DEIM Forum 2011 B5-3

A Study on Similar String Matching

Zhenglu YANG and Masaru KITSUREGAWA
Institute of Industrial Science, the University of Tokyo
Tokyo, Japan
{yangzl, kitsuré @tkl.iis.u-tokyo.ac.jp

Abstract Approximate querying on string collections is an important data analysis tool for many applications, and it
has been exhaustively studied. However, the scale of the problem has increased dramatically because of the prevalence
of the Web. In this paper, we aim to study the efficient kogimilar string matching problem. Several efficient strategies

are introduced, such as length aware and adaptiy@m selection. We present a genergram based framework and

study the efficient strategies introduced experimentally on real data sets.

Key words Top-k, Similar String Search, Q-gram

1 Introduction cates that the size of the inverted lists is decreasing (i.e.,

largeq leads to shorter inverted lists). Hence, the cost of
Similar string searching is an important problem becaugg: frequency counting is reduced.

it involves many applications, such as query suggestion

in search engines, spell checking, similar DNA search-

ing, and so forth. From a given collection of strings, su@ Problem Statement

gueries ask for strings that are similar to a given string, or

those from another collection of strings [5]. Let X be an alphabet. For a string s of the charactels, in
We focus on similarity search with edit distance threske use fs|” to denote the length of s, “s[i]” to denote the

olds in this paper. Many algorithms have usgdram i-th character of s (starting from 1), and “s[i,j]" to denote

based strategies [9, 7, 6] to measure the edit distance the-substring from it$-th character to itg-th character.

tween two strings. Ag-gram is a consecutive substring

of a string with sizeg that can be used as a signature -Grams: Given a string s and a positive integgra po-

the string. To hasten the search process, many approadiiténal g-gram ofs is a pair ¢, g), whereg is theg-gram

pre-construct some index structures (e.g., suffix tree [10])s starting at the-th character, thatig = s[é,i+¢ —1].

and then search these compact indices in an efficient whlye set of positional-grams ofs, denoted byG(s, q),

However, most of the works are rooted in a thresholi obtained by sliding a window of length over the

based framework (i.e., error threshold predefined), addaracters of string. There arels| — ¢ + 1 positional

there are not many works on exploring the topssue of g-grams inG(s,q). For instance, suppose= 3, ands

the problem. = university, then G(s,q) = {(1uni), (2,niv), (3,ive),
In this paper, we study several efficient strategies to dd-ver), (5.ers), (6rsi), (7,sit), (8,ity)}.

dress the topg: similar string matching problem. Specif-

ically, we introduce an adapted string length-aware tecfep-k£ Approximate String Queries: We denote the edit

nique and optimally select thegram dictionary. For the distance betweer; andss ased(s1, s2). For example,

second strategy, we construct a seg-gfram dictionaries ed(“blank”, “blunt”) = 2. In this paper, we consider the

in the preprocessing. In each iteration, we select an appap-k approximate string query on a given collection of

priate value ofy (hence, ag-gram dictionary is chosen)strings S. Formally, for a query strin@, finding a set of

based on the tog-similarity score of the last iteration.k stringsR in .S most similar toQ, that is,vr € R and

The new value of; is guaranteed to increase, which indivs € (S — R) will yield ed(Q,r) < ed(Q, s).

Preprocessing

id string

1 blue an | bl [ce|de|en|er| fl|ke|la|lu|nc|nd]|nk|nt]|ue]|un
2 blunder 411162624841 [6]|2[4]3]1]2
3 | blunt 2-grams 2 785 2 7163
4 flank |::> 3 6 3 7|8
5 flu 7 5

8 6

6 fluence 7

7 fluent 8

8 flunker
(a) String collection (b) Inverted lists

Query processing

=
5
S
>
=

string id | g-gram freq | sim. score Top-k list (id)
1 1 3 4

scan

® w N
©

Query word: 2-grams

flunk >

© N o o

© N oW N =

©® N oA wN
ENN I Ol O Ol O N
PR WR NS
N o~ w

(c) query string (d) Corresponding inverted lists (e) g-gram frequence, similarity score (f) result

Figure 1: A general framework for approximate tbstring search witly-gram

To extract the tope similar strings efficiently, we apply nk; their corresponding inverted lists afé, 5,6, 7, 8},
the ¢g-gram strategy [9] with deliberate optimization, a$l,2, 3,5, 6, 7,8}, {2, 3,8}, and{4, 8} respectively. The
will be discussed shortly. The-gram similarity of two lists are merged to count the frequency of the strings in the
strings is the number of-grams shared by the stringsgollection resulting in 1:1, 2:2, 3:2, 4:2, 5:2, 6:2, 7:2, and
which is based on the following lemma. 8:4, where each pair of values is of type sid:freq. Sid and

freq represent the string ID and the frequency value of the

Lemma 1 (¢-gram lemma [3]) Let P and S be strings y-grams included by the string, respectively. Finally, the
with the edit distance. Then, the;-gram similarity of P edit distances between the candidate strings and the query
andS'is atleastt = maz(|P|,|S|) —q¢+1—q-7. are computed adlue:3, blunder:4, blunt:2, flank:l,
fluw:2, fluence:3, fluent:2, andflunker:2, where each
pair of values is of type string:distance. The top-1 similar

