
DEWS2006 3A-o4

Effective Sequential Pattern Mining Algorithms for Dense Database

Zhenglu YANG†, Yitong WANG†, and Masaru KITSUREGAWA†

† Institute of Industrial Science, The Univeristy of Tokyo

Komaba 4–6–1, Meguro-Ku, Tokyo, 153–8505 Japan

Abstract Sequential pattern mining is very important because it is the basis of many applications. Although there has been

a great deal of effort on sequential pattern mining in recent years, its performance is still far from satisfactory because of two

main challenges: large search spaces and the ineffectiveness in handling dense data sets. To offer a solution to the above

challenges, we have proposed a series of novel algorithms, called the LAst Position INduction (LAPIN) sequential pattern

mining, which is based on the simple idea that the last position of an item,α, is the key to judging whether or not a frequent

k-length sequential pattern can be extended to be a frequent (k+1)-length pattern by appending the itemα to it. LAPIN can

largely reduce the search space during the mining process, and is very effective in mining dense data sets. Our experimental

data and performance studies show that LAPIN outperforms PrefixSpan [5] by up to an order of magnitude on long pattern

dense data sets.
Key words algorithm, sequence mining, performance evaluation

1. Introduction

Sequential pattern mining, which extracts frequent subsequences
from a sequence data-base, has attracted a great deal of interest dur-
ing the recent surge in data mining research because it is the ba-
sis of many applications, such as customer behavior analysis, stock
trend prediction, and DNA sequence analysis. The sequential min-
ing problem was first introduced in [8]; two sequential patterns ex-
amples are: “80% of the people who buy a television also buy a
video camera within a day”, and “Every time Microsoft stock drops
by 5%, then IBM stock will also drop by at least 4% within three
days”. The above patterns can be used to determine the efficient
use of shelf space for customer convenience, or to properly plan the
next step during an economic crisis. Sequential pattern mining is
also very important for analyzing biological data [3], in which long
patterns frequently appear.

Sequence discovery can be thought of as essentially an associa-
tion discovery over a temporal database. While association rules [7]
discern only intra-event patterns (itemsets), sequential pattern min-
ing discerns inter-event patterns (sequences).

Much work has been carried out on mining frequent patterns, as
for example, in [7] [11] [6] [5] [4] [2]. However, all of these works
suffer from the problems of having a large search space and the in-
effectiveness in handling dense data sets. In this work, we propose
a new strategy to reduce the space necessary to be searched. In-
stead of searching the entire projected database for each item, as
PrefixSpan [5] does, we only search a small portion of the database
by recording the last position of each item in each sequence. Be-
cause support counting is usually the most costly step in sequen-
tial pattern mining, the LAst Position INduction (LAPIN) technique
can improve the performance greatly by avoiding cost scanning and
comparisons using a pre-constructed table in bit vector format.

1. 1 Problem Definition
Let I = {i1, i2, . . . , ik} be a set of items. A subset ofI is

called anitemset or anelement. A sequence, s, is denoted as
〈t1, t2, . . . , tl〉, wheretj is an itemset, i.e.,(tj⊂=I) for 1 <= j <= l.

Theitemset, tj , is denoted as(x1x2 . . . xm), wherexk is an item,
i.e., xk ∈ I for 1 <= k <= m. For brevity, the brackets are omitted

if an itemset has only one item. That is,itemset (x) is written
asx. The number of items in a sequence is called thelength of
the sequence. A sequence with lengthl is called anl-sequence.
A sequence,sa = 〈a1, a2, . . . , an〉, is contained in another se-
quence,sb = 〈b1, b2, . . . , bm〉, if there exists integers1 <= i1 <
i2 < . . . < in <= m, such thata1⊂=bi1 , a2⊂=bi2 ,. . . , an⊂=bin .
We denotesa a subsequence of sb, andsb a supersequence of
sa. Given a sequences = 〈s1, s2, . . . , sl〉, and an itemα, s ¦ α
denotes that s concatenates withα, which has two possible forms,
such asItemset Extension (IE), s ¦ α=〈s1, s2, . . . , sl ∪ {α}〉,
or Sequence Extension (SE), s ¦ α=〈s1, s2, . . . , sl, {α}〉. If
s′ = p ¦ s, thenp is aprefix of s′ ands is asuffix of s′.

A sequence database, S, is a set of tuples〈sid, s〉, wheresid
is a sequenceid and s is a sequence. A tuple〈sid, s〉 is said to
contain a sequenceβ, if β is asubsequence of s. The support of
a sequence,β, in a sequence database,S, is the number of tuples
in the database containingβ, denoted assupport(β). Given a user
specified positive integer,ε, a sequence,β, is called a frequent se-
quential pattern ifsupport(β) >= ε. In this work, the objective was
to find the complete set of sequential patterns of databaseS in an
efficient manner.

Table 1 Sequence Database

SID Sequence

10 ac(bc)d(abc)ad

20 b(cd)ac(bd)

30 d(bc)(ac)(cd)

Example 1. Let our running database be the sequence database
S shown in Table 1 with minsupport = 2. We will use this sam-
ple database throughout the paper. We can see that the set of items
in the database is{a,b,c,d}. The length of the second sequence is
equal to 7. A 2-sequence〈ac〉 is contained in the sequence 10, 20,
and 30, respectively, and its support is equal to 3. Therefore,〈ac〉 is
a frequent pattern.

