DEIM Forum 2012 XX-Y

Efficient Subgraph Search with Presorting and Indexing on
Label Frequency

Haichuan Shang

Masaru Kitsuregawa

Institute of Industrial Science
University of Tokyo

{shang,kitsure}@tkl.iis.u-tokyo.ac.jp

ABSTRACT

Graphs are widely used to model complicated data seman-
tics in many applications. In this paper, we aim to de-
velop efficient techniques to retrieve graphs, containing a
given query graph, from a large set of graphs. Consider-
ing the problem of testing subgraph isomorphism is gener-
ally NP-hard, most of the existing techniques are based on
the framework of filtering-and-verification to reduce the pre-
cise computation costs; consequently various novel feature-
based indexes have been developed. While the existing tech-
niques work well for small query graphs, the verification
phase becomes a bottleneck when the query graph size in-
creases. Motivated by this, in the paper we firstly propose a
novel and efficient algorithm for testing subgraph isomor-
phism. Secondly, we develop a new feature-based index
technique to accommodate the proposed algorithm in the
filtering phase. Our extensive experiments on real and syn-
thetic data demonstrate the efficiency and scalability of the
proposed techniques, which significantly improve the exist-
ing techniques.

1. INTRODUCTION

Many recent real applications strongly demand efficiently
and effectively managing graph structured data such as paths,
trees, and general graphs. These applications include Bio-
informatics, Chemistry, Social networks, Software and Data
Engineering, World Wide Web, etc. In such applications,
graphs are used to model complex structures and relation-
ships. For instance, graphs may represent chemical com-
pounds in Chemistry. Graphs are also used in UML and ER
diagrams.

The subgraph containment query problem can be described
as follows. Given a graph database D = {g1, g2, ..., gn} and
a query graph g, retrieve all graph g; € D such that ¢ is a
subgraph of g;. For example, if we use the graph in Figure 1
as the query ¢, then among the 3 graphs (D = {¢a, g5, 9c})
in Figure 2, only graph g contains g. The subgraph contain-
ment (or subgraph isomorphism) problem has been shown
NP-complete.

In recent years, a number of techniques for processing
subgraph containment queries have been proposed [6, 8, 2].
The main paradigm follows the framework of filtering-and-
verification which is based on feature-based indexes. In the
filtering phase, a feature-based index is used to prune the

Cc—C ) C\(u:}_ud N C
N—C/ Ililg—ucg/ \Lés \C —C/
Ne ¢ \&7_%/ O/ \C
(a) (b) (c)

Figure 2: Simple Graph Database

captured negative results and generate a candidate set. In
the verification phase, a precise computation is conducted
to generate the final results based on subgraph isomorphism
(NP-complete). The existing techniques include glndex [6],
TreePi [7] and TreeDelta [8].

However, the existing verification techniques are not ef-
ficient especially when the query graph size becomes large.
Note that the larger graphs the higher cost for subgraph
isomorphism testing. Moreover, due to intrinsic limits of
feature-based indexes, the accuracy of filtering may be get-
ting worse while graph sizes are increasing; that is, the ratio
of the generated candidate set size over the actual result
set size is getting larger. This leads to a dramatic perfor-
mance degrade with an increment of query graph sizes. In
[2], Cheng et al. propose a new paradigm, FG-Index, with
the aim to use index only to process a subgraph contain-
ment query; that is, verification free. Nevertheless, when
query graph sizes increase, many graphs still remain for a
verification.

Motivated by these, in this paper, our primary focus is on
developing efficient verification techniques. We propose an
efficient subgraph isomorphism testing algorithm QuickSI
(Quick Subgraph Isomorphism) to conduct a verification
to generate final results. Comparing to the well adopted
Ullman’s algorithm [5], QuickSI achieves up to 1-4 orders
of magnitude speed-up. In addition, our verification tech-
niques can also be used in the filtering phase to efficiently
generate candidates.

Our main contributions are summarized as follows.



e To significantly reduce the verification costs, we de-
velop an efficient subgraph isomorphism testing algo-
rithm QuickSI. Several new techniques are proposed.
Firstly, we propose QI-Sequence, for a given query
graph, to bound the search space in the subgraph iso-
morphism testing. Secondly, we determine the QI-
Sequence order based on the frequencies of features
that appear in the underneath graph database. The
QI-Sequence order further reduces the search space.
With the two techniques, our new algorithm QuickSI
significantly improves the existing verification tech-
niques by up to 4 orders of magnitudes speed-up.

e In addition, we develop a novel index called Swift-
Index where the mined tree features are represented
as QI-Sequences and all QI-Sequences in the index are
organized as a prefix tree. The prefix tree index makes
it possible to significantly reduce the cost in the filter-
ing phase by sharing the cost of subgraph isomorphism
testing. Note that in order to check whether or not a
graph contains a query graph, in the filtering phase, all
the existing algorithms need to check if the graph con-
tains all the indexed features that are contained in the
query graph (subgraph isomorphism). Sharing reduces
the cost of checking the common parts of several fea-
tures. Our Swift-Index significantly outperforms the
filtering techniques used in gIndex.

Experimental results show that our new techniques signif-
icantly outperform the most recent, efficient technique, FG-
index [2] towards both index construction and query pro-
cessing when query graph size is not very small. Against
real data set, our query processing techniques can achieve
up to an order of magnitude speed-up over FG-Index while
the index size is 20% of FG-Index. In addition, the results
also show that our techniques have high scalability on the
database size, the graph size and the number of distinct la-
bels.