2.1 A General Framework for Top-k Simi- string to the quenyTunk is thus flantk.

lar String Query Processing _ _ _ _
The most time consuming step in the query processing

We introduce the generat-gram based top- querying is to count the frequency efgrams, which has to scan a
system in this section. The main issue is that the cdstge amount of inverted lists. Recently, [8, 4] have pro-
of counting the frequency of the-grams is high. An posed efficient strategies (i.e., divide-merge-skip) to count
example illustrating the details of the framework is showthe frequency of-grams. The key idea is that it first di-
in Fig. 1, which presents the preprocessing and the queiges the inverted lists into short lists and long lists. The
processing. whole short lists are then scanned, and the elements are
collected. Finally, it binary searches these elements in the
Example 1. Suppose a user wants to obtain the topidng lists to find strings whose frequencies are larger than
similar word to flunk. While querying, the query wordthe threshold. Refer to [8, 4] for details. In this paper, we
flunk is parsed into four 2-grams af, lu, un, and apply this efficient technique.

3 Top-k Similar Search Strategles a specificg-gram set is constructed in the preprocessing.
The query processing is executed as follows:

In this section, we study two algorithms for tépapprox- o

imate string search. We first introduce two filtering strate- ® Initialization: Set the frequency threshofd , =1,

gies (i.e., count filtering and length filtering) for the first ~ and the length differend@=0. P is parsed into a set

algorithm and then we present the adaptjveelection of g-grams. The following steps are executed itera-
strategy for the second algorithm. tively until k& similar strings are output.

e Branch: Extract the corresponding inverted lists in
3.1 Count Filtering which any stringS has||S| — |P|| = ld.! Scan

The intuiti ¢ filtering i) o these inverted lists and discover the candidate similar
e intuition of count filterin i i

itior g is that strings within @ strings whose frequencies are no less ttjgn ;.2
small edit distance of each other share a large number of

g-grams in common. The-gram count filtering for the ¢ Bound: Rank the candidate strings and obtain the
top-k similar string search is derived from that of the tra- temporal edit distance threshotg,, ,. Terminate

ditional threshold-based framework [9]. the process if the top-string) in the candidate

. _ list so far hased(P,Q) < (Id + 1). Compute the
Lemma 2 (g-gram lemma for tops approximate string temporal frequency thresholf},_, based on;,_,
search) Let P be the query string and' be the topk (Lemma 2) and sdtl = Id + 1.

similar string in the candidate string list so faP? and S
h/ave the edltdlstgnogopfk. Then, they-gram similarity 3.3 Adaptive g-gram Selection
tiop—r Of P and S is at least
We assume from above that the valuey@$ static, which
tiop— = mazx(|P|,[S]) —q+1—q-7, , (1) indicates that we only use one setjefram inverted lists
in the entire process. However, as well known in the lit-
3.2 Length Filtering erature, a larger value gfresults in a smaller size of in-
verted lists, which may reduce the cost of the frequency
The intuition of length filtering is that if there are twocounting. We select an appropriajegram dictionary
strings within a small edit distanceof each other, then (may be varying) in each iteration, which is calculated
the difference of their lengths will not exceed by the topk similarity score in the last iteration. As illus-
When scanning the inverted lists, we choose to test tiagted in the experiments, this strategy can reduce the size
candidate strings in ascending order of the difference lefthe inverted lists to be scanned, therefore improving the
tween their lengths and that of the query string. Thgiery performance.
process can be early terminated based on the followi

lemma. I['gmma 4 (Adaptive ¢ selection) Let P be the query

string and S be the topk similar string in the candidate
Lemma 3 (Early terminate) Let P be the query string String list so far. P and S have the edit distance/,, ..
and S be the topk candidate similar string so far. WeThen, the adaptive value of integerq;,, ;. is selected
denote the sek of the remaining untested strings¥if € in the following formula.
R,ed(P,S) < ||P|—|r||+1, then the search process can maz(|PL,|S]) i pmar(PLISD 5 o
! frng Tt/,op—k—"_l - (2)
Qtopfk
, else

be early terminated.