1. 2 Related Work
Sequential pattern mining algorithms can be grouped into two

categories. One category is Apriori-like algorithm, such as GSP
[11], SPADE [6], and SPAM [4], the other category is projection-

— 1 —

Table 2 SE Item Last Position List

SID Last Position of SE Item

10 blast = 5 clast = 5 alast = 6 dlast = 7

20 alast = 3 clast = 4 blast = 5 dlast = 5

30 blast = 2 alast = 3 clast = 4 dlast = 4

Table 3 IE Item Last Position List

SID Last Position of IE Item

10 (ab)last = 5 (ac)last = 5 (bc)last = 5

20 (cd)last = 2 (bd)last = 5

30 (bc)last = 2 (ac)last = 3 (cd)last = 4

based pattern growth, such as PrefixSpan [5].
Srikant and Agrawal proposed the GSP algorithm [11], which

iteratively generates candidate k-sequences from frequent (k-1)-
sequences based on the anti-monotone property that all the subse-
quences of a frequent sequence must be frequent. Zaki proposed
SPADE [6] to elucidate frequent sequences using efficient lattice [1]
search techniques and simple join operations. SPADE divides the
candidate sequences into groups by items, and transforms the orig-
inal sequence database into a vertical ID-List database format, in
which each id is associated with its corresponding items and a time
stamp. SPADE counts the support of a candidate k-sequence gen-
erated by merging the ID-Lists of any two frequent (k-1)-sequences
with the same (k-2)-prefix in each iteration. Ayres et al. [4] pro-
posed the SPAM algorithm, which uses SPADE’s lattice concept,
but represents each ID-List as a vertical bitmap. SPADE and SPAM
use a lot of time on merging and bitmap ANDing operations.

On the other hand, Pei et al. proposed a projection-based al-
gorithm, PrefixSpan [5], which projects sequences into different
groups calledprojected databases. All the sequences in each
group have the same prefix. The PrefixSpan algorithm first scans
the database to find the frequent 1-sequences. Then, the sequence
database is projected into different groups according to these fre-
quent items, where each group is the projection of the sequence
database with respect to the corresponding 1-sequence. For these
projected databases, the PrefixSpan algorithm continues to find the
frequent 1-sequences to form the frequent 2-sequences with the
same corresponding prefix. Recursively, the PrefixSpan algorithm
generates a projected database for each frequent k-sequence to find
the frequent (k+1)-sequences. To obtain the sequential pattern, Pre-
fixSpan constructs a S-Matrix in each recursive step. PrefixSpan
uses a lot of time because it needs to scan the entire projected
database, which can be very large.

1. 3 Overview of Our Algorithm
As Ayres et al. did in [4], our mining process includes two steps:

a sequence-extension step (S-Step) and aitemset-extension
step (I-Step) in a standard depth-first manner.

Discovering (k+1)-length frequent patterns. For any time series
database, the last position of an item is the key used to judge whether
or not the item can be appended to a given prefix (k-length) se-
quence (assumed to bes). For example, in a sequence, if the last
position of itemα is smaller than, or equal to, the position of the
last item ins, then itemα cannot be appended tos as a (k+1)-length
sequence extension in the same sequence.

Example 2. When scanning the database in Table 1 for the first
time, we obtain Table 2, which is a list of the last positions of the
1-length frequent sequences in ascending order. At the same time,
we can obtain Table 3, which is a list of the last positions of the
frequent 2-lengthIE sequences in ascending order. Suppose that
we have a prefix frequent sequence〈a〉, and its positions in Table 1
are 10:1, 20:3, 30:3, where sid:eid represents the sequence ID and
the element ID. Then, we check Table 2 to obtain the first indices
whose positions are larger than〈a〉’s, resulting in 10:1, 20:2, 30:3,

Table 4 Last Position of DB (S-Step)

SID Sequence

10 ∗ ∗ (∗∗) ∗ (∗bc)ad

20 ∗(∗∗)ac(bd)

30 ∗(b∗)(a∗)(cd)

i.e., (10:blast = 5, 20:clast = 4, and 30:clast = 4). We start from
these indices to the end of each sequence, and increment the sup-
port of each passed item, resulting in〈a〉 : 1, 〈b〉 : 2, 〈c〉 : 3, and
〈d〉 : 3, from which, we can determine that〈ab〉, 〈ac〉 and 〈ad〉
are the frequent patterns. In our implementation, we constructed a
mapping table for a specific position to the corresponding index of
the item-last-position list, thus avoiding searching in each iteration.
The I-Step methodology is similar to the S-Step methodology, with
the only difference being that, when constructing the mapping ta-
ble, I-Step maps the specific position to the index whose position
is equal to or larger than the position in Table 3. To determine the
itemset extension pattern of the prefix sequence〈a〉, we obtain its
mapped indices in Table 3, which are 10:1, 20:2, and 30:2. Then,
we start from these indices to the end of each sequence, and in-
crement the support of each passed item, resulting in〈(ab)〉 : 1,
and〈(ac)〉 : 2. We can also obtain the support of the 3-length se-
quences〈a(bc)〉 : 1, 〈a(bd)〉 : 1, and〈a(cd)〉 : 1, which is similar
to the bi-level strategy of PrefixSpan, but we avoid scanning the
entire projected database.

From the above example, we can show that the main difference
between LAPIN and previous works is the scope of the search space.
PrefixSpan scans the entire projected database to find the frequent
pattern. SPADE temporally joins the entire ID-List of the candidates
to obtain the frequent pattern of next layer. LAPIN can obtain the
same result by scanning only part of the search space of PrefixSpan
and SPADE, which indeed, are the last positions of the items. Table
4 shows the search space of LAPIN based on Table 1 (S-Step). We
can avoid scanning the∗ part in the projected database or in the ID-
List. Let D̄ be the average number of customers (i.e., sequences)
in the projected DB,̄L be the average sequence length in the pro-
jected DB,N̄ be the average total number of the distinct items in the
projected DB, andm be the distinct item recurrence rate or density
in the projected DB. Thenm=L̄/N̄ (m >= 1), and the relationship
between the runtime of PrefixSpan (Tps) and the runtime of LAPIN
(Tlapin) in the support counting part is

Tps/Tlapin = (D̄ × L̄)/(D̄ × N̄) = (D̄ × L̄)/(D̄ × L̄/m) = m (1).

