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1 |ntr0dUCti0n «—— 10 Management Window ——>! Application (DBMS)
Flash SSDs are being incorporated into enterprise stoosige f 4 Read y

achieving high performance in data intensive applications write | Wite scheduling Time
When deployment to such an environment is considered, a ¥ checkpoint

major concern of flash SSD is its slow random writes. A ran-

dom write to flash SSD usually takes several milliseconds, Sl

which are unbearably long in comparison with fast random

reads (taking several to tens of microseconds). One essehigure 1: Flash SSD oriented 10 management with check-
tial research topic is to mitigate such poor performance ofoint information

random writes. Many researchers have studied performance

improvement techniques in different storage software laytould be larger, giving higher performance. But, database
ers such as DBMS storage engine[1], file system([2], devicgystems need to guarantee that all the writes older than a
driver[3] and flash SSD controller called FTL[4]. Theirwork |ast checkpoint are reflected onto the secondary storage. Th
has successfully provided substantial write performamee i ayajlable deferring window is strictly limited by database
provement, but they focused on a specific layer through IQheckpointing. Checkpoint is crucial information for verit
path. There are yet few studies to explore overall 1O Manscheduling when we try to improve the 10 performance
agement for achieving potential performance of flash SSD. along 10 path.

In this report, we present our basic idea of IO management Available write deferring window (i.e. 10 management
for flash SSD. The key point s to utilize runtime application window) can be defined as illustrated in Figure 1. Each win-
information to maximize write scheduling opportunities fo dow starts when a checkpoint finishes and the window ends
improving write performance. In many environments, mostwhen the next checkpoint starts. Writes can be deferred and
of data writes issued by data intensive applications do no§cheduled at run time within the window and then reflected

have to be flushed to the storage device immediately. Rath%ﬁ a batch manner to improve performance_ Let us summa-
they can be deferred for some time. So some schedulingze three major techniques on the deferred writes.

opportunities are allowed. However, these opportunities a

not explicitly informed to 10 path. The data intensive ap- e Write coalescing merges overlapping write requests.
plications often expect their issued writes to be flushed to  This helps to reduce the amount of writes.

the storage device at a certain time point. That is, without . .

this knowledge, 10 path often misses such write scheduling ® Write converting translates random access address
opportunities. In contrast, if this knowledge is conveyed t into a sequential order, like a log-structured manner.
IO management, write sequence could be fully optimized. ~ TNiS can pack more writes into flash SSD block (erase
The system can understand how long it can defer the given ~ UnNit) SO as to reduce the number of slow erase opera-
writes. This is beneficial to schedule the write sequence in  tONS-

order to i_mprovethethroughput. Inthe nexts_ection,we take o \write aligning arranges write requests along block
a scenario of database systems for introducing the proposed boundary. This also works to reduce unnecessary erase

idea. operations.

2 Flash SSD Oriented |O Management 3 Preiminary Experiments

Many database systems allow write requests to secondahirst, we studied 10 performance of existing 10 techniques
storage to be deferred and then flushed to the storage in flash SSDs. Due to the page limitation, we briefly show
a batch. Such write deferring has benefits of providinga result of TPC-C benchmark, standard online transaction
scheduling opportunities for reducing IO cost of the writes  processing benchmark, on a Mtron PRO 7500 32GB SLC
run time. As writes are deferred longer, scheduling benefit§SSD. A fixed number of TPC-C transactions were ran on
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three types of volume configurations (using raw device, us- ° prv—
ing ext2fs and using nilfs2) on commercial DBMS X and 8 Checkpoit inenva (seconds) and b ize (V)
Linux operating system on a Intel 2GHz server with 2GB

memory. In each configuration case, we traced all 10 eventsFigure 3: Online Scheduling with varied buffer size limits
during the transaction execution, and afterwards, we re-

played those |0 traces on the same SSD to measure pureInterestingly, overall performance improvement was not

I_O t|me_that were takerl for executing the TPC-C transag:—so sensitive to write buffer sizes. 80MB buffer could obtain
tions. Figure 2 summarizes the results. As a reference, FlgE—77

30s

300:
infinite

. ) ) erformance improvement that was comparable with exper-
ure 2 also depicts basic performance of random writes an

. . . X ) entally assumed infinite buffer.
sequential writes that we obtained using a micro benchmar
on the same SSD. Nilfs2, a typical LFS implementation on )
Linux, could improve write performance x5.75 and x6.01in4  Conclusion

comparison with raw device and ext2fs configuration respec- )
tively. This was because of Nilfs2’s copy-on-write feature Ve have proposed flash SSD oriented 10 management for

which tries to convert slow random writes to fast sequendata intensive applications. By utilizing database check-

tial writes. Note that there is still some performance im-Point information, the scheduling opportunities can béyful

provement room for this SSD device. The basic performancgaximized. Preliminary experiment shows that our proposal

graph shows that such conversion could potentially improv&ould achieve potential performance benefit of flash SSD.

throughput up to x115.67. Although current 10 techniques/Veé continue to explore further topics such as efficient run-

can improve 10 performance on flash SSDs substantiallyt,'me read/wrltg schedullng.to balance checkpoint flushing

they cannot reach to the potential performance. overhead and implementation of the proposed 10 manage-
Based on this observation, we had a further experimerfi’€nt to current storage software stacks.

to study the potential performance improvement of the pro-

posed flash SSD oriented |0 management. Similarly, weRefer ences

conducted a trace driven experiment. We implemented 10

management techniques such as write coalescing, write conf1] S.-W. Lee and B. Moon. Design of flash-based DBMS:

verting and write aligning, on top of our 10 replaying envi- an in-page logging approach. In Proc. of SIGMOD, pp.

ronment, and tested 10 performance of such techniques on  55-66, 2007.

the environment. 10 trace files were generated by TPC-C )

execution on raw device configuration. For studying the ef- [2] W. K. Josephson, L. A. Bongo, D. Flynn, and K. Li.

fects of checkpoint, we tested two checkpoint intervals (30 ~ PFS: A File System for Virtualized Flash Storage. In

and 300 seconds) for TPC-C execution. Several buffer size ~ Proc. of FAST, pp. 85-100, 2010.

configurations were also studied for |O management. Figure[g] Y.-R. Kim, K.-Y. Whang, and |.-Y. Song. Page differ-
3 summarizes the results. Major findings are summarized " _ ..., Iogéiné' an efficient and DBMS independent ap-
below. proach for storing data into flash memory. In Proc. of
e Write coalescing could reduce write time by reducing SIGMOD, pp. 363-374, 2010.
the amount of writes. The merging effect became larger [4] H.-J. Choi, S. H. Lim, and K. H. Park. JFTL: A flash

with longer checkpointintervals and larger buffer sizes. . : :
translation layer based on a journal remapping for flash
e Write converting could successfully translate random memory. ACM TOS, vol. 4, no. 4, 2009.
accesses into a sequential order. Thus significant im-

provement of write performance was observed. [5] R. Freitas and L. Chiu. Solid-State Storage: Technol-

ogy, Design and Applications. FAST2010 Tutorial,
e Write aligning could reduce the write time around 50% http://ww. useni x. org/ event s/ f ast 10/
even for improved write sequence by write converting. tutorial s/ T2. pdf,2010.

e Simple write deferring using IO management window
increased total write time. This was possibly due to
flash SSD’s bathtub effect[5].



