DEWS2006 3A-04

Effective Sequential Pattern Mining Algorithms for Dense Database

Zhenglu YANG, Yitong WANG!, and Masaru KITSUREGAWA

t Institute of Industrial Science, The Univeristy of Tokyo
Komaba 4-6-1, Meguro-Ku, Tokyo, 153-8505 Japan

Abstract Sequential pattern mining is very important because it is the basis of many applications. Although there has |
a great deal of effort on sequential pattern mining in recent years, its performance is still far from satisfactory because o
main challenges: large search spaces and the ineffectiveness in handling dense data sets. To offer a solution to the
challenges, we have proposed a series of novel algorithms, called the LAst Position INduction (LAPIN) sequential pa
mining, which is based on the simple idea that the last position of an item,the key to judging whether or not a frequent
k-length sequential pattern can be extended to be a frequent (k+1)-length pattern by appendingdhi® itern APIN can
largely reduce the search space during the mining process, and is very effective in mining dense data sets. Our experi
data and performance studies show that LAPIN outperforms PrefixSpan[5] by up to an order of magnitude on long pa

dense data sets.
Key words algorithm, sequence mining, performance evaluation

if an itemset has only one item. That isfemset (x) is written
asxz. The number of items in a sequence is calleditheyth of

Sequential pattern mining, which extracts frequent subsequencd€ Sequence. A sequence with lengtis called ani-sequence.
from a sequence data-base, has attracted a great deal of interest dirS€UNCesa = (a1, az,...,ax), is contained in another se-
ing the recent surge in data mining research because it is the bguencess = (b1, b2, ..., bn), if there exists integers < i <
sis of many applications, such as customer behavior analysis, stoék < -+ < in = m, such thata; Cbi,, a2Cbis,. .., anCh
trend prediction, and DNA sequence analysis. The sequential minleé denotes, a subsequence of sy, ands, a supersequence of
ing problem was first introduced in[8]; two sequential patterns ex-Sa GIVen a sequence = (s, sa,...,s;), and an itenty, s o a
amples are: “80% of the people who buy a television also buy Alenotes that s concateqates withwhich has two possible forms,
video camera within a day”, and “Every time Microsoft stock drops SUCh @sltemset Extension (1E), s o a=(s1, s2,..., 51U {a}),
by 5%, then IBM stock will also drop by at least 4% within three ©F Sequence Extension (SE)vIS O a=(s1, 82, .., 81, io‘}>' If
days”. The above patterns can be used to determine the efficiefit = » © s, thenpis aprefiz of s ands is asu f fix of s'.
use of shelf space for customer convenience, or to properly plan the A sequence database, S, is a set of tuple$siq, s), wheresid
next step during an economic crisis. Sequential pattern mining i @ Sequenced ands is a sequence. A tuplgsid, s) is said to
also very important for analyzing biological data [3], in which long CONtain & sequencg, if 5 is a subsequence of s. The support of
patterns frequently appear. a sequence?, in a sequence databasg, is the numbgr of tuples

Sequence discovery can be thought of as essentially an associd-the database containing denoted asupport((3). Given a user
tion discovery over a temporal database. While association rules [APecified positive integee, a sequencef, is called a frequent se-
discern only intra-event patterns (itemsets), sequential pattern mifluéntial pattem ikupport(5) = e. In this work, the objective was
ing discerns inter-event patterns (sequences). to _f|r_1d the complete set of sequential patterns of databaisean

Much work has been carried out on mining frequent patterns, a§fficient manner.
for example, in[7][11][6][5] [4][2]. However, all of these works

1. Introduction

in*

Table 1 Sequence Database

suffer from the problems of having a large search space and the in- SID Sequence
effectiveness in handling dense data sets. In this work, we propose 10 | ac(bc)d(abc)ad
a new strategy to reduce the space necessary to be searched. In- 20 | b(cd)ac(bd)
stead of searching the entire projected database for each item, as 30 | d(be)(ac)(cd)

PrefixSpan [5] does, we only search a small portion of the database
by recording the last position of each item in each sequence. Be&gxample 1. Let our running database be the sequence database
cause support counting is usually the most costly step in sequemns shown in Table 1 with mirsupport = 2. We will use this sam-
tial pattern mining, the LAst Position INduction (LAPIN) technique pje database throughout the paper. We can see that the set of iterr
can improve the performance greatly by avoiding cost scanning angh the database iéa,b,c,¢. The length of the second sequence is
comparisons using a pre-constructed table in bit vector format. equal to 7. A 2-sequendec) is contained in the sequence 10, 20,

1.1 Problem Definition and 30, respectively, and its support is equal to 3. Therefarg,is
Let I = {i1,42,...,ix} be a set of items. A subset dfis a frequent pattern.
called anitemset or anelement. A sequence, s, is denoted as 1.2 Related Work
(t1,t2,..., 1), wheret; is an itemset, i.e(t;CI) for 1 <j < I. Sequential pattern mining algorithms can be grouped into two

Theitemset, t;, is denoted agr1z2,), Wherexy is anitem, categories. One category is Apriori-like algorithm, such as GSP
i.e.,x, € Iforl< k< m. For brevity, the brackets are omitted [11], SPADE [6], and SPAM[4], the other category is projection-

—1—

Table2 SFE Item Last Position List Table 4 Last Position of DB (S-Step)