Tt,,op—k-"_l
2

The length filtering for the tog-similar string search is _ ' .
derived from that of the traditional threshold-based frame-The adaptiveg-gram algorithm (AQ) is constructed

work [2, 1]. based on the three strategies introduced above (i.e., count

The branch and bound manner (BB) algorithm is cofiltering, length filtering, and adaptivegram selection).

SFrUCt_eq based on count filtering and _Iength filtering. FOr 1ye pre-build an index to record strings based on their lengths.
simplicity and without loss of generality, we assume that 2Divide-merge-skip strategy is applied as aforementioned.

14000

4 Performance Analysis

1K)

T 8000
12000

ed (
@
£

6000 10000

We performed the experiments using a Intel(R) Core(TM%
2 Dual CPU PC (3GHz) with a 2G memory, running: «»
linux. The Naive algorithm was implemented based one
the general togs querying framework. All the algorithms
were written in C++. The default value ofis set to 2 for TR TR e e I
Naive and BB, while for AQ algorithm the default dic- foptaueres (1D foperes (1000

tionaries are [2,3]-grams. We conducted experiments on Figure 3: Inverted lists scanned among algorithms
the real life data setd)ict®, and Person®. Due to space lusi

limitation, more experimental results on other real daé\ Conclusions
sets are avoided and will be shown in the presentation.

8000
6000
2000 4000
2000

Size of inverted lists scanned (*1K

Size of inf

(a) Dict dataset (b) Person dataset

In this paper we have studied the efficient toppprox-
imate string searching problem. Several efficient strate-
gies are studied experimentally, i.e., length filtering and
adaptiveg-gram selection. The results show that the ap-
proaches can efficiently answer the tbgtring queries.

4.1 Efficiency of Query Processing

704 350

604 300

—=— Naive

—m— Naive
504 [A—BB 250 —4—BB _
—v—AQ . —v—AQ
o 200 =

40 2

Time (sec)

30 —4 2 150

— F 100 7

204 — S/ []
— r L4
— 50 / 1

1 5 10 2 50 1 5)
Top-k queries (#=1000) Top-k queries (#=1000)

(2]

(a) Dict dataset (b) Person dataset

Figure 2: Query performance of different algorithms

We evaluate the query performance BB and AQ
when varying the value of. To test the effect of top- [3]
query, we randomly selected 1000 different queries from
the data sets. The result is shown in Fig. 2, from where
we can see thaBB and AQ always perform better than [4
Naive, especially wherk is small. This is not surprising
because of the length filtering and count filtering stratefs]
gies employed. Between the two algorithm&y) is su-
perior to BB because the former can reduce the cost by
adaptively selecting a relative large valueyof [6]

4.2 Size of inverted lists scanned [7]

We evaluate the size of inverted lists scanned in different
algorithms when varying the value &f As illustrated in [8]
Fig. 3, we can see thd@ B and AQ scan smaller sets of
inverted lists compared with the other algorithm. This iqg]
the intrinsic reason why the algorithms performed better

on query processing (Fig. 2). [10]

Swww.aspell.net/
“www.trec.state. tx.us/LicenseeDataDownloads/trecfile.txt

References

L. Gravano, P. G. Ipeirotis, H. V. Jagadish,
N. Koudas, S. Muthukrishnan, and D. Srivastava.
Approximate string joins in a database (almost) for
free. InVLDB, pages 491-500, 2001.

M. Hadjieleftheriou, A. Chandel, N. Koudas, and
D. Srivastava. Fast indexes and algorithms for set
similarity selection queries. ITCDE, pages 267—
276, 2008.

P. Jokinen and E. Ukkonen. Two algorithms for
approximate string matching in static texts. Im
Proc. 2nd Ann. Symp. on Mathematical Foundations
of Computer Scien¢@ages 240-248, 1991.

] C.Li,J. Lu, and Y. Lu. Efficient merging and filter-

in%algorithms for aggroximate string searches. In
ICDE, pages 257-266, 2008.

C. Li, B. Wang, and X. Yang. Vgram: improv-
ing performance of approximate queries on string
collections using variable-length grams. \Wih.DB,
pages 303-314, 2007.

G. Navarro. A guided tour to approximate string
rznoagtl:hlng. ACM Computing Survey33(1):31-88,

G. Navarro and R. A. Baeza-Yates. A practical q -

%ram index for text retrieval allowing error€LEI,
(2), 1998.

S. Sarawagi and A. Kirpal. Efficient set joins on

glcr)r&arlty predicates. I'5IGMOD, pages 743-754,

E. Ukkonen. Approximate string-matching with g-

%rams and maximal matcheBheoretical Computer
cience92(1):191-211, 1992.

E. Ukkonen. Am)roximate string-matching over suf-

fix trees. INCPM, pages 228-242, 1993.

