Towards Improved Load Balancing for Data Intensive
Distributed Computing

Sven Groot
Institute of Industrial Science,
The University of Tokyo
4-6-1 Komaba Meguro-ku,
Tokyo 153-8505, Japan
sgroot@tkl.iis.u-
tokyo.ac.jp

ABSTRACT

Specialized frameworks for highly scalable data processing
continue to gain prominence over traditional databases in
many environments including the cloud. Perhaps the most
well-known such framework is Google MapReduce, which
has gained wide-spread popularity. However, the MapRe-
duce model offers some significant challenges for workload
balancing which have not been adequately explored so far.
In this paper, we introduce techniques for improving load
balancing — particularly multi-stage jobs and dynamic par-
tition assignment — by using a modified programming model
that offers greater flexibility but maintains the simplicity,
scalability and fault tolerance of MapReduce. We then ex-
plore the effectiveness of our approach using a parallel fre-
quent itemset mining algorithm.

1. INTRODUCTION

Data analysis is the cornerstone of many business and
research ventures. The amount of data to be analyzed keeps
growing due to the web, and recently other sources such as
sensors also contribute to this.

Google MapReduce [6][7] provides a framework for dis-
tributed data processing offering very high levels of scalabil-
ity and fault tolerance. By building on the redundant stor-
age provided by the Google File System [8] and by splitting
jobs into small pieces that can be automatically re-executed
in the case of failures, it can deal with scenarios like hard-
ware failure more easily than traditional database systems.

Thanks to Hadoop [3], the MapReduce model has found
widespread adoption even outside of Google. Hadoop has
been adopted by many large players in the industry includ-
ing Yahoo, Facebook, Amazon, etc., and has a rich ecosys-
tem of applications built on top of it.

Cloud computing is a natural environment for these types
of data processing systems. The cloud allows dynamic provi-
sioning of resources based on your needs, and because using
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1 node for 100 hours typically costs the same as 100 nodes
for 1 hours, using the high level of scalability that MapRe-
duce provides gives you greatly increased performance at
no additional cost. MapReduce has been embraced by sev-
eral cloud vendors; for example, Amazon provides Elastic
MapReduce [2] as a platform for running dynamically pro-
visioned Hadoop application on their EC2 and S3 platforms.

Part of the reason why MapReduce is so popular is its
simplicity. It is easy to program for even without using
higher level abstractions, and the users can understand the
data flow of their applications quite easily. The simplicity
of its model is also largely responsible for its scalability.

However, the MapReduce model is by its very nature quite
inflexible, which makes it ill-suited for some types of applica-
tions. It has been shown that MapReduce performance can
lag behind that of traditional parallel databases for some
applications [15]. Yet because of its widespread usage, it
is now being used for such applications anyway. And de-
spite its apparent simplicity, it can also be very difficult to
properly configure MapReduce applications for optimal per-
formance, which is especially difficult in the cloud where
resources are dynamically provisioned [5][13].

One important factor in this is workload balancing. If
some of the nodes are not fully utilized — for instance be-
cause they are held up waiting for other nodes — this in-
creases the overall execution time of the job. This can be
caused by heterogeneous hardware; a node might be slower
than other nodes because it has a slower CPU, disk or net-
work connection. In addition, data placement imbalance can
make it difficult to utilize some nodes because data needs to
be moved before they can process it, and data skew may
cause some tasks to have higher processing times than oth-
ers. Other applications running on the nodes and factors
such as disk fragmentation levels can also affect the relative
speed of a node.

Many of these factors can not be determined in advance,
and the uncertainness of dynamically provisioned resources
in a cloud environment makes it harder to predict the load
balancing behavior of an application. Therefore, it is impor-
tant to be able to respond to changes in the load dynami-
cally.

To our knowledge, there has been very little existing work
studying the workload balancing characteristics of MapRe-
duce. General load balancing issues in MapReduce are ex-
amined in [10]. The effectiveness of speculative execution —
a simple mechanism employed by Hadoop where the same



task is scheduled on multiple nodes — in heterogeneous en-
vironments has been studied in [19], and in [18], scheduling
map tasks for load balancing was investigated.