The rest of the paper is organized as follows. Section 2
presents the problem statement and the framework. Section
3 introduces a new verification approach and a new sub-
graph isomorphism testing algorithm called QuickSI. Section
4 proposes a new filtering approach with a new prefix-tree
index called Swift-Index. Experimental studies are reported
in Section 5. The conclusion is given in Section 6, respec-
tively.

2. THE PROBLEM STATEMENT AND THE
FRAMEWORK

We firstly give our problem statement on subgraph con-
tainment queries (or subgraph isomorphism queries). Then,
we outline the framework of filtering-and-verification fol-
lowed by an overview towards the most related work - Ull-
man’s Algorithm for verification. For presentation simplic-
ity, graphs to be studied in the paper are “simple” undi-
rected graphs; nevertheless, our results can be immediately
extended to cover directed and/or multigraphs.

2.1 Problem Statement

A graph is simple if it has no loops nor multiple edges.
Given two sets of labels, Xy and X g, a labeled graph g is
defined as a triple (V, E,l) where V is the set of vertices,
E C V xV is the set of undirected edges, and [ is a mapping

feature graph ID-list
fi|]N—C—C {a, b, c}
C
e C—C< {c}
C
C—=C
f C/ {a, b}
Ne—c

Figure 3: A Sample of Feature-based Index

function: V — ¥y and F — Y g. We denote the vertex set
and the edge set of a graph ¢ as V(g) and E(g), respectively.
Given an edge (u, v) € E(g) and the mapping function ! of
g, l(u), l(v) are the labels of u and v in g and I(u,v) is the
label of the edge (u,v) in g. We use |V(g)| and |E(g)| to
represent the number of vertices and the number of edges,
respectively.

Definition 1. (SUBGRAPH ISOMORPHISM) Given two
graphs ¢ = (V/,E’,l') and g = (V, E, 1), ¢’ is subgraph-
isomorphic to g, denoted as ¢’ C g, if there is an injective
function f: ¢g' — g such that

1. Yo € V', f(v) € V(g) such that I'(v) = I(f(v)).

2. Y(u,v) € E', (f(u), f(v)) € E such that I'(u,v) =
I(f(u), f(v)).

A graph ¢’ is a subgraph of g if ¢’ is subgraph-isomorphic
to g where g is also called a supergraph of ¢’, denoted by
g C g. We may also simply say that g contains g’. A
subgraph IndG(V’,g) of g is induced if it is the maximum
subgraph for a given subset V' of V(g); that is, IndG(V’, g)
consists of all edges in g with the vertices in V.

Definition 2. (SUBGRAPH CONTAINMENT QUERY)
Given a graph database D = {g1,92,...,gn} and a query
graph ¢, the problem of subgraph containment query (or
subgraph isomorphism query) is to find a set of graphs which
contain q from D, such as Dg = {g|lg € D A q C g}.

Problem Statement. In this paper, we will develop effi-
cient algorithms to process subgraph containment queries.
In the rest of the paper, we assume edges are not labeled;
nevertheless our techniques can be immediately extended to
cover edge-labeled graphs.

2.2 Filtering and Verification Framework

The framework of filtering-and-verification is presented in
Algorithm 1, where a feature-based index plays the key role
in the framework.

FEATURE-BASED INDEX. A feature based index I =
{(fi, fi-list)} is a set of indexed items, (f;, fi.list). Here,
fi is a fragment (or subgraph) of a graph, which can be
a path, a tree, or a graph. And f;.list is a list of graph
identifiers for the graphs that contain the subgraph, such as
filist = {g:.ID|f; C gi A g; € D}. (Note that we use g;.ID
to denote the graph identifier of graph g;.) Below, we call
fi a feature and f;,list its graph ID-list (or simply ID-list).



Algorithm 1: QueryProecssing(q, I, D)

Input q is a query graph;

I is a graph index;

D is a graph database;
Output: R is a set of matched graphs;
F:={filfiCqnficlk

C = ﬂfieF fi-list;

R := 0

for each g € C do

Lifqggthen

O A W N

| R=RU{g};

return R

~

EXAMPLE 1. The feature f1 in Figure 3 is contained by
all three graphs in Figure 2, therefore its ID-list fi.list =
{a,b,c}. As the feature fa is only contained by graph (b) in
Figure 2, its ID-list fo.list = {b}.

As shown in Algorithm 1, the filtering phase and the ver-
ification phase are specified in line 1-2 and line 4-6, respec-
tively. Line 1 retrieves the features, which are contained
in the query graph ¢, from the feature-based index I. Line
2 gets all graph identifiers for the graphs that contain all
the features appearing in the query graph, which is known
as the candidate set C. Line 4-6 process subgraph isomor-
phism testing for each graph g whose graph identifier is in
C. If there is a subgraph isomorphism mapping from ¢ to
g, ¢ € g, g is added to the result set R. Obviously, ¢ € g
if [V (g)] < |V(q)]. Line 7 finally returns the matched result
set.

In the next subsection, we introduce the Ullman’s algo-
rithm which is widely used for subgraph isomorphism test-

ing.

3. A NEW VERIFICATION APPROACH

Ullman algorithm is designed based on the branch and
bound paradigm [4]. In such a paradigm, one of the criti-
cal issues is how to choose an effective search order so that
it can cut as many branches as possible in searching. It is
important to know that the search order in the Ullman al-
gorithm is random, and a random order can possibly result
in a search order that seriously slows the algorithm. An
example is shown to explain.

