
DEIM Forum 2011 B5-3

A Study on Similar String Matching

Zhenglu YANG and Masaru KITSUREGAWA
Institute of Industrial Science, the University of Tokyo

Tokyo, Japan
{yangzl, kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract Approximate querying on string collections is an important data analysis tool for many applications, and it
has been exhaustively studied. However, the scale of the problem has increased dramatically because of the prevalence
of the Web. In this paper, we aim to study the efficient top-k similar string matching problem. Several efficient strategies
are introduced, such as length aware and adaptiveq-gram selection. We present a generalq-gram based framework and
study the efficient strategies introduced experimentally on real data sets.
Key words Top-k, Similar String Search, Q-gram

1 Introduction

Similar string searching is an important problem because
it involves many applications, such as query suggestion
in search engines, spell checking, similar DNA search-
ing, and so forth. From a given collection of strings, such
queries ask for strings that are similar to a given string, or
those from another collection of strings [5].

We focus on similarity search with edit distance thresh-
olds in this paper. Many algorithms have usedq-gram
based strategies [9, 7, 6] to measure the edit distance be-
tween two strings. Aq-gram is a consecutive substring
of a string with sizeq that can be used as a signature of
the string. To hasten the search process, many approaches
pre-construct some index structures (e.g., suffix tree [10])
and then search these compact indices in an efficient way.
However, most of the works are rooted in a threshold-
based framework (i.e., error threshold predefined), and
there are not many works on exploring the top-k issue of
the problem.

In this paper, we study several efficient strategies to ad-
dress the top-k similar string matching problem. Specif-
ically, we introduce an adapted string length-aware tech-
nique and optimally select theq-gram dictionary. For the
second strategy, we construct a set ofq-gram dictionaries
in the preprocessing. In each iteration, we select an appro-
priate value ofq (hence, aq-gram dictionary is chosen)
based on the top-k similarity score of the last iteration.
The new value ofq is guaranteed to increase, which indi-

cates that the size of the inverted lists is decreasing (i.e.,
largeq leads to shorter inverted lists). Hence, the cost of
the frequency counting is reduced.

2 Problem Statement

Let Σ be an alphabet. For a string s of the characters inΣ,
we use “|s|” to denote the length of s, “s[i]” to denote the
i-th character of s (starting from 1), and “s[i,j]” to denote
the substring from itsi-th character to itsj-th character.

Q-Grams: Given a string s and a positive integerq, a po-
sitionalq-gram ofs is a pair (i, g), whereg is theq-gram
of s starting at thei-th character, that isg = s[i, i+q−1].
The set of positionalq-grams ofs, denoted byG(s, q),
is obtained by sliding a window of lengthq over the
characters of strings. There are|s| − q + 1 positional
q-grams inG(s, q). For instance, supposeq = 3, ands
= university, then G(s, q) = {(1,uni), (2,niv), (3,ive),
(4,ver), (5,ers), (6,rsi), (7,sit), (8,ity)}.

Top-k Approximate String Queries: We denote the edit
distance betweens1 ands2 ased(s1, s2). For example,
ed(“blank”, “blunt”) = 2. In this paper, we consider the
top-k approximate string query on a given collection of
strings S. Formally, for a query stringQ, finding a set of
k stringsR in S most similar toQ, that is,∀r ∈ R and
∀s ∈ (S −R) will yield ed(Q, r) ≤ ed(Q, s).

(a) String collection

blue

blunder

blunt

flank

flu

fluence

fluent

flunker

1

2

3

4

5

6

7

8

stringid

(b) Inverted lists

an bl ce de en er fl ke la lu nc nd nk nt ue un

4 1 6 2 6 2 4 8 4 1 6 2 4 3 1 2

2 7 8 5 2 8 7 6 3

3 6 3 7 8

7 5

8 6

7

8

Preprocessing

Query processing

Query word: 2-grams

2-grams

fl lu un nk

4 1 2 4

5 2 3 8

6 3 8

7 5

8 6

7

8

string id q-gram freq sim. score

1 1 3

2 2 4

3 2 2

4 2 1

5 2 2

6 2 3

7 2 2

8 4 2

(c) query string (d) Corresponding inverted lists (e) q-gram frequence, similarity score

flunk

scan

Top-k list (id)

4

3

5

7

8

1

6

2

(f) result

Figure 1: A general framework for approximate top-k string search withq-gram

To extract the top-k similar strings efficiently, we apply
the q-gram strategy [9] with deliberate optimization, as
will be discussed shortly. Theq-gram similarity of two
strings is the number ofq-grams shared by the strings,
which is based on the following lemma.