There is a large body of work about load balancing in
distributed systems in general. An overview of load balanc-
ing techniques in the cloud is given in [16]. Other work
has focused on run-time load balancing on more traditional
heterogeneous clusters [17][9]. However, the applicability of
these kinds of techniques to MapReduce style applications
has not been investigated.

In this paper we describe the load balancing issues that
are present in MapReduce, and propose techniques to ad-
dress some of these issues, particularly the use of multi-stage
jobs and dynamic partition assignment. We evaluate these
techniques using Jumbo, our own data processing platform,
which strives to maintain the good points of MapReduce —
simplicity, scalability, and fault tolerance — while mitigating
some of the bad points so it can more effectively accomplish
load balancing.

We will then use Parallel FP Growth [14] as an example to
demonstrate how these methods can help improve load bal-
ancing and overall performance. Frequent itemset mining
is an often-used data mining task which has many different
applications in many different fields. In addition, this al-
gorithm clearly demonstrates some of the shortcomings of
MapReduce. The problems, and our solutions, are however
not limited to this algorithm and are generally applicable.

2. WORKLOAD BALANCING

The MapReduce model presents several unique challenges
for workload balancing that are caused by the basic design of
the programming and execution model. Separate load bal-
ancing issues are presented by the map and reduce phases,
and by the issue of complex algorithms.

2.1 Map Phase

The map phase consists of a large number of tasks, each
of which processes a shard of the input data. Because this
number is typically far larger than the number of map tasks
that the cluster can run simultaneously the map phase is
somewhat self-balancing, since faster nodes will simply run
more tasks.

However, map tasks can still have load balancing issues.
Some imbalance can occur at the end of the map phase when
there are few tasks left; the severity of this depends on how
much work is done by each map task.

Resources that are underutilized due to imbalance at the
end of the map phase cannot be effectively used by reduce
tasks. This is because the programming model for reduce
tasks does not allow for incremental calculation of the result
for multiple keys; the reduce function cannot be invoked
until all values for at least one key are known, which is not
the case until all map task inputs have been copied. Reduce
tasks are therefore limited to copying intermediate data and
running additional merge passes while the map phase is in
progress.

For optimal performance, map tasks are scheduled accord-
ing to data locality; the tasks are assigned to nodes that have
a local copy of their input blocks. However, if there is data
imbalance on the DFS some tasks will have to be non-local
which may make it impossible to fully utilize the resources
of some nodes. Additionally, non-local tasks incur disk and
network I/0 overhead, not only on the node where they are

running but also on the node that provides the data.

2.2 Reduce Phase

Unlike the map phase, the number of tasks in the reduce
phase of a job typically equals or is less than the capacity
of the cluster. This enables the tasks to copy intermediate
data and run additional merge passes in the background
while the map phase is still running, and also helps to limit
the number of network transfers. Using slightly less than
the capacity is done so that the reduce phase can finish in
one “wave” even if some nodes fail.

Increasing the number of tasks beyond the cluster’s ca-
pacity is not recommended. Each task brings with it over-
head due to initialization, increased network transfers, and
merging the tasks’ inputs. And because the second wave of
reduce tasks cannot start until after the map phase has fin-
ished, they cannot copy intermediate data or do any work
during the map phase, unlike the first wave.

Because of the small number of tasks, the reduce phase
does not have the self-balancing nature of the map phase;
when a node finishes a reduce task, there will be no more
tasks from that job it can run. If one node is faster in
completing the reduce tasks, it will not be utilized for the
remainder of that job. The more time the job spends in
the reduce phase after the completion of the map phase, the
more pronounced this difference will be.

Although increasing the number of reduce tasks may im-
prove load balancing, the overhead from using additional
tasks means this will likely decrease the overall efficiency of
the job and increase the execution time.

In order to balance the reduce phase we must attempt to
assign more work to faster nodes. If the number of tasks does
not exceed the cluster’s capacity, how much data each node
receives depends on the partitioning function and on how
many reduce tasks it can run in parallel. The partitioning
function does not know which task is assigned to which node
so it is not a good mechanism for this.

Although running more tasks in parallel could be used to
assign more work to a node, this can cause resource con-
tention and actually reduce the effective utilization of that
node. This is also a very coarse-grained mechanism and is
only suited for static load balancing.