EXAMPLE 2. Suppose that in Ullman algorithm, it deter-
mines if a given query graph q (Figure 1) is sub-isomorphic
to the graph gy (Figure 2(b)) by visiting the vertices in the
query graph q according to the following visiting order: vi,
V3, V2, V4, Vs, Ve, and vy. Assume that vi and vs have been
visited. There are 14 pairs of vertices with labels N and C
in gy that need to be considered (2 N-labeled vertices, and
7 C-labeled vertices). In fact, there are only three pairs of
vertices in g, namely, (u1,us), (ug,us) and {ug,ur) need to
be considered.

In order to reduce the search space, in this paper, we pro-
pose QI-Sequence to encode a graph for efficient subgraph
isomorphism testing. In brief, we encode a search order and
topological information in QI-Sequence for a query graph q,
and we determine the effective search order using the fre-
quencies of features that appear in the underneath graph

database D. Following the search order and other topo-
logical information specified in the QI-Sequence for ¢, we
identify the mapping between ¢ and g. Such encoding and
ordering can significantly reduce the unnecessary branch and
bound, and is shown effective in our extensive experimental
studies.

The rest of this section is organized as follows. Section
3.1 introduces QI-Sequence to encode a query graph. Sec-
tion 3.2 presents an efficient algorithm QuickSI to test if
the query graph ¢ is sub-isomorphic to a data graph, based
on the QI-Sequence of ¢q. In Section 3.3, we discuss how to
determine an effective QI-Sequence, as a search order, by ef-
fectively utilizing feature frequencies in the graph database.

3.1 QI-Sequence

Given a query graph q of size 8 in terms of the number of
vertices in ¢, a QI-Sequence is a sequence that represents a
rooted spanning tree for ¢. It consists of a list of spanning
entries, T;, for 1 < i < B, where each T; keeps the basic
information of the spanning tree of ¢q. In QI-Sequence, a T;
may be followed by a list of extra entries, R;;, which keeps
the extra topology information related to the corresponding
spanning entry.

Formally, a QI-Sequence of ¢ is represented as a regular
expression SEQ, = [[T;R};]°]. Here, T; contains several
information. Firstly, T;.v records a vertex vy in a query
graph ¢, for example, T;.v := vi. Secondly, T; keeps a pair,
[T;.p, T;.1], where T;.p stores the parent vertex of T;.v in
the spanning tree and 7;.l stores the label of T;.v. It is
important to note that the subindex i of T; specifies the
search order. As for R;j, there are two kinds of extra entries
in R;;, namely, degree constraint and extra edge. The degree
constraint is in the form of [deg : d], where d is the degree of
v;.! The extra edge (i.e., edge that does not appear in the
spanning tree) is in the form of [edge : j], where j indicates
a vertex indicated by Tj.v in SEQ,. We only record such
an extra edge, [edge : j], in R;; after T; in SEQq if the extra
edge is from T;.v to Tj.v for j < 4.

Table 1 illustrates two different QI-Sequences of the query
graph, ¢ in Figure 1, based on two different spanning trees.
Note that an entry T; in a QI-Sequence does not neces-
sarily correspond to the vertex v;; for instance, 71 in the
QI-Sequence (b) in Table 1 correspond to vs. The two QI-
Sequences are different. The QI-Sequence (Table 1(a)) is
label selective as the possible mapping of N is less than C'
in graph database. On the other hand, the QI-Sequence (Ta-
ble 1(b)) is random. It is clear that the two QI-Sequences
will have different search spaces when processing subgraph
isomorphism testings. We will discuss how to choose an ef-
fective QI-Sequence in details in Section 3.3.

Let SEQ, and SEQ, be two QI-Sequences for two graphs,
g and g. In the following Theorem 1, we show that if the
two QI-Sequences are identical then the two graphs are iden-
tical. Our QI-Sequence based subgraph isomorphism testing
algorithm is designed based on Theorem 1.

THEOREM 1. Given two graphs ¢’ and g. Let SEQ, and
SEQg be the two corresponding QI-Sequences. If the two
QI-Sequences are identical, then the corresponding graphs,
g and g, must be identical.

!To avoid a redundant computation, we do not record [deg :
d] when d < 2.



Table 1: Two SEQs for query graph ¢ in Figure 1

Type | [Ti.p, T3l | Ti.v Type | [Ti.p, T:.l] | Tiv
T1 [O, N] U1 T1 O, C V4
T2 [1, C} V2 T2 17 C Vs
R21 [deg . 3] T3 17 C U3
T3 2, C v3 T4 2, C Ve
T4 3, C V4 T5 4, C U7
T5 4, C Vs T6 57 C V2
Te, 5, C Ve R61 [deg . 3}

T 6, C v7 Rea [edge : 3]
R71 | [edge : 2] T7 [6, N] vy

Proof-Sketch: Theorem 1 is immediate based on the fol-
lowing result. A QI-Sequence SEQg, for a graph g, can be
uniquely converted to a graph g’ which is identical to g.

3.2 QuickSI Algorithm

In this section, we discuss our new algorithm for subgraph
isomorphism testing. Let ¢ and g be a query graph and
a graph in the candidate set after filtering phase, and let
SEQ, be the QI-Sequence for g. Our QuickSI algorithm is
designed to check if there exists a QI-Sequence for a sub-
graph, ¢’ of g, denoted as SEQ,, which is identical to
SEQq.

