order to reduce the space for mapping ta-

ble, the block mapping scheme is proposed, using the block

mapping table with page offset to map the logical pages to

flash pages [1]. However, the block-copy may happen fre-

quently. To solve this problem, Kim improved the block

mapping scheme to the hybrid scheme by using a log block

mapping table [4].

6. 1. 2 File System

Most of the file system for flash memory exploit the de-

sign of Log-structured file system [6] to overcome the write

latency caused by the erasures. JFFS2 [2] is a journaling file

system for flash with wear-leveling. YAFFS [10] is a flash file

system for embedded devices.

6. 1. 3 Database System

Early design for database system on flash memory mainly

focused on the embedded systems. FlashDB [7] is a self-

tuning database system optimized for sensor networks, with

two modes; disk mode for infrequent write and log mode

for frequent write. LGeDBMS [5], is a relational database

system for mobile phone. For enterprise database design on

flash memory, In-Page Logging [8] is proposed. The key idea

is to co-locate a data page and its log records in the same

physical location. A block (page) level optimization is shown

in [11]. Some evaluation works can be seen in [12] [13].

7. Conclusion and Future Work

With a small piece of information from the application, the

application hint, we shows that the IOs can be optimized ea-

gerly in the subsequent layers, hereby the performance can

be improved significantly.

As for the future work, we plan to study the online opti-

mization with application hint.

References

[1] Ban, A.: Flash file system. US Patent No. 5404485 (April

1995)

[2] JFFS2: The Journalling Flash File System, Red Hat Cor-

poration, http://sources.redhat.com/jffs2/jffs2.pdf.

(2001)

[3] Kawaguchi, A., Nishioka, S., Motoda, H.: A Flash-Memory

Based File System. In: USENIX Winter. (1995) 155-164

[4] Kim, J., Kim, J.M., Noh, S.H., Min, S.L., Cho, Y.: A space-

efficient flash translation layer for CompactFlash systems.

IEEE J CE 48(2) (May 2002) 366-375

[5] Kim, G.J., Baek, S.C., Lee, H.S., Lee, H.D., Joe, M.J.:

LGeDBMS: A Small DBMS for Embedded System with

Flash Memory. In: VLDB. (2006) 1255-1258

[6] Rosenblum, M., Ousterhout, J.K.: The Design and Imple-

mentation of a Log-Structured File System. ACM Trans.

Comput. Syst. 10(1) (1992) 26-52

[7] S. Nath, A. Kansal: FlashDB: dynamic self-tuning database

for NAND flash. IPSN 2007:410-41

[8] S.W. Lee, B. Moon,: Design of flash-based DBMS: an in-

page logging approach. In: SIGMOD Conference. (2007)

55-66

[9] TPC: Transaction Processing Performance Council: TPC

BENCHMARK C, Standard Specification,Revision 5.10.

(April 2008)

[10] YAFFS: Yet Another Flash File System, http://www.

yaffs.net

[11] Y. Kim, K. Whang, I. Song: Page-differential logging: an

efficient and DBMS-independent approach for storing data

into flash memory. SIGMOD 2010:363-374

[12] Y. Wang, K. Goda, M. Kitsuregawa,: Evaluating Non-In-

Place Update Techniques for Flash-based Transaction Pro-

cessing Systems. In: DEXA (2009), 777-791

[13] Y. Wang, K. Goda, M. Nakano, M. Kitsuregawa: Early

Experience and Evaluation of File Systems on SSD with

Database Applications. IEEE NAS 2010:467-476

