

社団法人 電子情報通信学会 信学技報
THE INSTITUTE OF ELECTRONICS, IEICE Technical Report
INFORMATION AND COMMUNICATION ENGINEERS

A Study on Efficient Searching Top-k Semantic Similar Sentences
Yanhui GU† Zhenglu YANG† and Masaru KITSUREGAWA†

†Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 Japan
E-mail: †{guyanhui,yangzl,kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract Semantic similarity measure between sentences is an important issue in many applications, such as, text mining,
Web page retrieval, dialogue systems, and so forth. Although it has been explored for several decades, most of these studies
focus on how to improve the effectiveness of the problem. In this paper, we address the efficiency issue, i.e., for a given
sentence collection, how to efficiently discover the top-k most semantic similar sentences to the query. It is a very important
issue for real applications while existing state-of-the-art strategies cannot satisfy the performance requirement of the users. We
introduce a general framework to tackle the issue, in which several efficient strategies are proposed. Extensive experimental
evaluations demonstrate that our approach outperforms the state-of-the-art methods.

Keyword semantic similarity, query aggregation, Top-k

1. Introduction

In many applications, searching semantic similar
sentences is an important issue, such as text mining,
Web page retrieval, and dialogue systems, etc. The
framework for such application is: given a collection
of sentences, the system gives the most (i.e., top-k)
semantically similar sentences to a query.

The problem can be solved by firstly measuring
the semantic similarity score between the query and
each sentence in the data collection using the
state-ofthe-art techniques [6, 9, 11, 13, 15], and then
sorting them with regard to such similarity score and
finally returning the top-k ones. However, when the
size of the data collection increases, the scale of the
problem has dramatically increased.

Note that almost all the previous studies focus on
improving the effectiveness of the problem while in
this paper we firstly propose the strategy which
addresses the efficiency issue in the literature.
Secondly, most of the previous approaches are
threshold-based, i.e., the similarity threshold is
predefined. But it is the case that such threshold is
difficult for user to predefine because the returned
results are sensitive with the threshold value, i.e., if
the threshold is too small, few results will be
returned while too many results will be returned
when the threshold is set to be too large. Therefore,
searching top-k similar sentences seems to be very
challenging.

Traditionally, techniques for measuring similarity
between long texts (e.g., documents) have centered
on analyzing co-occurred words [14]. Such methods

are usually effective when dealing with long texts
because similar long texts usually contain a degree of
sharing words. However, in short texts (e.g.,
sentences), word co-occurrence may be rare or even
null. This problem poses a difficult computational
challenge that we cannot apply the document
similarity measurement strategies in sentences
directly.

To remedy such problem, extensive studies have
been explored based on the feature of sentence and
can be classified into the following main groups: (1)
knowledge-based strategies [15, 11]; (2)
corpus-based strategies [6]; (3) common word order
based strategies [9, 6]; (4) hybrid strategies [6, 9].
Since words are the components of sentences, word
similarity is a non neglectable feature when we
measure the sentence similarity [6, 9, 11].

There are two questions we are facing when search
top-k semantic similar sentences. (1) Scalability.
Traditional approaches [9, 6] will compute all the
similarity between the query and candidates in the
data collection. However, it is time consuming when
searching top-k results in rather large data collection.
If more features are taken into account, it will
become more worse. (2) Efficiency. For searching
top-k, we need not know all the similarity score
between query and the candidates in the data
collection, i.e., we only need know their orders. We
regard that the candidates in the data collection will
following some orders which are based on the
similarity strategies. Therefore, if we preprocess the
candidates, the first result will be returned to the user

almost instantly and the more results will be output
following the execution time. In this paper, we aim to
address such challenges. Precomputing all the
similarity scores of candidates may tackle the
problem we mentioned [12]. However, data is
frequently changed, e.g.,Web. Re-computing and
processing all the similarity scores is time and space
consuming. In addition, evaluating all the similarity
scores also seems unpractical because we cannot
predict a user’s query. Therefore, computing the
similarity on-the-fly seems a practical solution.

It should be noted that, we do not discuss the other
optimization strategies, e.g., caching strategies,
cloud computing which are out of the scope of our
paper.