Lemma 1 (q-gram lemma [3]). Let P and S be strings
with the edit distanceτ . Then, theq-gram similarity ofP
andS is at leastt = max(|P |, |S|)− q + 1− q · τ .

2.1 A General Framework for Top-k Simi-
lar String Query Processing

We introduce the generalq-gram based top-k querying
system in this section. The main issue is that the cost
of counting the frequency of theq-grams is high. An
example illustrating the details of the framework is shown
in Fig. 1, which presents the preprocessing and the query
processing.

Example 1. Suppose a user wants to obtain the top-1
similar word toflunk. While querying, the query word
flunk is parsed into four 2-grams asfl, lu, un, and

nk; their corresponding inverted lists are{4, 5, 6, 7, 8},
{1, 2, 3, 5, 6, 7, 8}, {2, 3, 8}, and{4, 8} respectively. The
lists are merged to count the frequency of the strings in the
collection resulting in 1:1, 2:2, 3:2, 4:2, 5:2, 6:2, 7:2, and
8:4, where each pair of values is of type sid:freq. Sid and
freq represent the string ID and the frequency value of the
n-grams included by the string, respectively. Finally, the
edit distances between the candidate strings and the query
are computed asblue:3, blunder:4, blunt:2, flank:1,
flu:2, fluence:3, fluent:2, andflunker:2, where each
pair of values is of type string:distance. The top-1 similar
string to the queryflunk is thusflank.

The most time consuming step in the query processing
is to count the frequency ofq-grams, which has to scan a
large amount of inverted lists. Recently, [8, 4] have pro-
posed efficient strategies (i.e., divide-merge-skip) to count
the frequency ofq-grams. The key idea is that it first di-
vides the inverted lists into short lists and long lists. The
whole short lists are then scanned, and the elements are
collected. Finally, it binary searches these elements in the
long lists to find strings whose frequencies are larger than
the threshold. Refer to [8, 4] for details. In this paper, we
apply this efficient technique.

3 Top-k Similar Search Strategies

In this section, we study two algorithms for top-k approx-
imate string search. We first introduce two filtering strate-
gies (i.e., count filtering and length filtering) for the first
algorithm and then we present the adaptiveq selection
strategy for the second algorithm.

3.1 Count Filtering

The intuition of count filtering is that strings within a
small edit distance of each other share a large number of
q-grams in common. Theq-gram count filtering for the
top-k similar string search is derived from that of the tra-
ditional threshold-based framework [9].

Lemma 2 (q-gram lemma for top-k approximate string
search). Let P be the query string andS be the top-k
similar string in the candidate string list so far.P andS
have the edit distanceτ ′top−k. Then, theq-gram similarity
t′top−k of P andS is at least

t′top−k = max(|P |, |S|)− q + 1− q · τ ′top−k (1)

3.2 Length Filtering

The intuition of length filtering is that if there are two
strings within a small edit distanceτ of each other, then
the difference of their lengths will not exceedτ .

When scanning the inverted lists, we choose to test the
candidate strings in ascending order of the difference be-
tween their lengths and that of the query string. The
process can be early terminated based on the following
lemma.

Lemma 3 (Early terminate). Let P be the query string
and S be the top-k candidate similar string so far. We
denote the setR of the remaining untested strings. If∀r ∈
R, ed(P, S) ≤ ||P |− |r||+1, then the search process can
be early terminated.

The length filtering for the top-k similar string search is
derived from that of the traditional threshold-based frame-
work [2, 1].

The branch and bound manner (BB) algorithm is con-
structed based on count filtering and length filtering. For
simplicity and without loss of generality, we assume that

a specificq-gram set is constructed in the preprocessing.
The query processing is executed as follows:

• Initialization: Set the frequency thresholdt′top−k=1,
and the length differenceld=0. P is parsed into a set
of q-grams. The following steps are executed itera-
tively until k similar strings are output.

• Branch: Extract the corresponding inverted lists in
which any stringS has ||S| − |P || = ld.1 Scan
these inverted lists and discover the candidate similar
strings whose frequencies are no less thant′top−k.2

• Bound: Rank the candidate strings and obtain the
temporal edit distance thresholdτ ′top−k. Terminate
the process if the top-k string Q in the candidate
list so far hased(P, Q) ≤ (ld + 1). Compute the
temporal frequency thresholdt′top−k based onτ ′top−k

(Lemma 2) and setld = ld + 1.