Data skew can be a major factor in load balancing issues
in reduce tasks; if the partitioning function does not evenly
distribute the work across each task, they can have greatly
varying execution times.

2.3 Complex Algorithms

Another major issue is caused by MapReduce’s inflexible
model. Many complex algorithms do not fit exactly into the
structure of one map and one reduce phase, and will require
more than one MapReduce job.

If more than one job is used, this means that intermediate
data between the jobs has to be stored on the distributed
file system. This data is often replicated, creating additional
overhead. Although it’s possible to disable replication this
will in turn make it harder to schedule data local map tasks
in the next job.

A MapReduce job cannot be submitted unless all its input
data is available. The subsequent jobs depend on data from
the previous one, and can therefore not be started until the
previous one completes. There is no opportunity to start
work with partial data to employ available resources. This



means that if one job is not properly load balanced, this
prevents the faster nodes from continuing with the next job
until the slower ones can finish working on the current one,
causing the effects of workload imbalance to accumulate.

Additionally, the scheduler is only aware of a single of
these jobs at a time, since the next one has to wait until all
data from the current one is available until it can be submit-
ted. The scheduler does not know the overall structure of
the application, and therefore cannot make more intelligent
load balancing decisions. This also hinders the ability for
the scheduler to adhere to execution policies like job prior-
ity if more than one job can be active in the system at the
same time.

3. JUMBO

In order to implement and experiment with load balanc-
ing techniques we have developed Jumbo, a highly scalable
distributed data processing system in the spirit of frame-
works such as MapReduce or Microsoft Dryad [12]. Jumbo
maintains many of the properties of MapReduce and will
be easy to use to anyone who has used MapReduce. How-
ever, Jumbo offers a more flexible programming model that
allows us to deviate from MapReduce’s limitations. While
more flexible, Jumbo’s data flow is closer to MapReduce
than Dryad’s, making it somewhat easier to reason about
the structure of an application.

We will give an overview of Jumbo’s basic design, and then
describe the load balancing techniques it uses to mitigate
some of the issues presented in Sect. 2.

3.1 Overview

Jumbo consists of two components, a distributed file sys-
tem and a distributed data processing environment.

The Jumbo DF'S operates on principles that are very close
those of GFS and the Hadoop DFS. Data is divided into
large blocks which are replicated on the cluster. A single
name server is responsible for managing the file system name
space.

Jumbo Jet is the distributed data processing platform for
Jumbo. It provides a programming model and an execution
environment which aims to maintain the scalability and fault
tolerance of MapReduce, but at the same time allow for
greater flexibility while sacrificing as little of the simplicity
as possible.

Jumbo maintains some of the properties of MapReduce.
The MapReduce model provides several basic features: it
provides parallelization through data sharding and parti-
tioning, and fault tolerance by re-execution of failed tasks
and the materialization of intermediate data in files. It also
provides a programming model based on key/value pairs
that are processed by map and reduce functions where the
intermediate data between the two is grouped by key, and it
provides an implementation of that model that uses sorting
to to achieve the grouping.

Jumbo provides the same parallelization and fault toler-
ance features, but it is more flexible with regards to the
model. Records don’t need to be key/value pairs, it is not
required to do grouping, there is no forced distinction be-
tween map and reduce tasks, and there is no requirement
to use sorting. Jumbo still can do all those things, but also
allows the use of alternatives where appropriate.

A data processing job in Jumbo consists of one or more
stages. Each stage is divided up into multiple tasks which do

the same operation but on a different fragment of the input
data. Tasks are the unit of work used by the scheduler, and
scheduling these to run on different nodes is how parallelism
is achieved, similar to how MapReduce works. If a task fails
it can be automatically re-executed without failing the entire
job.

Stages are connected via channels that represent data
flow. A stage reads data either from the DFS or from one or
more channels, and writes output to the DFS or to a channel.
Input from the DFS is split into pieces (typically using DFS
blocks) and channels use partitioning to split data across
tasks. Stages that read data from the DFS can be com-
pared to map phases, and stages that read data from a chan-
nel can be compared to reduce phases, although there is no
requirement that they perform equivalent operations. How-
ever, they frequently display similar characteristics when it
comes to load balancing and performance.

