
Flash SSD Oriented IO Management for Data Intensive Applications

Yongkun Wang† Kazuo Goda‡ Miyuki Nakano‡ Masaru Kitsuregawa‡
† Student, Graduate School of Information Science and Technology

‡ Institute of Industrial Science
The University of Tokyo

{yongkun,kgoda,miyuki,kitsure}@tkl.iis.u-tokyo.ac.jp

1 Introduction

Flash SSDs are being incorporated into enterprise storage for
achieving high performance in data intensive applications.
When deployment to such an environment is considered, a
major concern of flash SSD is its slow random writes. A ran-
dom write to flash SSD usually takes several milliseconds,
which are unbearably long in comparison with fast random
reads (taking several to tens of microseconds). One essen-
tial research topic is to mitigate such poor performance of
random writes. Many researchers have studied performance
improvement techniques in different storage software lay-
ers such as DBMS storage engine[1], file system[2], device
driver[3] and flash SSD controller called FTL[4]. Their work
has successfully provided substantial write performance im-
provement, but they focused on a specific layer through IO
path. There are yet few studies to explore overall IO man-
agement for achieving potential performance of flash SSD.

In this report, we present our basic idea of IO management
for flash SSD. The key point is to utilize runtime application
information to maximize write scheduling opportunities for
improving write performance. In many environments, most
of data writes issued by data intensive applications do not
have to be flushed to the storage device immediately. Rather
they can be deferred for some time. So some scheduling
opportunities are allowed. However, these opportunities are
not explicitly informed to IO path. The data intensive ap-
plications often expect their issued writes to be flushed to
the storage device at a certain time point. That is, without
this knowledge, IO path often misses such write scheduling
opportunities. In contrast, if this knowledge is conveyed to
IO management, write sequence could be fully optimized.
The system can understand how long it can defer the given
writes. This is beneficial to schedule the write sequence in
order to improve the throughput. In the next section, we take
a scenario of database systems for introducing the proposed
idea.

2 Flash SSD Oriented IO Management

Many database systems allow write requests to secondary
storage to be deferred and then flushed to the storage in
a batch. Such write deferring has benefits of providing
scheduling opportunities for reducing IO cost of the writesat
run time. As writes are deferred longer, scheduling benefits

Time

Application (DBMS)

Flash SSD

IO Management Window

Read

Write

Checkpoint

Write scheduling

Figure 1: Flash SSD oriented IO management with check-
point information

could be larger, giving higher performance. But, database
systems need to guarantee that all the writes older than a
last checkpoint are reflected onto the secondary storage. The
available deferring window is strictly limited by database
checkpointing. Checkpoint is crucial information for write
scheduling when we try to improve the IO performance
along IO path.

Available write deferring window (i.e. IO management
window) can be defined as illustrated in Figure 1. Each win-
dow starts when a checkpoint finishes and the window ends
when the next checkpoint starts. Writes can be deferred and
scheduled at run time within the window and then reflected
in a batch manner to improve performance. Let us summa-
rize three major techniques on the deferred writes.

• Write coalescing merges overlapping write requests.
This helps to reduce the amount of writes.

• Write converting translates random access address
into a sequential order, like a log-structured manner.
This can pack more writes into flash SSD block (erase
unit) so as to reduce the number of slow erase opera-
tions.

• Write aligning arranges write requests along block
boundary. This also works to reduce unnecessary erase
operations.

3 Preliminary Experiments

First, we studied IO performance of existing IO techniques
on flash SSDs. Due to the page limitation, we briefly show
a result of TPC-C benchmark, standard online transaction
processing benchmark, on a Mtron PRO 7500 32GB SLC
SSD. A fixed number of TPC-C transactions were ran on



 0

 20

 40

 60

 80

 100

 120

 140

0.5 1 2 4 8 16 32 64 128 256

IO
 T

hr
ou

gh
pu

t (
M

B
/s

)