Because support counting is usually the most costly step in the en-
tire mining process, Formula (1) illustrates the main reason why
our LAPIN algorithm is faster than PrefixSpan for dense data sets,
whosem (density) can be very high. For example, suppose we
have a special data set, which has only one single long sequence
with one distinct itema and the sequence length is 100. The
total time used to scan the projected databases in PrefixSpan is
100 + 99 + 98 + 97 + . . . + 1=5050. However, LAPIN only
needs100 + 1 + 1 + . . . + 1=199 scanning time. Hence, we have
m=5050/199≈25. From this example, we know that scanning most
of the duplicate items in the projected DB is useless and time con-
suming.

The remainder of this paper is organized as follows. In Section
2, we introduce a series of LAPIN algorithms in detail. Our exper-
imental results and performance analysis are reported in Section 3.
We conclude the paper and provide suggestions for future work in
Section 4.

2. LAPIN Sequential Pattern Mining

2. 1 Definitions, Lemmas, and Theorem
［Definition 1］（Prefix border position set） Given two sequences,

— 2 —

Table 5 SE Position List of DB
SID Item Positions
10 a : 1 → 5 → 6 → null

b : 3 → 5 → null
c : 2 → 3 → 5 → null
d : 4 → 7 → null

20 a : 3 → null
b : 1 → 5 → null
c : 2 → 4 → null
d : 2 → 5 → null

30 a : 3 → null
b : 2 → null
c : 2 → 3 → 4 → null
d : 1 → 4 → null

A=〈A1A2 . . . Am〉 and B=〈B1B2 . . . Bn〉, suppose that there ex-
ists C=〈C1C2 . . . Cl〉 for l <= m andl <= n, and that C is a common
prefix for A and B. We record both positions of the last itemCl in
A and B, respectively, e.g.,Cl=Ai andCl=Bj . The position set,
(i, j), is called theprefix border position setof the common prefix
C, denoted asSc. Furthermore, we denoteSc,i as the prefix border
position of the sequence, i.
For example, if A=〈abc〉 and B=〈acde〉, then we can deduce that
one common prefix of these two sequences is〈ac〉, whose prefix
border position set is (3,2), which is the last item c’s positions in A
and B.

［Definition 2］（Local candidate item list） Given two sequences,
A=〈A1A2 . . . Am〉 and B=〈B1B2 . . . Bn〉, suppose that there ex-
ists C=〈C1C2 . . . Cl〉 for l <= m andl <= n, and that C is a common
prefix for A and B. LetD = (D1D2 . . . Dk) be a list of items, such
as those appended to C, andC′ = C ¦Dj (1 <= j <= k) is the com-
mon sequence for A and B. The list D is called thelocal candidate
item list of the prefix C’.
For example, if A=〈abce〉 and B=〈abcde〉, we can deduce that one
common prefix of these two sequences is〈ab〉, and〈abc〉, 〈abe〉 are
the common sequences for A and B. Therefore, the item list (c,e)
is called thelocal candidate item list of the prefixes〈abc〉 and
〈abe〉.

［Definition 3］（SE Item-last-position list） Given two sequences,
A=〈A1A2 . . . Am〉 and B=〈B1B2 . . . Bn〉, the list of the last posi-
tions of the different frequent 1-length items in ascending order (or
if the same, based on alphabetic order) for these two sequences is
called theSE item-last-position list, denoted asLs. Furthermore,
we denoteLs,n as theitem-last-position list of the sequence,
n. Each node ofLs,n is associated with two values, i.e., an item
and an element number (denoted asDs,n.item andDs,n.num for
Ds,n ∈ Ls,n)

［Definition 4］（IE Item-last-position list） Given two sequences,
A=〈A1A2 . . . Am〉 and B=〈B1B2 . . . Bn〉, the list of the last po-
sitions of the different frequent 2-lengthIE sequences in ascending
order (or if same, based on alphabetic order) for these two sequences
is called theIE item-last-position list, denoted asLi. Furthermore,
we denoteLi,n as theitem-last-position list of the sequence,
n. Each node ofLi,n is associated with two values, i.e., an item
and an element number (denoted asDi,n.item andDi,n.num for
Di,n ∈ Li,n).
For example, we can see that Table 2 and Table 3 are theSE and
IE item-last-position lists of the database in Table 1.

［Lemma 1］（Sequence Extension checking） For a prefix sequence,
C, in a sequence,i, if the prefix border position,Sc,i, is smaller than
the last position of a candidateSE item, α, in the same sequence,
thenC can be extended toC ¦ α as aSequence Extension in the
sequence,i.
Proof: Since the last position of the candidateSE itemα is larger
thanSc,i, at least oneα appears behind the prefix sequenceC in
the sequencei, which means theSequence Extension C¦α exists
in the sequence,i.

——-
LAPIN Algorithm :

Input : A sequence database, and the minimum support threshold,ε

Output : The complete set of sequential patterns

Function : GenPattern(α, S, CanIs, CanIi)
Parameters : α = length k frequent sequential pattern;S = prefix border position set of (k-1)-
length sequential pattern;CanIs = candidate sequence extension item list of length k+1 sequential
pattern;CanIi = candidate itemset extension item list of length k+1 sequential pattern
Goal : Generate (k+1)-length frequent sequential pattern

Main():
1. Scan DB once to do:

1.1Ps ← Create the position list representation of the 1-lengthSE

sequences
1.2Bs ← Find the frequent 1-lengthSE sequences
1.3Ls ← Obtain the item-last-position list of the 1-lengthSE

sequences
1.4Bi ← Find the frequent 2-lengthIE sequences
1.5Pi ← Construct the position lists of the frequent 2-lengthIE

sequences
1.6Li ← Obtain the item-last-position list of the frequent 2-lengthIE

sequences
2. For each frequentSE sequenceαs in Bs

2.1 Call GenPattern (αs , 0,Bs, Bi)
3. For each frequentIE sequenceαi in Bi

2.2 Call GenPattern (αi , 0,Bs, Bi)

Function Gen Pattern(α, S, CanIs , CanIi)