Jumbo materializes intermediate data for channels in files
on the local disk which are transferred over the network
for maximum reliability and to allow virtualization of the
cluster’s resources.

A channel contains all the configuration related to the
intermediate data. It indicates how the data is partitioned,
and how the data from multiple tasks in the stage that writes
data to the channel is combined by the stage that reads data
from the channel. Unlike in MapReduce, it is not required
that intermediate data is sorted. Sorting is available if re-
quired, but it is also possible to use alternative methods of
grouping, or not group the data at all. Built-in functionality
is provided for the most common operations (including sort-
ing and hash table based grouping), or custom functionality
can be used if none of the built-in options suit the applica-
tion.

Jumbo uses partitioning to divide data across tasks that
read from a channel in a way that’s similar to a reduce phase
in Hadoop. However, in MapReduce, partitions are coupled
to reduce tasks; each reduce task processes exactly one par-
tition. In Jumbo, it’s possible to specify that a single task
will process more than one partition. Because partitioning
itself is a form of grouping, it’s possible that this is the only
grouping needed. By using multiple partitions per task, you
can take advantage of that even if the number of groups (par-
titions) is relatively large, without needing to incur overhead
from increasing the number of tasks. This provides a method
of implicit grouping that does not depend on sorting.

Because Jumbo uses the same strategy of data sharding
and partitioning for parallelization, it has nearly the same
scalability characteristics as MapReduce, and also the same
fault tolerance (as long as the TCP channel type is not
used). This also leads to jobs that, in practice, have a struc-
ture that will look similar to their MapReduce equivalent,
and is similarly easy to understand. Although some of the
flexibility, like whether to sort and what grouping strategy
to use, requires more understanding of distributed systems
than MapReduce, you can always just pick the safe defaults
and get similar results as in MapReduce. In the future, we
hope to let the runtime system make some of these choices
for the user to further increase its ease of use.

Job execution in Jumbo is handled in a similar manner as
in MapReduce. A single server called the job server sched-
ules tasks to nodes in the cluster and keeps track of their
status. If a task fails or a server becomes unavailable, tasks
can be re-executed elsewhere to ensure fault tolerance.



3.2 Multi-Stage Jobs

In Sect. 2.3 we described how load balancing issues can
occur when multiple jobs are needed for one algorithm. Our
first load balancing technique uses the flexibility of Jumbo,
which allows us to create more complex job graphs with
many stages and eliminate the need for multiple jobs.

We are able to use this approach with Jumbo because a
job in Jumbo is not limited to one map and reduce phase.
A job can have any number of stages, with each stage read-
ing output from the previous stage. It is also possible to
have more than one stage that reads data from the DFS in
a single job. This makes it possible to represent complex al-
gorithms in a single job, rather than requiring multiple jobs
as would have been necessary in MapReduce. The use of
stages connected by channels means that, in practice, these
job graphs will closely resemble the equivalent sequence of
MapReduce jobs, which makes it easy to understand and
use, and maintains the scalability of MapReduce.

By using a job with multiple stages, it becomes possible
to schedule tasks from a subsequent stage if one stage is not
perfectly load balanced. In MapReduce frameworks such as
Hadoop, the map and reduce phases are running simultane-
ously, but with multi-stage jobs it becomes possible to run
stages simultaneously that in MapReduce would not have
been part of the same job.

The current Jumbo scheduler will create a dependency
graph of all stages in the job and schedule tasks from those
stages in that order as capacity becomes available (while also
attempting to satisfy data locality for tasks that read from
the DFS). Even this relatively simple strategy allows for
overlapping execution of stages which in MapReduce would
be in a different job. We expect to improve the effectiveness
of this as we continue to improve the scheduler.

The effectiveness of running tasks from multiple stages si-
multaneously depends on the ability of the tasks to start
doing work even though not all input data is available yet.
In MapReduce, reduce tasks can copy intermediate data and
run additional merge passes if needed. However, because the
programming model for reduce functions does not allow in-
cremental calculation and because MapReduce uses sorting
of the intermediate data to group the keys, it cannot do
much else.

Jumbo has the ability to use alternative grouping meth-
ods and its programming model also allows for incremental
calculation of a group’s results (which can for example be
used for many aggregation functions). This makes it possi-
ble to start running the core function of the task even with
partial data. Depending on the structure of the data and
the type of operation being used, Jumbo can do a large part
of the work before the final piece of data becomes available,
making it possible to use available resources on a node while
other nodes are still processing tasks from the input stage.