Request Size (KB)

x115.67

seq write rnd write

(a) IO Throughput: sequential
write vs. random write

 0

 100

 200

 300

 400

 500

 600

 700

raw dev ext2 nilfs2

IO
 T

im
e 

(s
)

x5.75 x6.01

read write

(b) IO Replay of Comm. DBMS on
SSD with 80MB DBMS buffer

Figure 2: Gap of basic write performance of flash SSD and
obtainable performance in DBMS

three types of volume configurations (using raw device, us-
ing ext2fs and using nilfs2) on commercial DBMS X and
Linux operating system on a Intel 2GHz server with 2GB
memory. In each configuration case, we traced all IO events
during the transaction execution, and afterwards, we re-
played those IO traces on the same SSD to measure pure
IO time that were taken for executing the TPC-C transac-
tions. Figure 2 summarizes the results. As a reference, Fig-
ure 2 also depicts basic performance of random writes and
sequential writes that we obtained using a micro benchmark
on the same SSD. Nilfs2, a typical LFS implementation on
Linux, could improve write performance x5.75 and x6.01 in
comparison with raw device and ext2fs configuration respec-
tively. This was because of Nilfs2’s copy-on-write feature,
which tries to convert slow random writes to fast sequen-
tial writes. Note that there is still some performance im-
provement room for this SSD device. The basic performance
graph shows that such conversion could potentially improve
throughput up to x115.67. Although current IO techniques
can improve IO performance on flash SSDs substantially,
they cannot reach to the potential performance.

Based on this observation, we had a further experiment
to study the potential performance improvement of the pro-
posed flash SSD oriented IO management. Similarly, we
conducted a trace driven experiment. We implemented IO
management techniques such as write coalescing, write con-
verting and write aligning, on top of our IO replaying envi-
ronment, and tested IO performance of such techniques on
the environment. IO trace files were generated by TPC-C
execution on raw device configuration. For studying the ef-
fects of checkpoint, we tested two checkpoint intervals (30
and 300 seconds) for TPC-C execution. Several buffer size
configurations were also studied for IO management. Figure
3 summarizes the results. Major findings are summarized
below.

• Write coalescing could reduce write time by reducing
the amount of writes. The merging effect became larger
with longer checkpoint intervals and larger buffer sizes.

• Write converting could successfully translate random
accesses into a sequential order. Thus significant im-
provement of write performance was observed.

• Write aligning could reduce the write time around 50%
even for improved write sequence by write converting.

• Simple write deferring using IO management window
increased total write time. This was possibly due to
flash SSD’s bathtub effect[5].

 0

 100

 200

 300

 400

 500

 600

 700

30s 300s 30s 300s 30s 300s 30s 300s

w
rit

e 
tim

e 
(s

)

Checkpoint interval (seconds) and buffer size (MB)
8MB 80MB 800MB infinite

7.
73

6.
80 8.
14

6.
75 8.
11

5.
97 8.
00

5.
994.
80

4.
22 4.
49

3.
76 4.
48

3.
26 4.
49

3.
26

No scheduling
Deferring

Deferring+Coalescing
Deferring+Coalescing+Converting

Deferring+Coalescing+Converting+Aligning

Figure 3: Online Scheduling with varied buffer size limits

Interestingly, overall performance improvement was not
so sensitive to write buffer sizes. 80MB buffer could obtain
performance improvement that was comparable with exper-
imentally assumed infinite buffer.

4 Conclusion

We have proposed flash SSD oriented IO management for
data intensive applications. By utilizing database check-
point information, the scheduling opportunities can be fully
maximized. Preliminary experiment shows that our proposal
could achieve potential performance benefit of flash SSD.
We continue to explore further topics such as efficient run-
time read/write scheduling to balance checkpoint flushing
overhead and implementation of the proposed IO manage-
ment to current storage software stacks.

References

[1] S.-W. Lee and B. Moon. Design of flash-based DBMS:
an in-page logging approach. In Proc. of SIGMOD, pp.
55-66, 2007.

[2] W. K. Josephson, L. A. Bongo, D. Flynn, and K. Li.
DFS: A File System for Virtualized Flash Storage. In
Proc. of FAST, pp. 85-100, 2010.

[3] Y.-R. Kim, K.-Y. Whang, and I.-Y. Song. Page differ-
ential logging: an efficient and DBMS independent ap-
proach for storing data into flash memory. In Proc. of
SIGMOD, pp. 363-374, 2010.

[4] H.-J. Choi, S. H. Lim, and K. H. Park. JFTL: A flash
translation layer based on a journal remapping for flash
memory. ACM TOS, vol. 4, no. 4, 2009.

[5] R. Freitas and L. Chiu. Solid-State Storage: Technol-
ogy, Design and Applications. FAST2010 Tutorial,
http://www.usenix.org/events/fast10/
tutorials/T2.pdf, 2010.

2