4. Sα ← Find the prefix border position set ofα based onS
5. FreItems,α ← Obtain theSE item list ofα based onCanIs andSα

6. FreItemi,α ← Obtain theIE item list ofα based onCanIi andSα

7. For each itemγs in FreItems,α

7.1 Combineα andγs asSE, results inθ and output
7.2 Call GenPattern (θ, Sα, FreItems,α, FreItemi,α)

8. For each itemγi in FreItemi,α

8.1 Combineα andγi asIE, results inη and output
8.2 Call GenPattern (η, Sα, FreItems,α , FreItemi,α)

——-

Figure 1 LAPIN Algorithm pseudo code

［Lemma 2］（Itemset Extension checking） For a prefix sequence,
C, in a sequence,i, if the prefix border position,Sc,i, is smaller
than, or equal to the last position of a candidateIE item,β, in the
same sequence, thenC can be extended toC ¦ β as anItemset
Extension in the sequence,i.
Proof: Since the last position of the candidateIE itemβ is larger
than or equal toSc,i, at least oneβ appears behind the prefix se-
quenceC in the sequencei, which means theItemset Extension
C ¦ α exists in the sequencei.

［Theorem 1］（Frequent sequence） Given a user specified mini-
mum support,ε, a sequence,S, is frequent if, bySequence
Extension checking, its support, Sup(S), is >= ε, or, by
Itemset Extension checking, its support,Sup(S), is >= ε.

2. 2 LAPIN: Design and Implementation
In this section, we describe the LAPIN algorithms used to mine

sequential patterns in detail. As in other algorithms, certain key
strategies were adopted, i.e., candidate sequence pruning, database
partitioning, and customer sequence reducing. Combined with the
LAPIN strategy, our algorithms can efficiently find the complete set
of frequent patterns. We used the Depth First Search (DFS). The
pseudo code of LAPIN is shown in Figure 1.

In Step 1, by scanning the DB once, we can obtain theSE po-
sition list table, as in Table 5 and all the 1-length frequent patterns.
Based on the last element in each position list, we can sort and
construct theSE item-last-position list in ascending order, as
shown in Table 2. To find the frequent 2-lengthIE sequences, dur-
ing the first scan, we construct a 2-dimensional array indexed by
the items’ ID and update the counts for the corresponding 2-length
IE sequences by using similar methods to those used in [6]. Then,
we merge theSE position lists of the two items, which compose
the frequent 2-lengthIE sequence, to obtain the 2-lengthIE se-
quence position list. Finally, we sort and construct theIE item-
last-position list of each frequent 2-lengthIE sequence in as-
cending order, as shown in Table 3. As Example 2 shows, the I-Step
methodology is similar to the S-Step methodology in LAPIN. We

— 3 —

� � � � � � �� � 	 	
 � 	 �� � 	
� � 	 �� � 	 �

� � � � � � �� � � � � � � �� � � � � � � �

� � � ! � � � !

" # $ %
& ' (() *

+ , - . / 0 1 2 /1 2 3 4 . 5 6 7 8 / 5 9 6 : ; < < = > ?@ A = B C D B E
F G H I

J K L M N O M PQ R S T U V W W X T Y Z [\ W X T Y Z [Q R S T T U W \ V] X T Y Z [^ X T Y Z [
_ ` a b c d e f g h i ` j k l e _ m a n o o g h p d q r i o o g s g q p p t f g d o k l e

Figure 2 Performance of Suffix-oriented and LCI-oriented algorithms on

different DB

will first describe the S-Step process, and the I-Step process will be
explained in detail in Section 2.3.4.

In functionGen Pattern, to find the prefix border position set
of k-lengthα (Step 4), we first obtain the position list of the last
item ofα, and then perform a binary search in the list for the (k-1)-
length prefix border position. (We can do this because the position
list is in ascending order.) ForS-Step, we look for the first position
that is larger than the (k-1)-length prefix border position.

Step 5, shown in Figure 1, is used to find the frequentSE (k+1)-
length pattern based on the frequent k-length pattern and the 1-
length candidate items. Step 5 can be justified based on Theorem 1
in Section 2.2. Commonly, support counting is the most time con-
suming part in the entire mining process. Here, we face a problem.
”Where do the appended 1-length candidate items come from?” We
can test each candidate item in the local candidate item list (LCI-
oriented), which is similar to the method used in SPADE [6] and
SPAM [4]. Another choice is to test the candidate item in the pro-
jected DB, just as PrefixSpan [5] does (Suffix-oriented). The
correctness of these methods was discussed in [6] and [5], respec-
tively.

We have found thatLCI-oriented andSuffix-oriented have
their own advantages for different types of data sets. Suppose that
we have two sequence databases, as shown in Figure 2 (a), the pre-
fix sequence isa, and the minsupport = 1. To test the 2-length
candidate sequences, whose prefix isa for DB (i), the Suffix-
oriented algorithm scans the projected DB, which requires a 1×
5 = 5 scanning time. TheLCI-oriented algorithm scans the local
candidate item list for each sequence, which requires a 5× 5 = 25
scanning time. However, for DB (ii), theSuffix-oriented algo-
rithm requires a 5× 2 = 10 scanning time, and theLCI-oriented
algorithm requires a 2× 2 = 4 scanning time. The effect of these
two data sets on the two approaches is shown in Table 2 (b).

The above example illustrates that, if the average suffix sequence
length is less than the average local candidate item list size, as in DB
(i), thenSuffix-oriented spends less time. However, if the aver-
age suffix sequence length is larger than the average local candidate
item list size, as in DB (ii), thenLCI-oriented is faster.