This ability to do more work with partial data also applies
to stages that would have been part of the same MapReduce
job (as a map and reduce phase), which allows us to reduce
the impact of imbalance at the end of a stage reading from
the DF'S.

3.3 Dynamic Partition Assignment

Our second load balancing technique is aimed at the issue
with long running reduce tasks as described in Sect. 2.2.
This kind of imbalance can also occur in Jumbo for a stage
that reads from a channel, since they have roughly the same

characteristics as a reduce phase in MapReduce.

In order to divide data between such tasks, it is parti-
tioned. As mentioned in Sect. 3.1, Jumbo allows the use
of more than one partition per task. Since a task can have
many partitions, we can dynamically reassign these parti-
tions to different tasks during execution to improve load
balancing.

When a task starts, it is assigned a number of initial par-
titions. Currently, our strategy for initial partition assign-
ment is to simply divide all the partitions evenly across all
the tasks. A task will copy intermediate data for all of the
partitions it was assigned. If processing using partial data
is possible, this will be done only for the first partition; al-
though it would be possible to process multiple partitions
in parallel, currently this is not done to prevent resource
contention.

A task will process its partitions sequentially. Before pro-
cessing for a partition begins, the task contacts the job server
to check if the partition has been reassigned, in which case
the task will discard all data for that partition and continue.

Once a task finishes all previously assigned partitions, it
will contact the job server to ask for additional partitions. If
it receives additional partition assignments, it will copy the
intermediate data for those partitions — because intermedi-
ate data is materialized, the overhead this causes is spread
across all nodes, not just the node that had previously been
assigned the partition — and then it will process them, and
repeat these steps until no new partitions get assigned.

In order to find a suitable partition to reassign, we use for
the task with the largest amount of remaining partitions and
the lowest overall progress. Although this strategy appears
to work well so far, we expect to be able to improve on it
further in the future.

Although dynamic partition assignment appears similar to
simply using more tasks, it has several advantages. Firstly, it
does not suffer from any initialization overhead. A task will
also copy the intermediate data for all the initially assigned
partitions as it becomes available; by contrast, if more tasks
are used they must copy their data when they are started
as there is no opportunity to do so earlier.

Of course, this means that some tasks will copy intermedi-
ate data for partitions that they may not process, leading to
some unnecessary work. We expect to be able to minimize
this overhead by improving the strategy for initial partition
assignment. The data for dynamically reassigned partitions
still needs to be copied before processing can begin. How-
ever, our experience shows that the overhead of doing this
is still significantly smaller than using multiple tasks.

Dynamic partition assignment is a technique that could
also be applied to MapReduce. Decoupling the partitions
from tasks and implementing dynamic assignment does not
lead to any fundamental changes in the model so it could
be used by a MapReduce framework as well. However, our
experience shows that it is harder to use this strategy effec-
tively when the intermediate data needs to be sorted as is
the case in Hadoop and Google’s MapReduce, so it may be
somewhat more difficult to implement in that situation.

4. PARALLEL FP GROWTH
4.1 MapReduce

In order to evaluate load balancing issues on MapReduce
and Jumbo we have used FP Growth [11] frequent item-
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Figure 1: Job graphs for the Parallel FP Growth algorithm with Hadoop and Jumbo. The Hadoop version

uses four jobs, while the Jumbo version has only one.

set mining as an example. FP Growth efficiently discov-
ers frequent itemsets by constructing an FP tree from the
transaction database and mining that instead of the original
database.

For our experiments we used Parallel FP Growth [14], a
parallel version of FP Growth used to discover the top-K
frequent itemsets for each item in the database. It was de-
signed by Google for use with MapReduce, and we adapted
it for use with Jumbo so it can make use of the load balanc-
ing techniques described in Sect. 3.

PFP Growth in MapReduce was designed to avoid syn-
chronization issues by partitioning the transaction database
into groups. Each group contains all the data needed to
do frequent itemset mining on the features in that group,
so there is no need for synchronization. Because the result
of each group can include patterns containing features that
were not part of the group, these results must be aggregated
into the final result.