SID | Last Position of SE Item SID Sequence
10 | biast =5 Ciast =5 aiast =6 digst =7 10 | # % (%%) * (xbc)ad
20 | ajast =3 Clast =4 blast =5 diast =5 20 * (%) ac(bd)
30 | biast =2 Qiast =3 Clast =4 digst =4 30 *(bx)(ax)(cd)
Table3 IFE Iltem Last Position List i.e., (10:hast = 5, 20:Gas: = 4, and 30:g,.¢ = 4). We start from
SID | Last Position of IF Item these indices to the end of each sequence, and increment the su
10 | (ab)iast =5 (ac)iast =5 (bC)iast =5 port of each passed item, resulting{@) : 1, (b) : 2,{c) : 3, and
20 | (ed)iast =2 (bd)iast =5 (d) : 3, from which, we can determine thatb), (ac) and (ad)
30 | (bC)iast = 2 (aC)iast = 3 (cd)iast = 4 are the frequent patterns. In our implementation, we constructed a

mapping table for a specific position to the corresponding index of
based pattern growth, such as PrefixSpan [5]. the item-last-position list, thus avoiding searching in each iteration.
Srikant and Agrawal proposed the GSP algorithm[11], whichThe I-Step methodology is similar to the S-Step methodology, with
iteratively generates candidate k-sequences from frequent (k-1)he only difference being that, when constructing the mapping ta-
sequences based on the anti-monotone property that all the subgse, I-Step maps the specific position to the index whose position
quences of a frequent sequence must be frequent. Zaki proposerlequal to or larger than the position in Table 3. To determine the
SPADE [6] to elucidate frequent sequences using efficient lattice [1itemset extension pattern of the prefix sequefige we obtain its
search techniques and simple join operations. SPADE divides theapped indices in Table 3, which are 10:1, 20:2, and 30:2. Then,
candidate sequences into groups by items, and transforms the origre start from these indices to the end of each sequence, and in
inal sequence database into a vertical ID-List database format, iorement the support of each passed item, resultinfdh)) : 1,
which each id is associated with its corresponding items and a timand ((ac)) : 2. We can also obtain the support of the 3-length se-
stamp. SPADE counts the support of a candidate k-sequence gegencesa(bc)) : 1, (a(bd)) : 1, and(a(cd)) : 1, which is similar
erated by merging the ID-Lists of any two frequent (k-1)-sequenceso the bi-level strategy of PrefixSpan, but we avoid scanning the
with the same (k-2)-prefix in each iteration. Ayres et al. [4] pro- entire projected database.
posed the SPAM algorithm, which uses SPADE’s lattice concept, From the above example, we can show that the main difference
but represents each ID-List as a vertical bitmap. SPADE and SPANbetween LAPIN and previous works is the scope of the search space
use a lot of time on merging and bitmap ANDing operations. PrefixSpan scans the entire projected database to find the frequer
On the other hand, Pei et al. proposed a projection-based apattern. SPADE temporally joins the entire ID-List of the candidates
gorithm, PrefixSpan [5], which projects sequences into differento obtain the frequent pattern of next layer. LAPIN can obtain the
groups calledprojected databases. All the sequences in each same result by scanning only part of the search space of PrefixSpal
group have the same prefix. The PrefixSpan algorithm first scansnd SPADE, which indeed, are the last positions of the items. Table
the database to find the frequent 1-sequences. Then, the sequedcshows the search space of LAPIN based on Tabkg $#ep). We
database is projected into different groups according to these fresan avoid scanning thepart in the projected database or in the ID-
quent items, where each group is the projection of the sequendedst. Let D be the average number of customers (i.e., sequences)
database with respect to the corresponding 1-sequence. For thaaethe projected DBL be the average sequence length in the pro-
projected databases, the PrefixSpan algorithm continues to find tiected DB,N be the average total number of the distinct items in the
frequent 1-sequences to form the frequent 2-sequences with thgrojected DB, andn be the distinct item recurrence rate or density
same corresponding prefix. Recursively, the PrefixSpan algorithrin the projected DB. Them=L/N (m = 1), and the relationship
generates a projected database for each frequent k-sequence to fisetween the runtime of PrefixSpdh,¢) and the runtime of LAPIN
the frequent (k+1)-sequences. To obtain the sequential pattern, PrgF,,,,;,,) in the support counting part is
fixSpan constructs a S-Matrix in each recursive step. PrefixSpan
uses a lot of time because it needs to scan the entire projected,,/T}qpin = (D x L)/(D x N)=(D x L)/(D x L/m) =m ().
database, which can be very large.
1.3 Overview of Our Algorithm E}ecaqsg support counting is usua!ly the most costly step in the en-
As Ayres et al. did in[4], our mining process includes two steps:tir¢ mining process, Formula (1) illustrates the main reason why
our LAPIN algorithm is faster than PrefixSpan for dense data sets,
whosem (density) can be very high. For example, suppose we
have a special data set, which has only one single long sequenc

Discovering (k+1)-length frequent patterns. For any time series With one distinct itema and the sequence length is 100. The
database, the last position of an item is the key used to judge whethE}t@! time used to scan the projected databases in PrefixSpan i
or not the item can be appended to a given prefix (k-length) sel00 + 99 + 98 + 97 + ... + 1=5050. However, LAPIN only
quence (assumed to by For example, in a sequence, if the last N€€dSI00 +1 41 + ... 4 1=199 scanning time. Hence, we have
position of itema is smaller than, or equal to, the position of the 7?=2050/198:25. From this example, we know that scanning most
last item ins, then itema cannot be appended tas a (k+1)-length of the duplicate items in the projected DB is useless and time con-

sequence extension in the same sequence. suming. _ _) _
The remainder of this paper is organized as follows. In Section

Example 2. When scanning the database in Table 1 for the first?: We introduce a series of LAPIN algorithms in detail. Our exper-
time, we obtain Table 2, which is a list of the last positions of theimental results and performance _analy5|s are reported in Sectlon_3
1-length frequent sequences in ascending order. At the same tim§/¢ conclude the paper and provide suggestions for future work in
we can obtain Table 3, which is a list of the last positions of theS€ction 4.

frequent 2-lengthl E sequences in ascending order. Suppose that . -

we have a prefix frequent sequer{eg, and its positions in Table 1 2. LAPIN Sequential Pattern Mining

are 10:1, 20:3, 30:3, where sid:eid represents the sequence ID and

the element ID. Then, we check Table 2 to obtain the first indices 2-1 Definitions, Lemmas, and Theorem
whose positions are larger tham)’s, resulting in 10:1, 20:2, 30:3,0 Definition 1.0 Prefix border position set Given two sequences,

a sequence-extension step (S-Step) and aitemset-extension
step (I-Step) in a standard depth-first manner.