Based on this discovery, we formed a series of algorithms catego-
rized into two classes. One class wasLCI-oriented, LAPIN LCI,
and the other class wasSuffix-oriented, LAPIN Suffix. We can
dynamically compare the suffix sequence length with the local can-
didate item list size and select the appropriate search space to build
a single general framework. However, because we used a space
consuming bitmap strategy in LAPINLCI, which will be explained
in Section 2.3.1, in order to save memory space and clarify the ad-
vantages and disadvantages of each method, we deconstructed the
general framework into two approaches. Nevertheless, it is easy to
combine these two approaches, and evaluate the efficiency of the en-
tire general framework, whose runtime,T , and maximum memory
space required,M , are

T ≈ {TLAPIN LCI , TLAPIN Suffix}min

M ≈ {MLAPIN LCI , MLAPIN Suffix}max.

LAPIN LCI. LAPIN LCI tests each item which is in the local
candidate item list. In each customer sequence, it directly judges
whether an item can be appended to the prefix sequence or not
by comparing this item’s last position with the prefix border po-

(a)ITEM_IS_EXIST_TABLE (b)Optimized ITEM_IS_EXIST_TABLE

Figure 3 Bitmap representation table
——-
Input : Sα = prefix border position set of length k frequent sequential patternα; BVs = bit
vectors of the ITEMIS EXIST TABLE; CanIs = candidate sequence extension items;ε = user
specified minimum support
Output : FreItems = local frequentSE item list

1. For each sequence, F
2. Sα,F ← obtain prefix border position of F inSα

3. bitV← obtain the bit vector of theSα,F indexed from BVs
4. For each itemβ in CanIs

5. Suplist[β] = Suplist[β] + bitV[β];
6. For each itemγ in Suplist
7. if (Suplist[γ] >= ε)
8. FreItems.insert(γ);
——-

Figure 4 Finding the SE frequent patterns using LAPINLCI
——-
Input : Sα = prefix border position set of length k frequent sequential patternα; Ls = SE item-
last-position list;ε = user specified minimum support
Output : FreItems = local frequentSE item list

1. For each sequence, F
2. Sα,F ← obtain prefix border position of F inSα

3. Ls,F ← obtainSE item-last-position list of F inLs

4. M = Find the corresponding index forSα,F

5. while (M < Ls,F .size)
6. Suplist[M.item]++;
7. M++;
8. For each itemβ in Suplist
9. If (Suplist[β] >= ε)
10. FreItems.insert(β);
——-

Figure 5 Finding the SE frequent patterns using LAPINSuffix

sition. Increment the support value of the candidate item by 1
if the candidate item’s last position is larger than the prefix bor-
der position. As an optimization, we can use bitmap strategy to
avoid such comparison process. A pre-constructed table, named
ITEM IS EXIST TABLE is constructed while first scanning to
record the last position information. For example, Figure 3 (a),
which is based on the example database shown in Table 1, shows
one part of the ITEMIS EXIST TABLE for the first sequence. The
left-hand column denotes the position number and the top row is
the item ID. In the table, we use a bit vector to represent all the
1-length frequent items existing for a specific position. If the bit
value is unity, then it indicates that the corresponding item exists.
Otherwise, the item does not exist. The bit vector size is equal to
the size of the 1-length frequent items list. For example, when the
current position is 5, we obtain the bit vector 1001, indicating that
only itemsa andd exist in the same sequence after the current pre-
fix. To accumulate the candidate sequence’s support, we only need
to check this table, and add the corresponding item’s vector value,
thus avoiding the comparison process.

Space Optimization of LAPIN LCI. We found that only
part of the table was useful, and that most was not. The opti-
mized ITEM IS EXIST TABLE is shown in Figure 3 (b), which
stores only two bit vectors instead of the seven shown in Figure 3
(a). We used an array to map each specific position to the index in
the optimized ITEMIS EXIST TABLE. For a dense data set, this
space saving strategy proved more efficient. The pseudo code of
LAPIN LCI is shown in Figure 4.

Example 3. Let us assume that we have obtained the prefix bor-
der position set of the pattern〈a〉 in Table 1, i.e., (1,3,3). We also
know that thelocal candidate item list is (a, b, c, d). Then, in-

— 4 —

Table 6 IE Position List of DB
SID Item Positions

10 (ab) : 5 → null

(ac) : 5 → null

(bc) : 3 → 5 → null

20 (bd) : 5 → null

(cd) : 2 → null

30 (ac) : 3 → null

(bc) : 2 → null

(cd) : 4 → null

stead of comparing each last position of the candidate item with
the prefix border position, we obtain the bit vector mapped from
the specific position. Here, we obtain the bit vectors 1111, 0111,
and 0011 with respect to the pattern〈a〉’s prefix border position set,
(1,3,3), and accumulate them, resulting in〈a〉 : 1, 〈b〉 : 2, 〈c〉 : 3,
and〈d〉 : 3. From here, we can deduce that〈ab〉, 〈ac〉, and〈ad〉 are
frequent patterns.

LAPIN Suffix. When the average size of the candidate item list is
larger than the average size of the suffix, then scanning in the suf-
fix to count the support of the (k+1)-length sequences is better than
scanning in the local candidate item list, such as for DB (i) in Fig-
ure 2. Therefore, we proposed a new algorithm, LAPINSuffix. In
the item-last-position list, i.e., Table 2, we look for the first el-
ement whose last position is larger than the prefix border position.
Then, we go to the end of this list and increment each passed item’s
support. Obviously, we only pass and count once for each differ-
ent item in the suffix (projected database) because, initem-last-
position list, we record the last position of each item for a specific
sequence. In contrast, PrefixSpan needs to pass every item in the
projected database regardless of whether or not they are the same
as before. Therefore, LAPINSuffix will save much time because
our search space is only a subset of the one used in PrefixSpan. The
pseudo code of LAPINSuffix is shown in Figure 5. Example 2 in
Section 1.3 describes the flow of LAPINSuffix.