The QuickSI algorithm is presented in Algorithm 2. There
are five inputs. (1) SEQ, is the QI-Sequence of a query
graph q of size 8 (= |V (q)]). (2) ¥ and 5 are two vectors
as used in Ullman’s algorithm. (3) g is a graph of size a (=
[V (g)]), and (4) d is the current search position for 1 < d <
B. The algorithm adopts depth-first-search order following
the order explicitly specified in SEQ),.

We explain the two vectors below. Firstly, ## = {Hq,...,
H;,...,Hg} is used to store mapping from the QI-Sequence
SEQq to a graph ¢g. H; := u; indicates that the vertex T;.v
of ¢ has been mapped to the vertex u; € g. Given a success-
ful mapping Hi, Ha, ..., H;, the degree constraint, [deg : z],
specified in R;;, implies that the vertex H; € g must have the
degree, deg(H;, g), not smaller than x; that is, deg(H;, g) >
z. Moreover, each edge constraint [edge : z], specified in
R;;, implies that there must be an edge between H; and H,
in graph g where x < i. Secondly, # = {F1,...,F;, ..., Fa} is
used to indicate whether or not the ith vertex in g is used
at an intermediate state of the computation.

In Algorithm 2, o and 8 are the numbers of vertices in g
and g, respectively. We first test whether computation has
reached the end of SEQ, by checking depth d. If d > g, it
implies that we have already found a QI-Sequence, SEQ/,
for ¢’ C g, that equals SEQ,. We can conclude that q is
a subgraph of g, because ¢ is identical to ¢’ and ¢’ C g.
Otherwise, we get the d-th vertex entry T, and try to find
a mapping vertex in g. If there is a vertex v € g with same
label that satisfies all constraints in the extra entries Rg;,
it can be a valid mapping, and the searching will continue
recursively, until the algorithm ends up with a successful
mapping or fails in all possible trials at a certain label.

EXAMPLE 3. Consider SEQq (Table 1(a)) for the query
graph, q, in Figure 1, and the graph g, in Figure 2(b). The
QuickSI algorithm first finds that ui in g, can be mapped
to Ty. It stores the mapping H1 := u1 and sets the vector
element Fy := 1. For the vertex set V := {u2} which is

Algorithm 2: QuickSI(SEQq, g, ,%,d)
Input

: SEQ,: QI-Sequence of query graph g;
g: a graph;
¢ a vector with length 3, initialized by all 0;
Z: a vector with length «, initialized by all 0;
d: depth, initialized by 1;

Output: Boolean: SEQ), is a subgraph of g;

1 if d >  then
2 L return True;
3 T:=T4 € SEQq;
a4V =
5 if d =1 then
6 | V:={vlveV(g),l(v)=T.land F, =0} ;
7 else
8 V= {vlv e V(g), (v, Hr.p) € E(g), l(v) =T.l and
L Fo=0};
9 for each vertex v € V do
10 for each restriction Ry; € SEQ, do
11 L goto line-9 if Ry, is not satisfied;
12 Hg = v;
13 F,:=1;
14 if QuickSI(SEQ, g,7¢,%,d+ 1) then
15 L return True;
16 F, :=0;

17 return False;

connected to u1, it finds l(uz2) = C which is same as T».1.
When it tests the degree restriction, [deg : 3], specified in
Ro1, it finds the degree of ug is 2, which is less than 3. The
tree search algorithm returns to Th, releases ui by setting
F1 := 0 and matches Th to a different vertex ug. Finally,
it finds a successful mapping A = {ug, us, ur, ue, Us, Ua, U3 }
or H = {ug, us, us, Ua, Us, Us, U7 }.

Correctness. It can be immediately verified that if there
is a QI-Sequence, SEQ, for a subgraph of g, ¢’ C g, that
equals SEQq, then Algorithm 2 must be able to find it.
According to Theorem 1, the correctness of the algorithm is
immediate.

Cost Analysis. Note that the above subgraph isomor-
phism testing follows depth-first search strategy. As the
search depth is fixed, the computation cost depends on the
fan-out at each depth. We define search breadth at depth i
below, denoted by B;. Search breadth represents the num-
ber of possible isomorphism mappings from the prefix se-
quence SEQ! = [[T;R};]']; that is, SEQ! = [[TiR};]'] con-
tains the first ¢ entries in SEQ,.

Definition 3. (SEARCH BREADTH) Given SEQ, for a
query graph g and a graph g, the search breadth B; =|
{1 . SEQ, — g} | (1 < i < B) where SEQ), =
T3 Rfj]z} is a prefix of SEQ,. Also, #" is a distinct mapping
vector from SEQfZ to g. The length of a 7" is i since "
maps SEQZ to g.

Given a QI-Sequence SEQ, and a graph g, the isomor-
phism testing cost is computed as follows. We use Tiso to
denote the total number of comparisons performed in the
algorithm QuickQI. As we can pre-compute the degree for



data graphs, it takes O(1) time to check both kinds of ex-
tra entries (degree constraint and extra edge) if an adjacent
matrix is used. It takes O(deg) to find a forwarding edge
in a data graph g to go one depth further regarding SEQq,
where deg is the degree of the vertex mapped to Hr,., in g.
(Note that T;.p points to the parent vertex of T;.v.)