Mahout [4] is an open source machine learning library for
Hadoop, and includes an implementation of PFP. In the
remainder of this paper, we will use this implementation as
our source of reference. It is mostly the same as the version
described by Google, but has two important differences: it
uses a special intermediate format to reduce the size of the
intermediate data and the cost of FP tree construction in
the reduce phase, and it has an extra step which sorts the
entire transaction database.

The structure of Mahout’s PFP Growth implementation
is shown in Fig. 1(a). The algorithm consists of five steps,
four of which are MapReduce jobs. The parallel counting
step counts the number of occurrences of each feature in the
transaction database. The grouping step sorts the list of
items by frequency and divides it into groups; this is not
parallelizable and takes only a few seconds, so it is not done

with MapReduce. The transaction sorting step sorts each
transaction by item frequency, and also groups the items
based on their most frequent item. The PFP Growth step
generates group-dependent transactions from each transac-
tion in the map phase, and the reduce phase performs FP
Growth on each group. Finally, the aggregating step aggre-
gates the results of each group into the final answer.

There are a number of points where imbalance can occur.
The obvious ones are between the jobs, but because reduce
tasks can do only limited work while the map phase has not
finished, there is also the opportunity for hold-ups here.

4.2 Jumbo

When porting the PFP Growth algorithm to Jumbo, we
first identified how to collapse the algorithm into a single
job. The result of this is one job with six stages, shown in
Fig. 1(b).

The count and add stages count item frequencies. The
channel between these stages does not sort the data; instead
items are grouped in a hash table and the counts are incre-
mentally updated, which is much more efficient. The group
stage is still not parallel (it has only a single task) but it
is now part of the job. The gen stage sorts each transac-
tion by item frequency, and then generates group dependent
transactions. The FP stage performs FP Growth on each
group. The aggregating stage finally aggregates the results;
note we eliminated the map phase of this step, because it
only served to repartition the data, something which the
channel between the FP and aggregating stages now does.

Having the algorithm in a single job, rather than four as in
MapReduce, allows us to be more intelligent about schedul-
ing. Although the gen stage must still wait for grouping
to be complete before it can do anything useful, all of the
remaining stages can do some work with only partial data



available from their input channel, allowing these stages to
utilize nodes that have no more tasks from the previous stage
to run.

In the PFP Growth MapReduce job, sorting was used to
group the intermediate transactions by group ID. Since the
number of groups is usually relatively small (typically sev-
eral thousand) we chose to match the number of partitions to
the number of groups, using the multiple partitions per task
feature to still assign multiple groups to each task. Each
partition gets exactly one group, eliminating the need for
additional sorting or grouping. Because no sorting is used,
the FP stage can already begin building FP trees with par-
tial data. Because the number of groups is typically larger
than the number of tasks, we can then also use dynamic
partition assignment for load balancing.

The aggregation stage receives results for a linear range
of group IDs, and each group’s results are typically small
(depending on the value of K) and can be computed incre-
mentally as new temporary data arrives. Therefore, these
tasks simply store the groups in an array indexed by group
ID, again eliminating the need to sort and making it possible
for them to work with partial data.

It should be noted that PFP Growth in Jumbo still follows
roughly the same structure as in MapReduce. Porting it
was fairly trivial; all we did was combine some steps and
choose different grouping strategies so we could eliminate
sorting. Implementing it was not any more difficult than
it was for MapReduce, and in fact, since we don’t need to
make allowances to fit to MapReduce such as the extra map
phase for aggregation, in some ways it was actually simpler.

S. EXPERIMENTAL RESULTS

We evaluated PFP Growth on Hadoop and Jumbo both
for performance and load balancing. For these experiments
we used a cluster with 48 nodes; of these, 32 were type A
nodes with an Intel Core 2 Duo E6400 CPU (a total of 2
cores), 4GB RAM, and a single 1TB disk. The remaining
16 were type B nodes with two Intel Xeon E5410 quad-core
CPUs (a total of 8 cores), 32GB RAM, and two 1TB disks.
Each node runs as many tasks in parallel as it has CPU
cores.