I-Step of LAPIN. In LAPIN, the I-Step is similar to theS-Step.
From Step 1 in Figure 1, we can obtain the frequent 2-lengthIE
sequence position list, as shown in Table 6, and theI-Step item-
last-position list, as shown in Table 3. In Step 4 of Figure 1, we
first obtain the position list of the last 2-lengthIE item of α, and
then perform a binary search in Table 6. Here, we look for the first
position that is equal to, or larger than the (k-1)-length prefix border
position. To find the frequent (k+1)-lengthIE sequences in Step
6 of Figure 1, which is similar to S-Step, there are two classes of
algorithm. One isLCI-oriented, which directly compares the last
position of the 2-lengthIE sequences with the prefix border posi-
tions to judge whether or not the frequent k-length sequence can be
appended to the 2-lengthIE sequence to form a (k+1)-lengthIE
sequence. The first item of the 2-lengthIE sequence should be the
same as the last item of the k-length prefix sequence. The other al-
gorithm isSuffix-oriented, which uses Table3 to facilitate the
I-Step support counting.

3. Performance Study

In this section, we will describe our experiments and evaluations
conducted on both synthetic and real data, and compare LAPIN
with PrefixSpan to demonstrate the efficiency of the proposed al-
gorithms. We performed the experiments using a 1.6 GHz Intel
Pentium(R)M PC machine with a 1 G memory, running Microsoft
Windows XP. All three algorithms are written in C++ software, and
were compiled in an MS Visual C++ environment. The output of
the programs was turned off to make the comparison equitable.

3. 1 Comparing PrefixSpan with the LAPIN Algorithms
We first compared PrefixSpan and our algorithms using synthetic

and real data sets, and showed that LAPIN outperformed PrefixSpan
by up to an order of magnitude on dense data sets with long patterns
and low minimum support.

Table 7 Parameters used in data set generation

Symb. Meaning

D Number of customers in the data set

C Average number of transactions per customer

T Average number of items per transaction

S Average length of maximum sequences

I Average length of transactions within maximum sequences

N Number of different items in the data set

Synthetic Data.The synthetic data sets were generated by an IBM
data generator, as described in [8]. The meaning of the different pa-
rameters used to generate the data sets is shown in Table7. In the
first experiment, we compared PrefixSpan and our algorithms using
several small-, medium-, and large- sized data sets for various min-
imum supports. The statistics of these data sets is shown in Figure
6 (a).

PrefixSpan vs. LAPIN: We defined search space as in
PrefixSpan, to be the size of the projected DB, denoted as
Sps, and in LAPIN the sum of the number of different items
for each sequences in the suffix (LAPINSuffix) or in the lo-
cal candidate item list (LAPINLCI), denoted asSlapin. Fig-
ure 6 (b) and Figure 6 (c) show the running times and the
searched space comparison between PrefixSpan and LAPIN and
clearly illustrate that PrefixSpan is slower than LAPIN using the
medium data set (C30T20S30I20N200D20K) and the large data set
(C50T20S50I20N300D100K). This is because the searched spaces
of the two data sets in PrefixSpan were much larger than that in
LAPIN. For the small data set (C10T5S5I5N100D1K), the ineffec-
tiveness of searched space saving and the initial overhead needed to
set up meant that LAPIN was slower than PrefixSpan. Overall, our
runtime tests showed that LAPIN excelled at finding the frequent
sequences for many different types of large data sets.

Formula (1) in Section1.3 illustrates the relationship between the
runtime of PrefixSpan and the runtime of LAPIN in the support
counting part. However, for the entire mining time, we also need to
consider the initialization part and the implementation detail, which
are very difficult to evaluate because of the complexity of the se-
quential pattern mining problem. Commonly, support counting is
usually the most costly step in the entire mining process. Hence,
we can approximately express the relationship between the entire
mining time of PrefixSpan and that of LAPIN based on Formula
(1), where we generalize the meaning ofN̄ to denote the aver-
age total number of the distinct items in either the projected DB
(LAPIN Suffix) or in the local candidate item list (LAPINLCI),
and the meaning ofm to denote either the distinct item recurrence
rate of the projected DB (LAPINSuffix) or the local candidate list
(LAPIN LCI). Formula (1) illustrates that, the higher the value ofm
is, then the faster LAPIN becomes compared to PrefixSpan. How-
ever, the entire mining time of LAPIN is not faster than that of Pre-
fixSpanm times because of the initialization overhead, but near to
m times because of the importance of the support counting in the
entire mining process. The experimental data shown in Figure 6
(b) and Figure 6 (c) is in accordance with our theoretical analysis,
where thesearched space comparison determines the value ofm,
m = Sps/Slapin.

LAPIN Suffix vs. LAPIN LCI: Because LAPINSuffix and
LAPIN LCI are implemented in the same framework, in addition
to the small difference in the initial phase, the only implementation
difference is in the support counting phase: LAPINSuffix searches
in the suffix, whereas LAPINLCI searches in the local candidate
item list. LetN̄Suffix be the average total number of the distinct
items in the projected DB,̄NLCI be the average total number of the
distinct items in the local candidate item list,mSuffix be the dis-
tinct item recurrence rate of the projected DB,mLCI be the distinct