Tiso = a+Bi-r+ 357 degeijs iy (1)
< a+ By + 20 Bi - degmaz - Tist

Here, deg<i,;> is the degree of the vertex Hr, ., in g at j-th
mapping, r; = 1+ |{Rij|Ri; € SEQq}| which is the number
of extra entries at depth 4, and degmqz is the maximum
vertex degree of g. We have the following Theorem.

THEOREM 2. Let SEQ, = [[T;R};]°] be a QI-Sequence
and degmaz(g) be the mazimum vertex degree in g.

Tiso S « + Bl X degmaw(g)B X T'max,

where Tmag 18 the mazimum number of extra entries for any
Rij‘

PRrOOF. Because we keep connectivity during the isomor-
phism testing, it is immediate that if V ¢ > 2, then

Bi_
B; < Ej:11d69<i—1,j>
< Bi—ldegmaac
The theorem immediate follows from Eq. (1). [

The space requirement is O(|SEQq| + |g|) where |g| de-
notes the space required to store a graph g.

As an example, consider T;s, for testing whether the query
graph ¢ is sub-isomorphic to graph g, (Figure 2(a)), using
the two QI-Sequences in Table 1. With the random QI-
Sequence in Table 1(b), Tiso < 161, whereas with the QI-
Sequence in Table 1(a), T;so < 37.

3.3 Effective QI-Sequence

In this section, we discuss how to determine an effective
QI-Sequence, SEQq, for fast subgraph isomorphism testing.
Reconsider Eq. (1), search breadths play an important role
in subgraph isomorphism testing. Minimizing B; can re-
duce cost of subgraph isomorphism testing. However, it is
too costly to find the optimal QI-Sequence, in order to mini-
mize the total breadths and therefore significantly reduce the
subgraph isomorphism testing cost for any data graph in the
graph database D. Instead, we develop efficient heuristics to
construct an effective QI-Sequence, SEQ,, for a query graph
to reduce the total breadths and the subgraph isomorphism
testing cost for any data graph in the graph database D.
Our approach is based on the inner support defined below.

Definition 4. (INNER SUPPORT) Given a query graph,
q, and a data graph, g, the inner support ¢(q, g) is the num-
ber of isomorphic mappings from ¢ to g.

It is immediate that the search breadth B; is ¢(SEQ}, g)
for a data graph.

Counting Inner Supports for Vertices and Edges.
Suppose that we index all 1-vertex and 1-edge features, we
can count the average inner support ¢quvg(v) for each dis-
tinct vertex v and ¢@aug(e) for each distinct edge e in the
graph database D as follows.

_ Hflfw) e V(g) N g € D}|

Geo (V) = 101 F(o) € V(g) A g € DY)

(2)

V3 v
,C_s_l_t\“
Vi v /! s
N —1.4-&( /
5.1 5.1
\\6 —5.1—\,6C: 7
Figure 4: The Weight Graph

Table 2: Average Inner Support

vertices | ¢(v) edges | ¢(e)

N 15 (N, C) | 14

C 6.1 (€, Q) | 5.1
sy — U106 € Blg) ng € D] 5

~ {glf(e) € E(g) ng € D}

The average inner support ¢auvg(€) (Pavg(v)) of an edge e
(of a vertex v) is the average number of its possible map-
pings in the graphs which contain this edge (vertex). In
Eq. (3), we omit the graphs which do not contain any map-
ping of the given edge, because these graphs will be pruned
in the filtering step. Therefore, only the graphs that contain
at least one mapping of the given edge need to be tested.
Eq. (3) counts the average number of distinct edges in the
graphs which have high probability not to be pruned in the
filtering step. It is reasonable because only the graphs which
pass the filtering step need to be tested in the verification
step. The statistic for the graphs in the candidate set after
filtering is more valuable than the statistic for all graphs in
the database.

Finding Minimum Spanning Tree. Once the average
inner supports of each distinct vertex and edge are counted,
we add those supports to the vertices and edges of ¢ and
convert g to a weighted graph ¢", where each edge e in ¢“
has a weight w(e) = @avg(e) and w(v) = @aug(v). Then,
we find the minimum spanning tree in ¢ based on edge
weights. The minimum spanning tree will be used to gen-
erate a QI-Sequence of ¢ and we will use the vertex weights
to determine the order of the first two entries in such a QI-
Sequence.

We extend Prim’s algorithm [1] to compute the minimum
spanning tree for ¢* and construct the QI-Sequence for q.
Our extension contains the technique to choose a “better”
minimum spanning tree when more than one minimum span-
ning tree are involved. The main idea is presented in Algo-
rithm 3.

In Algorithm 3, Vpr and Er store the the set of vertices
and edges in intermediate steps. P is the set of current
possible edges which will be chosen to the spanning tree.
SEQq will be refined as follows to fix the order of the first
two vertices to generate a QI-Sequence of gq. Suppose that
(u,v) is the first edge in SEQq. If ¢(u) # ¢(v), we pick one
of them with lower average inner support as the first vertex.
Otherwise, we choose one with higher degree. If the degrees
are also equal, we randomly select one.

SelectFirstEdge (Algorithm 4) and SelectSpanningEdge (Al-
gorithm 5) in Algorithm 3 deal with cases when there are
several candidate edges in P with the same weight. Our
algorithm will choose the edge which make the induce sub-
graph of the current vertex set Vr as dense as possible.