We used a synthetically generated database [1] with be-
tween 100 and 800 million transactions, with sizes of 5.5GB
to 44GB respectively. Each database had 100,000 unique
items and an average transaction length of 10 items. We
used a minimum support of 0.001%, which resulted in around
25,000 frequent items in all cases.

We separately investigated the effects of both dynamic
partition assignment and multi-stage jobs.

5.1 Dynamic Partition Assignment

To determine the effectiveness of dynamic partition as-
signment, we ran PFP growth with four different workloads
on Hadoop, Jumbo without dynamic partition assignment,
and Jumbo with dynamic partition assignment. The results
are shown in Fig. 2. The configuration of Jumbo and Hadoop
was tuned separately for each job to attempt to provide op-
timal performance. Dynamic partition assignment was ap-
plied only to the FP stage of the job, because it is the longest
stage and the only place where a significant amount of im-
balance could occur.

The first thing to notice is that Jumbo is on average
around 3 times faster Hadoop. This is primarily because
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Figure 2: Execution times of PFP Growth on
Hadoop and Jumbo with and without dynamic par-
tition assignment.

Jumbo’s greater flexibility allowed us to eliminate sorting of
the intermediate data and use more efficient grouping meth-
ods, which reduces a very large amount of overhead. Part of
this speed-up is also due to the use of multi-stage jobs. Be-
cause the entire application is only a single job, there is no
intermediate data stored on the DF'S, and there is increased
opportunity for tasks to work in the background with partial
data. This will be explored further in the next section.

When looking at the effectiveness of dynamic partition as-
signment, it appears to give only a small benefit except for
the biggest workload, where it is approximately 16% faster
than Jumbo without dynamic partition assignment. This is
because the grouping is effective in ensuring each task has
about the same amount of work. The FP Growth algorithm
is largely CPU bound so the CPU speed determines execu-
tion time. Each individual core on the type A and B nodes is
close to the same speed; the type B nodes have more cores,
but they can be used by running more tasks in parallel. This
means that there is not much imbalance to begin with, which
limits the maximum theoretical gain.

With 800 million transactions, the intermediate data be-
comes large enough to create some I1/O overhead on the type
A nodes, making the speed difference between them larger.
This means there is more imbalance and therefore more im-
provement when using dynamic partition assignment. We
expect that when data skew and other factors to cause im-
balance are introduced, we will be able to show a greater
gain.

We also confirmed that dynamic partition assignment im-
proved load balancing by looking at the execution times of
the tasks in the F'P stage where the balancing was applied,
as shown in Fig. 3. Without load balancing, the tasks run-
ning on the type A nodes clearly take longer than those on
the type B nodes. There is also a fair amount of variance
between the tasks on the type A nodes; this is because there
is some disk contention on these nodes, which makes the
overall execution time more unpredictable. The job cannot
finish until the last task has finished.

When dynamic partition assignment is used, we can see
that the tasks’ execution times are now all nearly identical.
The type B nodes take over some of the work from the type A
nodes and are better utilized, leading to a faster execution of
the job overall. The bigger the initial imbalance, the bigger
the benefit of this approach will be.

We can also see this in Fig. 4, which shows the CPU usage
of one of the type B nodes. In Fig. 4(b), dynamic partition
assignment was not used. We can see that this node is idle
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Figure 3: Execution times of the tasks in the FP
stage using Jumbo. The first 64 tasks are executed
on the type A nodes, the remaining 128 tasks on the
type B nodes.

for a long time near the end of the job while the other nodes
are still working on their tasks.

In Fig. 4(c) we see the result of using dynamic partition-
ing. The node is now kept busy until the end of the job,
which is true for all the type B nodes, causing the job to
finish sooner. Full CPU utilization is not achieved due to
the need for the tasks to copy the data of the additional par-
titions, but we still clearly achieve a much better utilization
of all nodes than without dynamic partition assignment.

5.2  Multi-Stage Jobs

In order to show the effectiveness of using multi-stage jobs
as described in Sect. 3.2 we cannot look only at execution
time. Although part of the speed-up of PFP Growth in
Jumbo over Hadoop is caused by the use of a multi-stage
job, it is difficult to tell how much of the speed-up was the
result of this, and how much was the result of other fac-
tors such as the more efficient grouping methods and other
implementation issues.