— 5 —

� � � � � � � � � � � 	
 �
 �

 � � � � �

�
� � �

� � �
� � �

� � �
� � �

� � � � � �
� � � � � � � � � ! " # $ %

& '(
() (*

+) ,
-. /

0 1 2 3 4 5 6 7 8 9
: ; < = > ? @ A B B C D
E F G H I J E K H

L M N M O P N Q R S T U V T W S T X V T Y V T T L V T

Z
[Z Z Z

\ Z Z Z
] Z Z Z
^ Z Z Z

_ ` _ a _ b _ c _ d
e f g f h i h j i k k l m n o p

q rs
st su

vt w
xy z

{ | } ~ � � � � � �
� � � � � � � � � � � �
� � � � � � � � �

� � � � � � � � � � � ¡ � ¢ � � £ ¡ � ¤ ¥ � � � ¦ � �

§
¨ § § §

© § § §
ª § § §

« § § §
¬ § § §

­ ® ¯ « ­ ® ¯ ° ­ ® ¯ ® ­ ­ ­ ­ ¯ ©
± ² ³ ² ´ µ ´ ¶ µ · · ¸ ¹ º » ¼

½ ¾¿
¿À ¿Á

ÂÀ Ã
ÄÅ Æ

Ç È É Ê Ë Ì Í Î Ï Ð
Ñ Ò Ó Ô Õ Ö × Ø Ù Ù Ú Û
Ü Ý Þ ß à á Ü â ß

ã ä å ä æ ç å è æ ç é ê ç ë ì ç æ í î ï ð ç ë ï å ñ ò ó å ä ð æ ô õ ç
ö ÷ ø ò ù ú ù û ù ü ÷ ø ø ã ÷ ý ÷ ø ø ø þ ÿ � � ø ý
ö � ø ò � ø ú � ø û � ø ü � ø ø ã � ø ý � ø ø ø ø ù ÷ � þ ÿ �
ö ù ø ò � ø ú ù ø û � ø ü � ø ø ã ÷ ø ø ý ÷ ø ø ø ø ø � ø � þ ø ÷ �

� � � � 	
 � � �
 � � � � � � �
 � � �
 � �

�
�

�
�

� � � �
 �
� � � � � � � 	 � � � ! � � " �

$%
&'($) *+%
'$

,-. / 0 1 2 3 4 5 6 7 89 : ; < = > ? @ A A B CD E F G H I D J G

K L M L N O M P Q R S T U S V R S W U S X U S S K U S Y Z

S
[S S

U S S
R S S

\ [\ U \ R \] \ ^
_ ` a ` b c b N c d d e f M P g Z

h ij
klm in opj
li

qrs t u v w x y z { | }~ � � � � � � � � � � �� � � � � � � � �

� ¡

�
� �

� � �
� � �

¢ £ ¤ ¥ ¢ £ ¤ ¦ ¢ £ ¤ £ ¢ ¢ ¢ ¢ ¤ �
§ ¨ © ¨ ª « ª � « ¬ ¬ ­ ® � � ¯ ¡

° ±²
³´µ ±¶ ·¸²
´±

¹º» ¼ ½ ¾ ¿ À Á Â Ã Ä ÅÆ Ç È É Ê Ë Ì Í Î Î Ï ÐÑ Ò Ó Ô Õ Ö Ñ × Ô

Ø Ù Ú Û Ü Ý Ý Þ Ý ß à Þ á â ã ä á å æ ç Þ è ä Ý

Ø æ Ú é æ à æ è â à ã ê æ ç æ ã à â ç Þ è à Þ ã è

ë ì í ì î ï í ð ñ ò ó ô õ ö õ ÷ õ ø ò ó ó ë ò ù ú

ó
õ

ò ó
ò õ

û ó

û ü ý þ ò ó
ÿ � � � � � � î � � � � � í ð � ú

� 	
 ��
�
	
�� ��
���� �

� � � � � � � � � � ! " # $ % & ' ()) * +, - . / 0 1 , 2 /

3 4 5 4 6 7 5 8 9 : ; < = ; > : ; ? = ; @ = ; ; 3 = ; A B

C ; ;
C D ;

= ; ;
= D ;

E C E = E : E F E D
G H I H J K J 6 K L L M N 5 8 O B

P QR ST U
VUQW
XYZ
V[\]

^ _ ` a b c d e f g h
i j k l m n o p q q r st u v w x y t z w

{ | } | ~ � } � � � � � � � � � � � � � � � � � { � � � � �

� � �
� � �
� � �
� � �

� � � � � � � � � � � � � � � � � �
� � � � � � � ~ � � � � � } � � �

� �� � ¡
¢¡�£
¤¥¦

¢§¨ ©
ª « ¬ ­ ® ¯ ° ± ² ³ ´

µ ¶ · ¸ ¹ º » ¼ ½ ½ ¾ ¿À Á Â Ã Ä Å À Æ Ã

Ç È É Ê Ë Ì Í Î Ï Ð Ñ Ò Ó Ë Ô Í Ì Õ Ò Î Ö Ñ Í ×

Ç Ô É Ø Ë Ò Î Ô Ù Ë È Ñ Õ Ò Ô Ë Ô Í Ì Õ Ò Î Ö Ñ Í ×

Figure 6 The different sizes of the data sets

item recurrence rate of the local candidate item list. We can express
the relationship between the entire mining time of LAPINSuffix
(TSuffix) and that of LAPINLCI (TLCI) as

TSuffix/TLCI ≈ SSuffix/SLCI = mLCI/mSuffix (2).

where we have the searched space of LAPINSuffix, SSuffix =
D̄ × N̄Suffix = D̄ × L̄/mSuffix, and the searched space of
LAPIN Suffix,SLCI = D̄× N̄LCI = D̄× L̄/mLCI . Formula (2) is
in accordance with the experimental data shown in Figure 6 (b) and
Figure 6 (c). LAPINSuffix is faster than LAPINLCI for small data
sets because the former one searches smaller spaces than the latter
one does. However, for medium and large dense data sets, which
have many long patterns, LAPINLCI is faster than LAPINSuffix
because the situation is reversed.