EXAMPLE 4. Suppose we have a graph q as shown in Fig-
ure 1(a) and the average frequency is shown in Table 2, the



Algorithm 3: SpanningTree(q")

Algorithm 5: SelectSpanningEdge(P, ¢*)

w

Input : ¢“: weighted query graph;
Output: 7: a minimum spanning tree of g;
SEQq: a Ql-Sequence;

1 Vp = ;
2 Er = @,
3 SEQ, := 0;
a4 P:={ele € E(¢") AV(e' € E)I(¢")Tw(e) < w(e)};
5 ¢ := SelectFirstEdge(P, q%);
6 Er:={e},SEQq < e, V1 := {e.u,ev};
7 Remove e from ¢%;
8 while Vi # V(¢”) do
9 P:={elec E(¢¥)NeueVrAev & Vr};
10 e := SelectSpanningEdge(P, q*, Vr);
11 Er := ErU{e}, SEQq + e, Vr :=VrU{ew};
12 Remove e from ¢“;
13 for each e € g% satisfying e.u € Vr Ae.w € Vi do
14 Sort them by the increasing order of w(e);
15 SEQq < e and remove e from ¢";
16 T := (VT,ET);
17 return T, SEQ;

Algorithm 4: SelectFirstEdge(P, q*)
Input

. P: aset of edges;
q": a weight graph;
Output: e: an edge in P;
1 if |P| > 1 then
2 P :={ele € PAV(e' € P)I(deg(e.u,q")
L deg(ev,q") < deg(e' u,q) + deg(e’'.v,q"))};
3 Randomly select an edge e € P;
4 return e¢;

weight graph ¢ is calculated as Figure 4. In the weight
graph g%, there are only 1 edge (vi, v2) which has the mini-
mum weight 1.4. Therefore, we will select it as the first edge
of the minimum spanning tree. Afterwards, as the edges (va,
vs) and (v2, vr) have the same weight, both of them are se-
lected to the set P. In the function SelectSpanningEdge, we
find that they have same induced subgraph and the degree
of vs3 and vy are also same. Thus we randomly choose one
of them, for example, vs. Assume the edges (vs, va),(va,
vs ), (vs, vs) and (vs, ve) subsequently become the spanning
edges. We add (vz2, v7) to the SEQq as an extra entry.

4. FILTERING-AND-VERIFICATION

Our filtering-and-verification algorithm is shown in Algo-
rithm 6, called QI-Framework, based on the QuickSI algo-
rithm shown in Algorithm 2. Given a query graph g, it first
obtains the candidate set, C, by calling a Filtering procedure
(line 1) which we will discuss in the next section. Next, it
iteratively checks every graph g¢; in the candidate set C' and
inserts g; into final result if ¢ is contained by g¢; by calling
QuickSI (line 3-7). It is worth noting that it only needs to
convert ¢ to a QI-Sequence once (line 2). Finally, it returns
the result R (line 8).

4.1 A New Filtering Approach

We observe that the subgraph isomorphism testing cost

: P: a set of edges;
q": a weight graph;
Vr: a set of vertices;
Output: e: an edge in P;
P:={elee PA (Ve € P)I(wle) <w(e))};
if |[P| > 1 then
L P :={ele € PAV(e' € P)I(|IndG(VrU{ev},q”)| >
[IndG(Vr U{e" v}, q"))};
if |P| > 1 then
L P :={ele € PAV(e' € P)I(deg(e.v,q") <
deg(e’' v, q"))};
Randomly select an edge e € P;
return e;

Input

W N =

[SL"N

i =)

Algorithm 6: QI-Framework(q, I, D)
Input

: g is a query graph;

1 is the index;

D is a graph database;
Output: R: a set of graphs in which ¢ is a subgraph;
C := Filtering(q, I);

Convert g to a QI-Sequence SEQg;
for each g; € C do
A :=A0,...,0}
F :={0,...,0};
if QuickSI(SEQq, gi,7¢,%,1) then
| R=RU{gi};

return R,

i B =>TL B VU R

0]

can be further reduced if two indexed features f; and fx
in the database share a common subgraph. We explain our
main idea below. Suppose that there are two indexed fea-
tures, f; and fr in the database which share a common
subgraph. Let f; be a feature in a query graph ¢q. We need
to test whether f; C f; and further test whether f; C fi, in
the existing filtering-and-verification framework. In our
approach, instead, we pre-compute QI-Sequences for f; and
fr, denoted as SEQy, and SEQy,, and maintain SEQy,
and SEQy, in a prefix-tree index called Swift-Index. Given
a query graph g, we do not decompose the query graph, g,
into a set of features f;. Instead, we search from the prefix-
tree index in a top-down fashion, and test if a QI-Sequence,
say SEQy,, appear in Q using our QuickSI algorithm. The
prefix-tree structure allows us to reduce the computational
cost for subgraph isomorphism testing, because if a prefix
of QI-Sequences does not appear in the query graph ¢, the
whole QI-Sequences cannot appear in q.

Taking the advantage of the paradigm in QuickSI, we de-
velop efficient filtering techniques to generate a candidate
set. Our techniques are based on a new effective prefix-tree
index called Swift-Index which indexes tree features that ap-
pear in the graph database D. Our QuickSI paradigm not
only can be used to speed up the verification but also can
be used to speed up the filtering computation.