The contribution of this paper are as follows:
(1) We propose a strategy to tackle the efficiency

of searching top-k semantic similar sentences, which
is different from previous works which focus on the
effectiveness aspect. We take two representative
kings of measurement strategies, i.e., string
similarity strategies and semantic similarity
strategies. More similarity measurement strategies
can be incorporated into the proposed framework
which will be discussed later in this paper.

(2) We propose efficient strategies to extract the
top-k results. For each similarity measure, we
introduce a corresponding strategy to minimize the
number of candidates to be evaluated. A rank
aggregation method is presented to optimally obtain
the top-k results when assembling the features.

(3) We conduct comprehensive experiments and
evaluate the query efficiency of the proposed
strategies. The results show that the proposed
strategies outperform the state-of-the-art methods.
2. Problem Statement

Formally, for a query sentence Q, finding a set of k
sentences P in a given sentence collection S which
are most similar to Q, i.e., ∀p ∈ P and ∀r ∈ (S
−P) will yield sim(Q, p) ≥ sim(Q, r). To measure the
similarity sim(Q, P) between two sentences, we apply
the state-of-the-art strategies by assembling multiple
similarity metric features together [9, 6]. Because we
focus on tackling the efficiency issue in this paper,
we select several representative features from the
main categories based on the framework which has
been proposed in [6].

2.1. Similarity Measurement Strategies
String-based Similarity
String similarity measures the difference of syntax

between strings. An intuitive idea is that two strings
are similar to each other if they have enough common
subsequences (i.e., LCS [4]). We focus on three
representative string similarity measurement
strategies, i.e., NLCS, NMCLCS1 and NMCLCSn1
which are denoted as SimNLCS, SimMCLCS1 and
SimMCLCSn in the following.

NLCS LCS is a common string similarity
measurement strategy and it measures the longest
common subsequence of two strings. The similarity
score is the length of LCS normalized by the product
of the length of two strings. For two strings wi, wj ,
Formula 1 tells us how to evaluate their NLCS
similarity.

We take two strings abacd and acadb as an
example. These two strings have common
subsequence a, aa, ad or aad while aad is the longest.
So LCS(abacd, acadb)=3 and SimNLCS(abacd,
acadb)= 9/25 .

NMCLCS1 NMCLCS1 measures the similarity
between two strings where they have the maximal
consecutive LCS from the first character which tells
us whether these two strings have the maximal
consecutive prefix substring. Different from NLCS,
NMCLCS1 has two properties: (1) The longest
common subsequence in NMCLCS1 should be
consecutive; (2) The two strings should have the
same first character. So the NMCCLS1 similarity
between wi and wj is indicated as the following
formula.

We take examples to illustrate how NMCLCS1
works. (1) Two strings abcd and abed have the
longest common subsequence abd, but not
consecutive. Therefore MCLCS1(abcd,abed)=ab and
SimNMCLCS1(abcd,abed)= 4/16 . (2) Although abcd
and bbcd have the longest common subsequence bcd
and also be consecutive, they are different in the first
character. So MCLCS1(abcd,bbcd)=0 and
SimNMCLCS1(abcd,bbcd)=0;

NMCLCSn Similar to NMCLCS1, NMCLCSn
measures the similarity between two strings where
they have the maximal consecutive common
subsequence. The only difference here is that it starts
at any position. We show the NMCLCSn similarity
measurement strategy of two strings wi and wj as

follows:
For better under how NMCLCSn works, we take

two strings abcd and bbcd as an example. Because
NMCLCSn does not take the first character into
account, so MCLCS(abcd,bbcd)=bcd and
SimNMCLCSn(abcd,bbcd)= 9/16.

Corpus-based Similarity
Corpus-based similarity measurement strategy is

to recognize the degree of similarity between words
using large corpora [8]. There are several kinds of
strategies: PMI (PointwiseMutual Information) [16]
applies the search engine to gather the existence
information from the Web; LSA (Latent Semantic
Analysis) [7, 8] analyzes a large corpus of natural
language text and generates a representation that
captures the similarity of words and text passages;
HAL (Hyperspace Analogues to Language) [1] uses
lexical co-occurrence to produce a high-dimensional
semantic space to capture the semantic information.
There also exist some other strategies, e.g.,
chi-square, log-likelihood, and so forth. In this paper,
we use the SOC-PMI (Second Order Co-occurrence
PMI) word similarity method [5, 7] that uses PMI to
sort lists of important neighbor words in a context
window of the two target words from a large corpus.
The underlying idea is that the neighbors of the two
target words have the abundant semantic context with
each other and aggregate the more important
information. PMI for two words wi,wj is defined as
follows:

Common Word Order
Common word order measures the similarity

between the common words of sentence pair. If two
sentences have some words in common, we can
measure how similar the order of the common words
in these two sentences. For example, we have two
sentences P and Q, and there are δ words appear in
both sentences. We assign a unique index number for
each common word in P from 1 to δ, that is X = x1, ...,
xδ and them mark the index number to the common
word Y in Q based on such unique index number. So
the common word order similarity of two sentence is
as follows:

2.2. A General Framework

To measure the overall similarity between two

sentences, a general framework is needed to
incorporate all the similarity measurement strategies.
From the previous works, [6] is the most
comprehensive approach which incorporates string
similarity, semantic similarity and common word
order similarity into its framework. Fig. 1 shows the
concept of the framework. The string similarity base
is composed of three different similarity
measurement strategies, i.e., NLCS, NMCLCS1 and
NMCLCSn. The final sentence pair similarity is the
aggregation of string similarity, semantic similarity
and common word order similarity. The common
words plays syntax information in sentence pair.
However the number of common word is rare and [6]
demonstrates that common word order similarity
plays a less important role in semantic processing of
short text, e.g., sentence. Therefore, they ignore the
such similarity in the implementation of their
framework. Fig. 2 is the implementation of the top-k
similar sentences searching framework.

If we want to obtain the top-k semantic similar
sentences, we should calculate all the query sentence
pairs and sort the overall sentence similarity score
list and finally obtain top-k value. We demonstrate
how [6] find the top-3 result in Fig. 2. However,
accessing and computing all the sentences in the data
collection is time consuming and it is inefficient
when the data collection is large. Therefore, an
efficient searching top-k semantic similar sentences
strategy is needed.

3. Proposed Approaches
In this paper, we propose an efficient framework

based on [6] which is the most effective in the
literature of measuring sentence semantic similarity.
Our key idea is by building appropriate index in the
preprocessing, we only need access a small part but
not the whole data collection. The query sentence and
each candidate in the data collection are sent to two
modules (i.e., String similarity evaluator,
Corpus-based similarity evaluator) respectively, to
obtain the corresponding similarity score. Then, the
scores from different modules are assembled and
ranked, resulting in the final ranked list. We
introduce the best first search strategies of string
similarity and semantic similarity evaluator,
respectively. After that, the final assembled
framework will be introduced. There are many
studies on exploring how to efficiently search top-k
similar words with respect to string similarity [19].
In this paper, we apply NLCS, NMCLCS1,
NMCLCSn as string similarity features.
3.1. Assembling Similarity Features

Our task is to find the top-k similar semantic
sentences.We introduce an efficient approach to
hasten the process of searching top-k similar
sentences, based on the rank aggregation algorithm
[2]. For example, there are five sentence in the data
collection. For query Q: My father likes his work at
Toyota. Based on two different similarity score list,

we obtain two lists as shown in Fig. 4. Gray
rectangles in each list denote the sentence ID and the
similarity score behinds it. In [2], they tell us that if
a candidate in the data collection whose similarity
score Sim(Q, Si)threshold, there is at least for one
feature that Simfeature(Q, Si) threshold. We use an
example to illustrate the process which is figured in
Fig. 4. In the first iteration, we cannot obtain the
top-1 result for either similarity score is smaller than
the threshold. We put the similarity score into the
max queue. The top-1 result can be outputted because
S3 : 0.91, threshold : 0.885. In addition, we can
obtain top-3 results in the third iteration. However,
the sentences are composed of words and we can also
apply searching top sentences strategies in words
which has been proposed in [18]. The remaining
processes can be executed in s same way as Fig. 4
shows.