Table 5
SID
10

SE Position List of DB
Item Positions
11 —=5—6— null
:3 — 5 — null
:2—3—5— null
:4 — 7 — null

20 : 3 — null
:1 — 5 — null
12— 4 — null

12— 5 — null

30

: 3 — null

12 — null

12— 3 — 4 — null
11— 4 — null

A=(A1Az...An) and BXB1 B> ... By), suppose that there ex-
ists CXC1C> ... ;) forl < mandl < n, and that C is a common
prefix for A and B. We record both positions of the last itéfmin

A and B, respectively, e.g(;=A; andC;=B;. The position set,
(i, j), is called theprefix border position sedf the common prefix
C, denoted as$.. Furthermore, we denot®. ; as the prefix border
position of the sequence, i.

For example, if AZabc) and B=<acde), then we can deduce that
one common prefix of these two sequenceséais), whose prefix

QO TR0 Talan o

border position set is (3,2), which is the last item c’s positions in A

and B.

0 Definition 210 Local candidate item list Given two sequences,
A=(A Az ... Ay) and BXB1B; ... By,), suppose that there ex-
ists CXC1C> ... ;) forl < mandl < n, and that C is a common
prefix for Aand B. LetD = (D1 D- ... Dy) be alist of items, such
as those appendedto C, afiltl= C o D; (1 £ j < k) is the com-
mon sequence for A and B. The list D is called theul candidate
item list of the prefix C'.

For example, if AZabce) and B=<abcde), we can deduce that one
common prefix of these two sequenceas), and({abc), {(abe) are

is called thelocal candidate item list of the prefixes(abc) and
(abe).

O Definition 31T SE Item-last-position li§f Given two sequences,
A=(A1A>...Ay) and BEB:1B; ... B,), the list of the last posi-

tions of the different frequent 1-length items in ascending order (o u
if the same, based on alphabetic order) for these two sequencesgs

called theSFE item-last-position listdenoted ad.s. Furthermore,
we denoteL; ,, as theitem-last-position list of the sequence,

and an element number (denotedi2s,, .item and Dy, .num for
Ds,n € Ls,n)

U Definition 410 |IE Item-last-position lis Given two sequences,
A=(A Az ... Ay) and BXB1Bs ... B,), the list of the last po-
sitions of the different frequent 2-lengftf sequences in ascending

the common sequences for A and B. Therefore, the item list (cl;e

LAPIN Algorithm :
Input : A sequence database, and the minimum support threshold,
Output : The complete set of sequential patterns

Function : GenPatterng, S, Canls, Canl;)

Parameters : o = length k frequent sequential patter$;= prefix border position set of (k-1)-
length sequential patterdfanI s = candidate sequence extension item list of length k+1 sequential
pattern;C'anI; = candidate itemset extension item list of length k+1 sequential pattern

Goal : Generate (k+1)-length frequent sequential pattern

Main():
1. Scan DB once to do:
1.1 Ps; < Create the position list representation of the 1-lerf§jfii
sequences
1.2 Bs < Find the frequent 1-length E' sequences
1.3 L5 « Obtain the item-last-position list of the 1-lengshZ
sequences
1.4 B; — Find the frequent 2-length £ sequences
1.5 P; < Construct the position lists of the frequent 2-length'
sequences
1.6 L; < Obtain the item-last-position list of the frequent 2-lengtf
sequences
2. For each frequerf EZ sequencex in Bg
2.1 Call GenPattern &, 0, B, B;)
3. For each frequent E sequencey; in B;
2.2 Call GenPattern &, 0, B, B;)

Function Gen_Pattern(a, S, Canl,, Canl;)
4. S, < Find the prefix border position set of based onS
5. Freltemg o < ObtaintheSE item list of o« based orC'anls andS
6. Freltem; o + Obtainthel E item list of o based orCanlI; andSq
7. For eachitemys in Freltems, o

7.1 Combinex and~s asS E, results ind and output

7.2 Call GenPattern @, S, Freltems, o, Freltem;)
8. For eachitery; in Freltem; o

8.1 Combinex and~y; asI E, results inn and output

8.2 Call GenPattern), S, Freltems o, Freltem; o)

Figure 1 LAPIN Algorithm pseudo code

emma 211 Itemset Extension checkify For a prefix sequence,
, in a sequencei, if the prefix border positionS. ;, is smaller
than, or equal to the last position of a candidateitem, 3, in the
same sequence, th&n can be extended t6@' ¢ 3 as anltemset
Ezxtension in the sequence,

Proof: Since the last position of the candiddt® item 3 is larger
}han or equal taS. ;, at least one3 appears behind the prefix se-
enceC in the sequenceg which means thétemset Extension

© « exists in the sequence

n. Each node of., , is associated with two values, i.e., an itenq Theorem 1T Frequent sequente Given a user specified mini-

mum support,e, a sequenceS, is frequent if, by Sequence
Extension checking, its support, Sup(S),is = €, or, by
Itemset Extension checking, its supportSup(S),is = ¢.

2.2 LAPIN: Design and Implementation

In this section, we describe the LAPIN algorithms used to mine
sequential patterns in detail. As in other algorithms, certain key

order (or if same, based on alphabetic order) for these two sequencgiategies were adopted, i.e., candidate sequence pruning, databa

is called thel E item-last-position listdenoted ad.;. Furthermore,
we denoteL; ,, as theitem-last-position list of the sequence,

partitioning, and customer sequence reducing. Combined with the
LAPIN strategy, our algorithms can efficiently find the complete set

n. Each node of; ,, is associated with two values, i.e., an item Of frequent patterns. We used the Depth First Search (DFS). The

and an element number (denotedas, .item and D; , .num for
Di,n S Li,n)-

For example, we can see that Table 2 and Table 3 aré fhand
1 E item-last-position lists of the database in Table 1.