Tree features in Swift-Index are organized by a prefir tree
[3]. To construct such an index, we first convert each tree
feature f to a QI-Sequence SEQ;. Then we organize all QI-
Sequences into a prefix tree. Note that in a QI-Sequence of
a feature, there are no extra edge constraints since a feature



is a tree. In the prefix tree, each node represents an entry 715
of a SEQy for a tree feature f such that all entries in SEQ;
are recorded along the path from the root to the node. A
dummy node is created to represent the root in the prefix
tree. Consequently, each node of a prefix tree accumulatively
carry a prefix of a QI-Sequence, SEQ’}.

S.  PERFORMANCE EVALUATION

In this section, we report extensive empirical results to
evaluate the effectiveness and efficiency of our new tech-
niques. We compare our verification algorithm QuickSI de-
scribed in Section 3 against the widely applied subgraph
isomorphism testing algorithm Ullman [5]. To analyze the
benefit of our verification algorithm and index technique on
overall query processing performance, we implement two al-
gorithms GSI and SSI. GSI combines glndex [6] with our
verification algorithm QuickSI by feeding the output of gln-
dex to QuickSI to produce final results. We show that our
verification algorithm can bring immediate benefit to the
performance of current filtering-and-verification based algo-
rithms 2. SSI is a combination of our new index technique
Swift-Index proposed in Section 4 with QuickSI for verifica-
tion. We compare FG-Index [2] and (Tree+A) [8] with
GSI and SSI. All algorithms proposed in this paper are im-
plemented in standard C++ and compiled with GNU GCC.
Experiments are run on a PC with Intel Xeon 2.40GHz dual
CPU and 4G memory running Debian Linux.

In our experiments, we use default parameters or sug-
gested values unless specified otherwise. Particularly, de-
fault values o = 0.1 and § = 0.1 are used in FG-Index [2]
algorithm. In algorithm (Tree+A) , the support thresh-
old is set to 0.01 and the maximal tree size is by default
10. For GSI algorithm, we adopt the default parameters in
[6] with support threshold 0.1 and maximum fragment size
maxzL=10. The values of § and ~ are set to 0.1 and L is set
to 10 in algorithm SSI.

Real dataset. We use the AIDS Antiviral Screen dataset,
which consists of 43,905 classified chemical molecules. The
dataset is publicly available on the website of Development
Therapeutics Program.

5.1 Performance on Real Dataset

The AIDS Antiviral dataset is a popular benchmark in
recent related works[6, 7, 8, 2]. There are totally 62 distinct
vertex labels in the data set but the majority of the vertex
labels are C, O and N. We derive different subsets from the
full collection for comparison purpose. Default real dataset
is a subset containing 10K graphs, which is firstly used in
[6] and can be downloaded from http://www.xifengyan.
net/software.htm. On average, each graph has 25.4 ver-
tices and 27.3 edges. Other subsets with 1K, 5K, 20K and
40K graphs are derived in a similar way in order to study
the scalability of the algorithms against different database
size. We also create a large real dataset in order to evaluate
the performance of our techniques on large graphs. This set
consists of the largest 10K graphs taken from the original
AIDS Antiviral collection. In the large real dataset, each
graph has 40.4 vertices and 44 edges on average. We adopt
the query set from [6] to test the effectiveness of our tech-
nique in terms of query response time. There are six query

*We do not use the index techniques in [7] and [8] as those
indexes are closely interfered with the verification procedure.

sets @4, @8, Q12, Q16, Q20 and Q24. Each query set Q1
consists of 1000 query graphs with i edges. Default query
set is Q16 in the following experiments.

2 2
gm Ullman —— - 10
E 4 QuickSl —e— 1
E‘O QuickSI(R) —>— £
':100 % 10° Tree + A —8—
S, A1 @ 1 FG —=—
.510 g10
£102 W 2102 W
>
10° 103

Q4 Q8 Q12 Q16 Q20 Q24 Q4 Q8 Qf2 Ql6 Q20 Q24
Figure 5: Verification Time Figure 6: Response time

In the first experiment, we demonstrate the efficiency of
our subgraph isomorphism testing algorithm QuickSI against
Ullman algorithm. We first run filtering algorithm proposed
in Section 4 against the default real dataset to create can-
didate sets for each query set. The candidate sets are then
verified for subgraph isomorphism using QuickSI and Ull-
man respectively. We use QuickSI and QuickSI(R) to denote
QuickST algorithm with an effective QI-Sequence and a ran-
dom QI-Sequence, respectively. Average verification time
for each query set is recorded and demonstrated in Figure 5,
which shows that both QuickSI and QuickSI(R) algorithm
significantly outperform Ullman algorithm. Both QuickSI
and QuickSI(R) achieve even more performance gain with
increasing query graph size. For query set 924, the av-
erage runtime of QuickSI is 5,535 times less than that of
Ullman. Moreover, compared with Ullman algorithm, per-
formance of both QuickSI and QuickSI(R) are less sensitive
to query graph size. Meanwhile, QuickSI is twice as fast
as QuickSI(R). It confirms our heuristic QI-Sequence con-
struction algorithm plays an important role in reducing the
verification cost.

Figure 6 illustrates the average query response time of
two previous algorithms FG-Index and (Tree+A) against
different query sets. It turns out that FG-Index is much
more competitive than (Tree+A) in terms of query response
time, which is our primary performance measure.> Thus we
exclude (Tree+A) in the following experiments.