4. Related Work
Measuring the semantic similarity between

sentences is not similar with the methods of
measuring the similarity between documents [3] and
words. Sentence is shorter than document but longer
than individual words. There is less work related to
the measurement the semantic similarity between
sentences. The methods of measurement can be
classified into the following major categories: word
co-occurrence or vector-based document model
methods [10], corpus-based methods [6–8], hybrid
methods [16, 9]. However, the document model
methods are not very effective when we measure the
sentence level similarity. The corpus based methods
uses the outside resource to measure the semantic
similarity. The hybrid methods fuse two or more
methods into a uniform model, e.g., corpus based and
document model based, corpus-based and
knowledge-based, etc. However, all the approaches
above is not take the efficiency into account. When
we search top-k semantic similar sentence, the
methods above should access all the sentences in the
data collection. To the best of our knowledge, we
firstly propose a strategy on searching top-k semantic
similar sentence in the literature. Our work is similar
with [18], while [18] focus on word level, i.e., their
approach in on searching top-k semantic similar
words but not sentences.
5. Conclusion and Future Work

In this paper, we proposed an efficient searching
top-k semantic similar sentences strategy based on a
state-of-the-art framework which has been proposed
in [6]. This is the first work in searching semantic
similar in large data collection. Several efficient best
search strategies are proposed to tackle the efficiency
issue in the traditional similarity measurement
approach. Our experimental evaluation demonstrate
the efficiency on searching top-k semantic similar
sentences. In the future, we will research on other
similarity measurement strategies to further evaluate
the efficiency and effectiveness.

References
1. C. Burgess, K. Livesay, and K. Lund. Explorations in

context space: words, sentences, discourse. Discourse
Processes, 1998.

2. Ronald Fagin, Amnon Lotem, and Moni Naor.
Optimal aggregation algorithms for middleware. In PODS,
2001.

3. Vaseleios Hatzivassiloglou, Judith L. Klavans, and
Eleazar Eskin. Detecting text similarity over short
passages: Exploring linguistic feature combinations via
machine learning. In EMNLP/VLC, 1999.

4. D. S. Hirschberg. A linear space algorithm for
computing maximal common subsequences. Commun.
ACM, 1975.

5. Aminul Islam and Diana Inkpen. Second order
co-occurrence PMI for determining the semantic similarity
of words. In LREC, 2006.

6. Aminul Islam and Diana Inkpen. Semantic text
similarity using corpus-based word similarity and string
similarity. ACM Transactions on Knowledge Discovery
from Data, 2008.

7. T. Landauer and S. Dumais. A solution to plato’s
problem: The latent semantic analysis theory of
acquisition, induction and representation of knowledge.
Psychological Review, 1997.

8. T. K. Landauer, P. W. Foltz, and D. Laham. An
introduction to latent semantic analysis. Discourse
Processes, 1998.

9. Yuhua Li, David McLean, Zuhair A. Bandar, James D.
O’Shea, and Keeley Crockett. Sentence similarity based
on semantic nets and corpus statistics. IEEE Trans. on
Knowl. and Data Eng., 2006.

10. Charles T. Meadow. Text information retrieval
systems. Academic Press, 1992.

11. Rada Mihalcea, Courtney Corley, and Carlo
Strapparava. Corpus-based and knowledge-based measures
of text semantic similarity. In AAAI, 2006.

12. Patrick Pantel, Eric Crestan, Arkady Borkovsky,
Ana-Maria Popescu, and Vishnu Vyas. Web-scale
distributional similarity and entity set expansion. In
EMNLP, 2009.

13. Mehran Sahami and Timothy D. Heilman. A
web-based kernel function for measuring the similarity of
short text snippets. In WWW, 2006.

14. Gerald Salton, editor. Automatic text processing.
Addison-Wesley Longman Publishing Co., Inc., 1988.

15. George Tsatsaronis, Iraklis Varlamis, and Michalis
Vazirgiannis. Text relatedness based on a word thesaurus.
J. Artif. Intell. Res. (JAIR), 2010.

16. Peter D. Turney. Mining the web for synonyms:
Pmi-ir versus lsa on toefl. In EMCL, 2001.

17. P. Wiemer-Hastings. Adding syntactic information
to lsa. In Proceedings of the 22nd Annual Conference of
the Cognitive Science Society, 2000.

18. Zhenglu Yang and Masaru Kitsuregawa. Efficient

searching top-k semantic similar words. In IJCAI, 2011.
19. Zhenglu Yang, Jianjun Yu, and Masaru Kitsuregawa.

Fast algorithms for top-k approximate string matching. In
AAAI, 2010.