0 Lemma ITJ Sequence Extension checkimgFor a prefix sequence,

C, in a sequence, if the prefix border positiorS. ;, is smaller than
the last position of a candidateF item, «, in the same sequence,
thenC can be extended 0 ¢ « as aSequence Extension in the
sequence,.
Proof: Since the last position of the candidai& item« is larger
than S, ;, at least onen appears behind the prefix sequenen
the sequencg which means thSequence Extension C'o exists
in the sequencé,

pseudo code of LAPIN is shown in Figure 1.

In Step 1, by scanning the DB once, we can obtainSH po-
sition list table, as in Table 5 and all the 1-length frequent patterns.
Based on the last element in each position list, we can sort and
construct theSE' item-last-position list in ascending order, as
shown in Table 2. To find the frequent 2-lendth’ sequences, dur-
ing the first scan, we construct a 2-dimensional array indexed by
the items’ ID and update the counts for the corresponding 2-length
I E sequences by using similar methods to those used in [6]. Then,
we merge theSE position lists of the two items, which compose
the frequent 2-lengti £ sequence, to obtain the 2-lengkl se-
quence position list. Finally, we sort and construct fte item-
last-position list of each frequent 2-length sequence in as-
cending order, as shown in Table 3. As Example 2 shows, the I-Step
methodology is similar to the S-Step methodology in LAPIN. We

—3—

DB(i) DB(ii)

ltem

CID| Sea.| | CID Seq. PDS1 1@ 1b 1E Wd
10 L aa 10]aaaaad Avg. Avg. local | Suffix- | LCI- B 1 1 1 1
201 ab 20]labbbbh suffgigx candg item list| oriented | oriented E 1 1 1 1 Pusltgm 2 b ° d
30]ac DB(i) 1 5 5 times |25 time: [1 1 i 1 5 7 0 q 1
40 | ad DB(ii) 5 2 [10 times][4 times 5 1 0 0 1 8 0 1 [i 1
50| ae [0 a 0 1

7 0 0 0 0

(a) Two special DBs (b) Effect on different type of DBs

(a)ITEM_IS_EXIST_TABLE (b)Optimized ITEM_IS_EXIST_TABLE
Figure 2 Performance of Suffix-oriented and LCl-oriented algorithms on

different DB
will first describe the S-Step process, and the I-Step process will b

. . o . vectors of the ITEMIS_EXIST_TABLE; CanI = candidate sequence extension items; user
explained in detail in Section 2.3.4. specified minimum support

In function Gen_Pattern, to find the prefix border position set Output : Freltems =local frequentS E item list
of k-length (Step 4), we first obtain the position list of the last |, _ . sequence, F
item of o, and then perform a binary search in the list for the (k-1)-2. s, 5 «— obtain prefix border position of F ifi,
length prefix border position. (We can do this because the positiof bitvhs?tai” the bit vector of th& ., - indexed from B\,
list is in ascending order.) Fa#-Step, we look for the first position o B Sutat] + bVIL
that is larger than the (k-1)-length prefix border position. 6. For each itemy in Suplist

Step 5, shown in Figure 1, is used to find the frequent(k+1)- 7 if(S“PF”SthI] = o
length pattern based on the frequent k-length pattern and the - reftems insertt)
length candidate items. Step 5 can be justified based on Theorem 1
in Section 2.2. Commonly, support counting is the most time con-
Suming part in the entire mining pl’OCGS.S. He!’el we face a prObIen}nput : S« = prefix border position set of length k frequent sequential patigrh s = S E item-
"Where do the appended 1-length candidate items come from?” West-position list:c = user speciied minimum support
can test each candidate item in the local candidate itemlliStf¢ ~ ©Qutput : Freltem, =local frequentS £ item list
oriented), which is similar to the method used in SPADE[6] and ;. gor each sequence, F
SPAM[4]. Another choice is to test the candidate item in the pro-2. Sa,r < obtain prefix border position of F ifi
H R : S 3. L, p < obtainS E item-last-position list of F inL 5
jected DB, just as PrefixSpan[5] dogSz(f fix qrzented). The 4. M= Find the comesponding index 6t 1
correctness of these methods was discussed in[6] and [5], respeg- while (M < L, psize)
tively. 6. Suplist[M.item]++;

We have found thaL.CIT-oriented and Suf fiz-oriented have ;' E A ‘

A . . For each itenB in Suplist

their own advantages for different types of data sets. Suppose that it (suplistg] = <)

Figure 3 Bitmap representation table

B’lput : So = prefix border position set of length k frequent sequential paiterBV s = bit

Figure 4 Finding the SE frequent patterns using LARISI

we have two sequence databases, as shown in Figure 2 (a), the pte- Freltems.insert3);
fix sequence isi, and the minsupport = 1. To test the 2-length
candidate sequences, whose prefixifor DB (i), the Suf fix- Figure 5 Finding the SE frequent patterns using LAFSNfix