QuicksT [ ssiFiltering [ NN G5! Filering B F6 R N

'S
o

40

w
o
ms)
n w
o o

=)
=)

Response Time (ms)
n
o

Response Time (

o

= o ks L
Q4 Q8 Q12 Q16 Q0 Q24 Q4 Q8 Q12 Q16 Q0 Q2
(a) real data (b) Large real data

Figure 7: Response time

Figure 7 reports the average query response time per query
comparing SSI, GSI and FG-Index algorithms against the
default real dataset and the large real dataset. Filtering
time and verification time (QuickSI) are recorded separately
for SSI and GSI.

3The main goal of (Tree+A) is to reduce mining cost while
achieving high efficiency in processing subgraph contain-
ment queries.



The experiments demonstrate that our new SSI Algorithm
is the clear winner in the three algorithms on both datasets
regarding query processing time.

FG-Index is attractive for very small queries. This is a rea-
sonable result, as for small queries, large amount of graphs in
the candidate set can be verified without subgraph isomor-
phism testing using FG-Index, whereas for larger queries,
the verification free technique can not take effect on most
candidates.

Comparing GSI and FG-Index, we can see that FG-Index
beats GSI with a factor of up to 2 on median-sized data
graphs, while on the large real dataset, GSI Algorithm out-
performs FG-Index by a large margin. Remember that in
[2], gIndex is outperformed by FG-Index Algorithm with
at least one order, while with the help of our efficient ver-
ification algorithm, GSI Algorithm is comparable, in some
cases much better than FG-Index. The difference shows that
our verification algorithm can bring immediate improvement
to the overall query performance of current filtering-and-
verification based algorithms.

GSI Algorithm always spends less verification time com-
pared with SST Algorithms, since its graph-based index has
better pruning ability, but the overall performance of GSI
dramatically decreases when query graph size increases, be-
cause the filtering time grows and becomes the dominant
cost.

We also record the index construction time, number of
features in the index and the size of index for both default
real dataset and large real dataset. Results are listed in
Table 3 and Table 4. It is clear that the SSI technique has
the smallest feature number, construction time and number
of features. Note that both SSI and GSI indexes are counted
in ASCII mode, while FG-Index is counted in binary mode.

Construction Time (s) #Features Index Size
FG-Index 167.08 (166.5 4+ 0.58) 1641 12.5M
GSI 146.6 3276 13M
SSI 26.6 462 5.5M

Table 3: Statistic for Real data

Construction Time (s) #Features Index Size
FG-Index 2133 (2102 + 31) 7100 53.8M
GsSI 306.2 4394 13M
SSI 170.7 922 11.8M

Table 4: Statistic for Large Real data

In order to study the scalability of the algorithms against
the graph database size, Figure 8 demonstrates the overall
performance of three techniques on different subsets of the
AIDS Antiviral collection. Because the binary code of gln-
dex from [6] fails to build index when the number of graphs
reaches 20K, there is no experimental result of GSI for the
20K and 40K datasets. In Figure 8(a), the query set with
medium size Q16 is used as default query set to evaluate the
response time. We can see the SSI wins on all four metrics
in Figure 8, showing that the scalability of SSI also outper-
forms FG-Index.

6. CONCLUSION

In this paper, we study the problem of efficiently process-
ing subgraph containment queries. An efficient subgraph-
isomorphic verification algorithm, QuickSI, is proposed. In

@
S
@
=3
S

. Quicksl 5 — SS| —e—
E 50 S filtering M. ) 500 | GSI
- GSI filtering  ERXRRRKY g FG —=&
2 40 FG SN E 400
E
o 30 S
2
§ 20
8
3 10
[

0 L—5 & 0

1K 5K 10K 20K 40K 1K 5K 10K 20K 40K

(a) Response time (b) Construction time

IS

50

SS| —e— SS| —e—
< — GS| —<— 40 | GSI ——
%3 FG —=— < FG —=—
o =
€ 2 30
22 @

o s o 5 n é 20
]
=1 c
0 0
1K 5K 10K 20K 40K 1K 5K 10K 20K 40K

(c) Feature size (d) Index size

Figure 8: Scalability to #Graphs

addition, combining QuickSI with a novel prefix-tree index,
Swift-Index, our new techniques significantly improve the
existing techniques for subgraph containment queries, in
particular for graphs with median and/or large sizes. Our
new techniques achieve high scalability regarding graph sizes
and graph database sizes. Possible directions for future stud-
ies include an investigation of whether or not our current
techniques can be effectively used to support the existing
techniques for subgraph containment queries.

7. REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. Ullman. Data
Structures and Algorithms. 1983.

[2] J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index: towards
verification-free query processing on graph databases.
In Proceedings of the ACM SIGMOD international
conference on Management of data, pages 857-872,
2007.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. 2001.

[4] A. H. Land and A. G. Doig. An automatic method of
solving discrete programming problems. Fconometrica,
28(3):497-520.

[5] J. R. Ullmann. An algorithm for subgraph
isomorphism. J. ACM, 23(1):31-42, 1976.

[6] X. Yan, P. S. Yu, and J. Han. Graph indexing: a
frequent structure-based approach. In Proceedings of
the ACM SIGMOD international conference on
Management of data, pages 335-346, 2004.

[7] S. Zhang, M. Hu, and J. Yang. Treepi: A novel graph
indexing method. In Proceedings of the International
Conference on Data Engineering, pages 966-975, 2007.

[8] P. Zhao, J. X. Yu, and P. S. Yu. Graph indexing: tree
+ delta <= graph. In Proceedings of the International
Conference on Very Large Data Bases, pages 938949,
2007.