Instead, we therefore look at node utilization. We exam-
ined CPU, disk, memory and network utilization for all of
the nodes, particularly the type B nodes which are more
likely to be underutilized because they are faster. Because
we found that CPU was the limiting factor in most cases, we
will only consider the CPU usage in the remainder of this
discussion for the sake of simplicity.

Fig. 4 shows the CPU usage of one of the type B nodes for
this job. Because the type B nodes are faster than the type A
nodes, they are underutilized if load imbalance occurs, which
shows in the graphs as low CPU usage. In these situations,
there is no more work for the scheduler to assign to this node
although other nodes in the cluster are still working on tasks
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Figure 4: CPU usage of one of the type B nodes.

in the same job.

In Fig. 4(a) we see the situation with Hadoop. This node
is idle for some time during the end of the parallel counting
job, the end of the map phase of the transaction sorting job
(note that although CPU usage is less than 100% during the
reduce phase of this job, this is because it is I/O bound, not
due to imbalance), and the end of the PFP growth job.

Jumbo is shown in Fig. 4(b) and Fig. 4(c). We can see
that the drop in CPU usage at the end of the counting step
is much shorter. This is because both the add and the group
stage could do work in the background with partial data,
rather than having to wait. Because the transaction sorting
job is not present in Jumbo, it can obviously not cause any
imbalance.

Both Hadoop and Jumbo show a spike in CPU usage near
the end for the aggregation tasks, but it is much smaller
for Jumbo. In Jumbo, the aggregation tasks had already
been running and were able to work with partial data. In
Hadoop, the aggregation job takes a total of 45 seconds after
the PFP Growth job completes. In Jumbo, the aggregation
stage finishes in under 5 seconds after the final task of the
FP stage finishes because it had already done most of the
work.



Jumbo shows one drop that Hadoop does not, which oc-
curs at the end of the gen stage (which corresponds to the
map phase of the PFP Growth job). The drop is due to
the final few tasks being finished on other nodes than the
one pictured here. This situation actually also occurs with
Hadoop; the lack of a similar drop in CPU usage in Fig. 4(a)
is due to speculative execution. Although this keeps the
node busy, some of its work was discarded. Speculative ex-
ecution does not solve the load balancing problem in this
scenario, it just hides the symptoms. Speculative execution
was not used in Jumbo.

6. CONCLUSION

In this paper, we have shown that MapReduce applica-
tions can suffer from workload imbalance issues, some of
which are caused by the properties of the MapReduce model
itself. Jumbo, our experimental data processing platform,
aims to overcome some of these issues while still maintaining
the good points of MapReduce such as simplicity, scalability
and fault tolerance. Creating applications for Jumbo is not
more difficult for those who have experience with MapRe-
duce, but through the use of several techniques large perfor-
mance bottlenecks can be eliminated.

Jumbo employs several techniques to reduce load balanc-
ing issues found in MapReduce; in this paper we have fo-
cused on the construction of multi-stage jobs and the use
of dynamic partition assignment. The results obtained with
Parallel FP Growth indicate that these techniques can lead
to a better utilization of all nodes in a heterogeneous clus-
ter, and improve the overall throughput of the job. This will
save time, energy, and money; the latter especially in a pay-
per-use cloud environment. These techniques are however
not limited to Parallel FP Growth; they can be applied to
a broad range of MapReduce style data processing applica-
tions.

Dynamic partition assignment is likely also applicable to
MapReduce. Although the requirement to sort the interme-
diate data would make this more difficult to implement, we
expect that it may still offer benefits in a pure MapReduce
environment.

There are still a large number of open issues in this area.
Workload imbalance caused by data placement imbalance
or data skew is currently not sufficiently investigated. Load
balancing can also become more difficult if disk I/O or net-
work bandwidth is the limiting factor, since dynamically
moving data around will always incur overhead on those two
resources. We can therefore have a situation where assign-
ing more work to one node can cause resource contention
on another node. In our future work, we intend to address
these issues.

In addition, we intend to more closely investigate the pos-
sibilities for balancing resource usage. Currently, Jumbo
only uses execution time as a rough metric for the through-
put of a node. By measuring the usage of CPU, disk, mem-
ory and network during job execution we expect to be able
to make more intelligent decisions about how to schedule
tasks and move data.
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