oriented algorithm scans the projected DB, which requires & 1 sjtion, Increment the support value of the candidate item by 1
5 =5 scanning time. ThéC'I-oriented algorithm scans the local it the candidate item's last position is larger than the prefix bor-
candidate item list for each sequence, which requires@®= 25 ger position. As an optimization, we can use bitmap strategy to
scanning time. However, for DB (ii), th§uf fiz-oriented algo- ayoid such comparison process. A pre-constructed table, namec
rithm requires a 5< 2 = 10 scanning time, and theC'I-oriented |TEM_IS_EXIST.TABLE is constructed while first scanning to
algorithm requires a 2 = 4 scanning time. The effect of these record the last position information. For example, Figure 3 (a),
two data sets on the two approaches is shown in Table 2 (b). which is based on the example database shown in Table 1, show:
The above example illustrates that, if the average suffix sequengs,e part of the ITEMIS_EXIST_TABLE for the first sequence. The
length is less than the average local candidate item list size, as in DRft-nand column denotes the position number and the top row is
(i), then Suf fiz-oriented spends less time. However, if the aver- he jtem ID. In the table, we use a bit vector to represent all the
age suffix sequence length is larger than the average local candidai§ength frequent items existing for a specific position. If the bit

item list size, as in DB (ii), thed C'I-oriented is faster. value is unity, then it indicates that the corresponding item exists.
_Based on this discovery, we formed a series of algorithms categQotherwise, the item does not exist. The bit vector size is equal to
rized into two classes. One class waS -oriented, LAPIN_LCI, e size of the 1-length frequent items list. For example, when the

and the other class wa. f fiz-oriented, LAPIN Suffix. We can cyrrent position is 5, we obtain the bit vector 1001, indicating that
dynamically compare the suffix sequence length with the local cang |y jtemsa andd exist in the same sequence after the current pre-
didate item list size and select the appropriate search space to buiigk 1o accumulate the candidate sequence’s support, we only neec

a single general framework. However, because we used a SPagg check this table, and add the corresponding item’s vector value,
consuming bitmap strategy in LAPINCI, which will be explained hys avoiding the comparison process.

in Section 2.3.1, in order to save memory space and clarify the ad-

vantages and disadvantages of each method, we deconstructed §i§,ce Optimization of LAPIN_LCI. We found that only
general framework into two approaches. Nevertheless, it is €asy {941t of the table was useful, and that most was not. The opti-
combine these two approaches, and evaluate the efficiency of the epjzed ITEMIS_EXIST_TABLE is shown in Figure 3 (b), which
tire general framework, whose runtinig, and maximum memory stores only two bit vectors instead of the seven shown in Figure 3

space required)/, are (a). We used an array to map each specific position to the index in
T~ {Trapin_rct, TLAPIN _Suffix fmin the optimized ITEMIS_EXIST_TABLE. For a dense data set, this
M ~{Mpapin_ror, MLAPIN Suf fiz }maz- space saving strategy proved more efficient. The pseudo code o

) o LAPIN_LCI is shown in Figure 4.
LAPIN _LCI. LAPIN_LCI tests each item which is in the local

candidate item list. In each customer sequence, it directly judgefixample 3. Let us assume that we have obtained the prefix bor-
whether an item can be appended to the prefix sequence or ngkr position set of the pattera) in Table 1, i.e., (1,3,3). We also
by comparing this item’s last position with the prefix border po- know that thelocal candidate item list is (a, b, c, d). Then, in-

—4—

Table 6 ITE Position List of DB

SID | Item Positions Table 7 Parameters used in data set generation
10 | (ab) : 5 — null -

(ac) : 5 — null Symb. | Meaning

(be) : 3 — 5 — null D Number of customers in the data set

20 | (bd) : 5 — null
(cd) : 2 — null
30 | (ac) : 3 — null
(be) : 2 — null
(cd) : 4 — null

Average number of transactions per customer

Average number of items per transaction

Average length of maximum sequences

Average length of transactions within maximum sequerces

Z I —lunl 40

stead of comparing each last position of the candidate item with
the prefix border position, we obtain the bit vector mapped from
the specific position. Here, we obtain the bit vectors 1111, 0111gynthetic Data. The synthetic data sets were generated by an IBM

and 0011 with respect to the patter)'s prefix border position set, data generator, as described in[8]. The meaning of the different pa-

Number of different items in the data set

(1,3,3), and accumulate them, resulting(ir) : 1,(b) : 2,(c) : 3, rameters used to generate the data sets is shown in Talrethe
and(d) : 3. From here, we can deduce tab), (ac), and(ad) are first experiment, we compared PrefixSpan and our algorithms using
frequent patterns. several small-, medium-, and large- sized data sets for various min-

imum supports. The statistics of these data sets is shown in Figure
LAPIN _Suffix. When the average size of the candidate item list isg (a).

larger than the average size of the suffix, then scanning in the suf-

fix to count the support of the (k+1)-length sequences is better thaprefixSpan vs. LAPIN: We defined search space as in
scanning in the local candidate item list, such as for DB (i) in Fig-prefixSpan, to be the size of the projected DB, denoted as
ure 2. Therefore, we proposed a new algorithm, LARSMfix. In g . and in LAPIN the sum of the number of different items
theitem-last-position list, i.e., Table 2, we look for the first el- for each sequences in the suffix (LAPMffix) or in the lo-
ement whose last position is larger than the prefix border positioncal candidate item list (LAPIN.CI), denoted asSi.pin. Fig-
Then, we go to the end of this list and increment each passed itemigre 6 (b) and Figure 6 (c) show the running times and the
support. Obviously, we only pass and count once for each differsearched space comparison between PrefixSpan and LAPIN an
ent item in the suffix (projected database) becauseidm-lasi- clearly illustrate that PrefixSpan is slower than LAPIN using the
position list, we record the last position of each item for a specific medium data set (C30T20S30120N200D20K) and the large data sef
sequence. In contrast, PrefixSpan needs to pass every item in t{t€50720S50120N300D100K). This is because the searched space
projected database regardless of whether or not they are the sa@fthe two data sets in PrefixSpan were much larger than that in
as before. Therefore, LAPUSuffix will save much time because | APIN. For the small data set (C10T5S5I5N100D1K), the ineffec-
our search space is only a subset of the one used in PrefixSpan. Tigeness of searched space saving and the initial overhead needed 1
pseudo code of LAPINSuffix is shown in Figure 5. Example 2 in set up meant that LAPIN was slower than PrefixSpan. Overall, our

Section 1.3 describes the flow of LAPISuffix. runtime tests showed that LAPIN excelled at finding the frequent
sequences for many different types of large data sets.