3.3 Adaptiveq-gram Selection

We assume from above that the value ofq is static, which
indicates that we only use one set ofq-gram inverted lists
in the entire process. However, as well known in the lit-
erature, a larger value ofq results in a smaller size of in-
verted lists, which may reduce the cost of the frequency
counting. We select an appropriateq-gram dictionary
(may be varying) in each iteration, which is calculated
by the top-k similarity score in the last iteration. As illus-
trated in the experiments, this strategy can reduce the size
of the inverted lists to be scanned, therefore improving the
query performance.

Lemma 4 (Adaptive q selection). Let P be the query
string andS be the top-k similar string in the candidate
string list so far.P andS have the edit distanceτ ′top−k.
Then, the adaptive value of integerq, q′top−k, is selected
in the following formula.

q′top−k =

{
max(|P |,|S|)

τ ′top−k+1 , if max(|P |,|S|)
τ ′top−k+1 ≥ 2

2 , else
(2)

The adaptiveq-gram algorithm (AQ) is constructed
based on the three strategies introduced above (i.e., count
filtering, length filtering, and adaptiveq-gram selection).

1We pre-build an index to record strings based on their lengths.
2Divide-merge-skip strategy is applied as aforementioned.

4 Performance Analysis

We performed the experiments using a Intel(R) Core(TM)
2 Dual CPU PC (3GHz) with a 2G memory, running
linux. TheNaive algorithm was implemented based on
the general top-k querying framework. All the algorithms
were written in C++. The default value ofq is set to 2 for
Naive andBB, while for AQ algorithm the default dic-
tionaries are [2,3]-grams. We conducted experiments on
the real life data sets,Dict3, andPerson4. Due to space
limitation, more experimental results on other real data
sets are avoided and will be shown in the presentation.

4.1 Efficiency of Query Processing

(a) Dict dataset (b) Person dataset
Figure 2: Query performance of different algorithms
We evaluate the query performance ofBB and AQ

when varying the value ofk. To test the effect of top-k
query, we randomly selected 1000 different queries from
the data sets. The result is shown in Fig. 2, from where
we can see thatBB andAQ always perform better than
Naive, especially whenk is small. This is not surprising
because of the length filtering and count filtering strate-
gies employed. Between the two algorithms,AQ is su-
perior toBB because the former can reduce the cost by
adaptively selecting a relative large value ofq.

4.2 Size of inverted lists scanned

We evaluate the size of inverted lists scanned in different
algorithms when varying the value ofk. As illustrated in
Fig. 3, we can see thatBB andAQ scan smaller sets of
inverted lists compared with the other algorithm. This is
the intrinsic reason why the algorithms performed better
on query processing (Fig. 2).

3www.aspell.net/
4www.trec.state.tx.us/LicenseeDataDownloads/trecfile.txt

(a) Dict dataset (b) Person dataset
Figure 3: Inverted lists scanned among algorithms

5 Conclusions

In this paper we have studied the efficient top-k approx-
imate string searching problem. Several efficient strate-
gies are studied experimentally, i.e., length filtering and
adaptiveq-gram selection. The results show that the ap-
proaches can efficiently answer the top-k string queries.

References
[1] L. Gravano, P. G. Ipeirotis, H. V. Jagadish,

N. Koudas, S. Muthukrishnan, and D. Srivastava.
Approximate string joins in a database (almost) for
free. InVLDB, pages 491–500, 2001.

[2] M. Hadjieleftheriou, A. Chandel, N. Koudas, and
D. Srivastava. Fast indexes and algorithms for set
similarity selection queries. InICDE, pages 267–
276, 2008.

[3] P. Jokinen and E. Ukkonen. Two algorithms for
approximate string matching in static texts. InIn
Proc. 2nd Ann. Symp. on Mathematical Foundations
of Computer Science, pages 240–248, 1991.

[4] C. Li, J. Lu, and Y. Lu. Efficient merging and filter-
ing algorithms for approximate string searches. In
ICDE, pages 257–266, 2008.

[5] C. Li, B. Wang, and X. Yang. Vgram: improv-
ing performance of approximate queries on string
collections using variable-length grams. InVLDB,
pages 303–314, 2007.

[6] G. Navarro. A guided tour to approximate string
matching. ACM Computing Survey, 33(1):31–88,
2001.

[7] G. Navarro and R. A. Baeza-Yates. A practical q -
gram index for text retrieval allowing errors.CLEI,
1(2), 1998.

[8] S. Sarawagi and A. Kirpal. Efficient set joins on
similarity predicates. InSIGMOD, pages 743–754,
2004.

[9] E. Ukkonen. Approximate string-matching with q-
grams and maximal matches.Theoretical Computer
Science, 92(1):191–211, 1992.

[10] E. Ukkonen. Approximate string-matching over suf-
fix trees. InCPM, pages 228–242, 1993.