I-Step of LAPIN. In LAPIN, the I-Step is similar to theS-Step. Formula (1) in Sectionl.3 illustrates the relationship between the

From Step 1 in Figure 1, we can obtain the frequent 2-leddth runtime of PrefixSpan and the runtime of LAPIN in the support

sequence position list, as shown in Table 6, andl#ep item- counting part. However, for the entire mining time, we also need to

last-position list, as shown in Table 3. In Step 4 of Figure 1, we consider the initialization part and the implementation detail, which
first obtain the position list of the last 2-lengfti item of o, and are very difficult to evaluate because of the complexity of the se-
then perform a binary search in Table 6. Here, we look for the firsguential pattern mining problem. Commonly, support counting is
position that is equal to, or larger than the (k-1)-length prefix bordefjsyally the most costly step in the entire mining process. Hence,
position. To find the frequent (k+1)-length®” sequences in Step we can approximately express the relationship between the entire
6 of Figure 1, which is similar to S-Step, there are two classes ofnining time of PrefixSpan and that of LAPIN based on Formula
algorithm. One id.C'I-oriented, which directly compares the last (1), where we generalize the meaning §fto denote the aver-
position of the 2-lengtll £ sequences with the prefix border posi- age total number of the distinct items in either the projected DB
tions to judge whether or not the frequent k-length sequence can ke APIN_Suffix) or in the local candidate item list (LAPINCI),
appended to the 2-lengthz sequence to form a (k+1)-lengf’? and the meaning of: to denote either the distinct item recurrence
sequence. The first item of the 2-length’ sequence should be the rate of the projected DB (LAPINSuffix) or the local candidate list
same as the last item of the k-length prefix sequence. The other gl APIN_LCI). Formula (1) illustrates that, the higher the valuerof
gorithm is Su f fiz-oriented, which uses Tabl@ to facilitate the s, then the faster LAPIN becomes compared to PrefixSpan. How-

I-Step support counting. ever, the entire mining time of LAPIN is not faster than that of Pre-
fixSpanm times because of the initialization overhead, but near to
3. Performance Study m times because of the importance of the support counting in the

entire mining process. The experimental data shown in Figure 6

In this section, we will describe our experiments and evaluation : e] . .
.) and Figure 6 (c) is in accordance with our theoretical analysis,
conducted on both synthetic and real data, and compare LAPI . .
where thesearched space comparison determines the valuerof

with PrefixSpan to demonstrate the efficiency of the proposed al- Spe/Staps
gorithms. We performed the experiments using a 1.6 GHz Intel”" s/ Plavin:
Pentium(R)M PC machine with a 1 G memory, running Microsoft
Windows XP. All three algorithms are written in C++ software, and
were compiled in an MS Visual C++ environment. The output of
the programs was turned off to make the comparison equitable.

LAPIN _Suffix vs. LAPIN_LCI: Because LAPINSuffix and
LAPIN_LCI are implemented in the same framework, in addition
to the small difference in the initial phase, the only implementation
difference is in the support counting phase: LAPSN(ffix searches
3.1 Comparing PrefixSpan with the LAPIN Algorithms in the suffix, whereas LAPINLCI searches in the local candidate
We first compared PrefixSpan and our algorithms using synthetigem list. Let Ns, ;. be the average total number of the distinct
and real data sets, and showed that LAPIN outperformed PrefixSpatems in the projected DBY . ¢ be the average total number of the
by up to an order of magnitude on dense data sets with long patterfistinct items in the local candidate item lis,s., s r: be the dis-
and low minimum support. tinct item recurrence rate of the projected DBy be the distinct

—5—

Dataset # seguencei Avg length Total sizg|
270K

C10T5S515N100D1K 1000 46
C30T20S30120N200D20K 20000 518 46M
C50T20S50120N300D100K 100000 903 401M
(a) Dataset characteristics
Dataset (C10T5S515N100D1 Dataset (C30T20S30120N200D20 Dataset (C50T20S50120N300D 100
500 —e— PrefixSpan 8000 P! —e— PrefixSpan 5000 —e— PrefixSpan
£ 400 ==A-=LAPIN Suffix. & - - - LAPIN_Suffix| <4000 ==t~ LAPIN_Suff
2 \ —0O = LAPIN_LCI o 6000 —_ - | 2 —0O - LAPIN_LCI
20 - | E \ o-LAPINCLCI | B \o\ |
@ . © 4000 2 \
e . 2 <
‘€ 200 < = AL £ 2000
PR ot e ~_
2 100 \%‘1\ @ 2000 e e S0y
o N S 0] i S o L ape T
2 4 6 8 10 91 92 93 94 95 984 986 988 99 99.2
Minimum support (% Minimum support (% Minimum support (%
(b) Running time comparison
Dataset (C10T5S5IN100D 1K) Dataset (C30T20S30120N200D20K) Dataset (C50T20S50120N300D 100K)
o 6 —&— PrefixSpan o 300 P! —&— PrefixSpan 0 150 —&— PrefixSpan
° - «A - LAPIN_Suffix| o - «A - LAPIN_Suffix| g \ - -A- - LAPIN_Suffix
E 4 kX O = LAPIN_LCI § 200 O = LAPIN_LCI § 100 O =LAPIN_LCI
@ . @ &
EBRN 3 \\ j: \\
o - o o
52 S 100 S 50
5 \ﬂ\u 3 Tu \\ 5 \\‘
n = n S~IA - %] I N
L T b e L Y- SEFF SN
2 4 6 8 10 91 92 93 94 95 98.4 98.6 98.8 99 99.2
Minimum support (%) Minimum support (%) Minimum support (%)

(c) Searched space comparison

Dataset (C10T5S5I5N100D 1K) Dataset (C30T20S30120N200D20K) Dataset (C50T20S50120N300D100K)
g = =
z 20 —e— PrefixSpan = 250 N —e— PrefixSpan S 900 g —— PrefixSpan
A - - - LAPIN_Suffix 3 “« - - LAPIN_Suffix 9 T~ a_ " -LAPIN Suffix
- B~ . _=0 -LAPIN_LCI 3200 ¢ = LAPIN_LCI 3 750 &= =l =LAPIN_LCI
) S T F “~g F Seeal \~\
810 AL === E >~ E TtAL] S
g AR S 150 > :;w g 500 Tra
5 A = TR = A
s 5 e O
S $—+—+— . 0o °
=0 ! ! ! 100 450
2 4 6 8 10 91 92 93 94 95 98.4 98.6 98.8 99 99.2
Minimum support (%) Minimum support (%) Minimum support (%)

(d) Memory usage comparison

Figure 6 The different sizes of the data sets

item recurrence rate of the local candidate item list. We can expresgverage number of transactions per customer in the projected DB,
the relationship between the entire mining time of LAP®Nffix ~ and 1 is the average number of items per transaction in the pro-

(Tsuyysiz) and that of LAPINLCI (Tzc1) as jected DB. On keeping the other parameters constant, incre@sing
T and decreasingV, respectively, will result in an increase in the
Tsuffiz/Tror = Ssufriz/Srcr = mrcr/Msufric (2). distinct item recurrence raten, which is in accordance with the
experimental data shown in Figure 7. This confirms the correctness
where we have the searched space of LARINfiX, Ss.frix = Of Formula (1).

D x Nsufpiz = D x L/msussiz, and the searched space of With regards to the other three parameters$ag and D varies,
LAPIN _Suffix, Spcr =D x Nor =D x L/mrcr. Formula (2)is the discrepancy between the running times does not change signifi
in accordance with the experimental data shown in Figure 6 (b) andantly because these parameters do not apparently contribute to th
Figure 6 (c). LAPINSuffix is faster than LAPINLCI for small data variance of the distinct item recurrence rate, which means that
sets because the former one searches smaller spaces than the Iaherdiscrepancy between the searched space does not change mu
one does. However, for medium and large dense data sets, whi@s these three parameters are varied. Between the two LAPIN al-
have many long patterns, LAPINCI is faster than LAPINSuffix gorithms, LAPINLCI and LAPIN_Suffix, the former one is always
because the situation is reversed. the fastest because its searched space is less than that of the latt
one. Due to limited space, we do not show the searched space com
Memory usage analysis: As Figure 6 (d) shows, LAPINSuffix ~ parison here.
expends almost the same amount of memory as PrefixSpan does,
except for small data sets because LAPISuffix uses a lit- Real Data. We consider that results from real data will be more
tle more memory than PrefixSpan to store initialization informa-convincing in demonstrating the efficiency of our proposed algo-
tion. LAPIN_LCI, because it needs to store the items’ last po-rithm. In this section, we discuss tests on two real data sets, Gazelle
sition information in bit vector format, requires more space thanand Protein. A portion of Gazelle was used in KDD-Cup 2000.
LAPIN_Suffix and PrefixSpan do. Lef’ be the average num- More details on the information in this data set can be found in[10].
ber of the key positions per customer. LAPIN.CI requires The second real data set used, Protein, was extracted from the wel
(D x C" x N)/8 bytes to store the last position information for site of the National Center for Biotechnology Information (USA)
all the items. From Figure 6, it can be seen that there is a trade'". This was extracted using a conjunction of: (1) search category
off between LAPINSuffix and LAPINLLCI in terms of speed and = "Protein”, (2) sequence length range = [400:600], and (3) data
space. submission period = [2004/7/1, 2004/12/31]. The statistics of these
data sets is shown in Figure 8 (a).
Different parameters analysis: In the second experiment, we com- As shown in Figure 8 (b), LAPIN outperformed PrefixSpan for
pared the performance of the algorithms as several parameters in theth the Gazelle and Protein data sets. The reason why LAPIN per-
data set generation were varied. The meaning of these parametdesmed so well was similar to that for the synthetic data sets in Sec-
are shown in Tabl&. As Figure 7 shows, whef' increases]" in- tion 3.1.1, and was based on the searched space saving, as show
creases, and/ decreases, then the performance of LAPIN improvesin Figure 8 (c). This experiment confirmed the superiority of the
even more relative to PrefixSpan, by up to an order of magnitude.
Let us consider Formula (1p=L/N=C x T/N,whereCisthe 10 10 http:/mwww.ncbi.nim.nih.gov

®
=3
5]

Dataset (C?T40S20120N1000D1

Dataset (C40T?S20120N1000D1

Dataset (C40T40S?120N1000D1

®
=3
=3

®
=3
=3

» —e— PrefixSpan » —&— PrefixSpan ' 4\ —— PrefixSpan
:; 600 [—f== L APIN Suffix / © 600 (A== LAPIN_Suffix © 600 - -A- - | APIN Suffi
_g —o - LAPIN_LCI g —0 = LAPIN_LCI // g \—\D = LAPIN_LCI
2 400 2400 2400
g el £ — £
S 200 S 200 S 200
S - P N Rt Iy N
['4 / B R 4 PR G [. — A -
0 iyt =0 — -6 0; --m-a-é—'—'-ﬁ""g— 0[9— = =8 ey g
35 36 37 38 39 4C 35 36 37 38 39 40 20 22 24 26 28 30
Average number of transactions pe Average number of items pe Average length of maxim
customer (90%) transaction (sup=90%) sequences (sup=90%)
(a) Different C (b) Different T (c) Different S
Dataset (C40T40S201?N1000D1 Dataset (C40T40S20120N?D1 Dataset (C40T40S20120N1000D
B 800 4\ —&— PrefixSpan » 2500 4 —&— PrefixSpan » 600 —&— PrefixSpan S
@ 600 - -A- - LAPIN_Suffi o 2000 —LAPIN_Suffix ‘@ 450 2= = LAPIN_Suffix /
E \‘_\D ~LAPIN_LCI £ 1500 —0 =1 APIN_LCI £ —0O - LAPIN_LCI
© 400 = 2 300
£ | E1o00 £ e
< 200 < S 150
S S
4 T R @ 500 &~<— 2 r/ R
i ST TN (e ST S gaat
20 22 24 26 28 30 900 950 1000 1050 1100 1 2 3 4 5

Average length of transaction
within the maximal sequence
(sup=90%)

(d) Different | (e) Different N

Number of Items (sup=90%

Number of customers in the
dataset (*1K) (sup=94%)

(f) Different D

Figure 7 Varying the parameters of the data sets

1

116142 | 24 | 400 [600 |
(a) Dataset characteristics

Dataset (Gazelle) Dataset (Protein)

(1

3000

16000 P! —e—PrefixSpan

— —— PrefixSpan —_ [2]
e \ - - - LAPIN_Suffix 2 45000 - & -LAPIN_Suffi
£ 2000 S—APIN-ECH B —0O -LAPIN_LCI
E\ \ _g’ 8000
€ 1000 | £
& o B N g 4000 NN
~ “~ - ~
0 '\}&xl - 0 ety B = (3]
0.055 0.057 0.059 0.061 99.92 9993 99.94 99.95 99.96
Minimum support (%) Minimum support (%)
(b) Running time comparison
Dataset (Gazelle) Dataset (Protein) [4]
o 160 4 —— PrefixSpan) 800 —4— PrefixSpan
3 190 -te - LAPIN SUflX 8 600 N - - - LAPIN_Suff
§ —0 -LAPIN_LCI 2 —0O -LAPIN_LCI
o 80 o 400
: N 5]
§ 400~ S 200
o) 3. ., o A e
o ~:§\, b s O =g 3
0.055 0.057 0.059 0.061 9992 9993 9994 9995 99.96

Minimum support (%) Minimum support (%)

(6]

(c) Searched space comparison

(71

Figure 8 Real data sets
proposed method using real-life data.

4. Conclusions 18]
In this work, we have proposed a series of novel algorithms,
LAPIN, for efficient sequential pattern mining. Our mainideais that [°]

the last position of an itemy, in each sequence is very useful, and
is the key to judging whether or not a k-length frequent sequence
could grow to a frequent (k+1)-length sequence by appending thd10l
item « to it. Therefore, LAPIN can reduce searching significantly
by only scanning a small portion of the projected database or the
ID-List, as well as handling dense data sets efficiently, which is[11]
inherently difficult for most existing algorithms. By thorough ex-
periments and evaluations, we have demonstrated that LAPIN out-
performs PrefixSpan by up to an order of magnitude, which is in
accordance with our theoretical analysis. Our experimental results
also show that LAPIN is very efficient at using synthetic data and
using real-world data, such as web access patterns and protein se-
qguences.

We plan to continue our work by applying our algorithm to other
application domains, and will investigate how to extend it to deter-
mine a closed frequent sequence.

References

B. A. Davey and H. A. Priestley, “Introduction to Lattices and Order,”
Cambridge University Pres4990.

D. Chiu, Y. Wu, and A. L. P. Chen, “An Efficient Algorithm for min-
ing Frequent Sequences by a New Strategy without Support Count-
ing,” In 20th Int'l Conf. of Data Engineering (ICDE'04)pp. 375-
386, Boston, USA, Mar. 2004.

E. Eskin and P.A. Pevzner, “Finding Composite Regulatory Patterns
in DNA Sequences,” IL0th Int'l Conf. on Intelligent Systems for
Molecular Biology (ISMB’2002)pp. 354-363, Edmonton, Canada,
Aug. 2002.

J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, “Sequential Pattern
Mining using A Bitmap Representation,” Bth ACM SIGKDD Int'l
Conf. Knowledge Discovery in Databases (KDD'0gp. 429-435,
Alberta, Canada, Jul. 2002.

J. Pei, J. Han, M. A. Behzad, and H. Pinto, “PrefixSpan:Mining Se-
quential Patterns Efficiently by Prefix-Projected Pattern Growth,” In
17th Int'l Conf. of Data Engineering (ICDE’01)Heidelberg, Ger-
many, Apr. 2001.

M. J. Zaki, “SPADE: An Efficient Algorithm for Mining Frequent
Sequences,” IMachine LearningVol. 40, pp. 31-60, 2001.

R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association
Rules,” In20th Int'l Conf. on Very Large Databases (VLDB'94p.
487-499, Santiago, Chile, Sep. 1994.

R. Agrawal and R. Srikant, “Mining sequential patterns,1itth Int'l
Conf. of Data Engineering (ICDE’'95pp. 3-14, Taipei, Taiwan, Mar.
1995.

R. J. Bayardo, “Efficiently mining long patterns from databases,” In
ACM-SIGMOD Int'l Conf. Management of Data (SIGMOD’98p.
85-93, Seattle, WA, Jun. 1998.

R. Kohavi, C. Brodley, B. Frasca, L. Mason, and Z. Zheng, “KDD
-cup 2000 organizer’s report: Peeling the Onion,"SIGKDD Ex-
plorations vol. 2, pp. 86-98, 2000.

R. Srikant and R. Agrawal, “Mining sequential patterns: Generaliza-
tions and performance improvements,”3th Int'| Conf. Extending
Database Technology (EDBT'9)p. 13-17, Avignon, France, Mar.
1996.