Memory usage analysis:As Figure 6 (d) shows, LAPINSuffix
expends almost the same amount of memory as PrefixSpan does,
except for small data sets because LAPINSuffix uses a lit-
tle more memory than PrefixSpan to store initialization informa-
tion. LAPIN LCI, because it needs to store the items’ last po-
sition information in bit vector format, requires more space than
LAPIN Suffix and PrefixSpan do. LetC′ be the average num-
ber of the key positions per customer. LAPINLCI requires
(D × C′ × N)/8 bytes to store the last position information for
all the items. From Figure 6, it can be seen that there is a trade-
off between LAPINSuffix and LAPINLCI in terms of speed and
space.

Different parameters analysis:In the second experiment, we com-
pared the performance of the algorithms as several parameters in the
data set generation were varied. The meaning of these parameters
are shown in Table7. As Figure 7 shows, whenC increases,T in-
creases, andN decreases, then the performance of LAPIN improves
even more relative to PrefixSpan, by up to an order of magnitude.
Let us consider Formula (1),m=L̄/N̄=C̄ × T̄ /N̄ , whereC̄ is the

average number of transactions per customer in the projected DB,
and T̄ is the average number of items per transaction in the pro-
jected DB. On keeping the other parameters constant, increasingC,
T and decreasingN , respectively, will result in an increase in the
distinct item recurrence rate,m, which is in accordance with the
experimental data shown in Figure 7. This confirms the correctness
of Formula (1).

With regards to the other three parameters, asS, I andD varies,
the discrepancy between the running times does not change signifi-
cantly because these parameters do not apparently contribute to the
variance of the distinct item recurrence rate,m, which means that
the discrepancy between the searched space does not change much
as these three parameters are varied. Between the two LAPIN al-
gorithms, LAPINLCI and LAPIN Suffix, the former one is always
the fastest because its searched space is less than that of the latter
one. Due to limited space, we do not show the searched space com-
parison here.

Real Data. We consider that results from real data will be more
convincing in demonstrating the efficiency of our proposed algo-
rithm. In this section, we discuss tests on two real data sets, Gazelle
and Protein. A portion of Gazelle was used in KDD-Cup 2000.
More details on the information in this data set can be found in [10].
The second real data set used, Protein, was extracted from the web
site of the National Center for Biotechnology Information (USA)
（注1）. This was extracted using a conjunction of: (1) search category
= ”Protein”, (2) sequence length range = [400:600], and (3) data
submission period = [2004/7/1, 2004/12/31]. The statistics of these
data sets is shown in Figure 8 (a).

As shown in Figure 8 (b), LAPIN outperformed PrefixSpan for
both the Gazelle and Protein data sets. The reason why LAPIN per-
formed so well was similar to that for the synthetic data sets in Sec-
tion 3.1.1, and was based on the searched space saving, as shown
in Figure 8 (c). This experiment confirmed the superiority of the

（注1）：http://www.ncbi.nlm.nih.gov

— 6 —

� � � � � � � � � � � 	
 � �

 �
 � �

 � �

�
� � �

� � �
� � �
� � �

� � � � � � � � � � � �
� � � ! " � # $ % & � ' () ! # * ! +) , ' # * - �+ $ *) ' % � . / 0 1 2

3 45
56 5786 9
:; < = > ? @ A B C D E FG H I J K L M N O O P QR S T U V W R X U

Y Z [Z \] [^ _ ` a b c d e a f e a g h a a a Y h

i
j i i

k i i
l i i
m i i

n o n p n q n r n s t u
v w x y z { x | } ~ � x y � � � � x ~ � � x� y z | � z � � � � | � � } � � � � � �

� ��
�� ���� �
�� � � � � � � � � � � ¡ ¢ £ ¤ ¥ ¦ § ¨ © © ª «¬ ­ ® ¯ ° ± ¬ ² ¯

³ ´ µ ´ ¶ · µ ¸ ¹ º » ¼ º » ½ ¾ ¿ À » Á Â » » » ³ Â

Ã
Ä Ã Ã

Å Ã Ã
Æ Ã Ã
Ç Ã Ã

Ä Ã Ä Ä Ä Å Ä Æ Ä Ç È Ã
É Ê Ë Ì Í Î Ë Ï Ë Ð Î Ñ Ò Ó Ô Õ Í Ö × Õ

Ø Ë Ù Ú Ë Ð Û Ë Ø Ü Ø Ú Ý Þ ß à á â

ã äå
åæ åçèæ é
êë ì í î ï ð ñ ò ó ô õ ö÷ ø ù ú û ü ý þ ÿ ÿ � �� � � � � � � � �

	
 �
 �
 � � � � � � � � � � � � � � � � 	 �

�
� � �

� � � �
� � � �

� � � �
� � � �

� � � � � � � � � � � � � �
! " # $ % & ' () * % # + , + " - . / 0 1

2 34
45 4675 8
9: ; < = > ? @ A B C D EF G H I J K L M N N O PQ R S T U V Q W T

X Y Z Y [\ Z] ^ _ ` a _ ` b c ` d c ` e f ` ` ` X

g
h i g

j g g
k i g

l g g

h m j k i
n o p q r s t u v o w x t p r s w y z x { r| } x } w r x ~ � � � � ~ w o � � � � � �

� ��
�� ���� �
�� � � � � � � � � � � �� � � � ¡ ¢ £ ¤ ¤ ¥ ¦§ ¨ © ª « ¬ § ­ ª

® ¯ ° ± ² ³ ³ ´ µ ´ ¶ · ¸ ® ¹ ° ± ² ³ ³ ´ µ ´ ¶ · º ® » ° ± ² ³ ³ ´ µ ´ ¶ · ¼

® ´ ° ± ² ³ ³ ´ µ ´ ¶ · ½ ® ³ ° ± ² ³ ³ ´ µ ´ ¶ · ±

¾ ¿ À ¿ Á Â À Ã Ä Å Æ Ç Å Æ È É Æ Ê Ë Ì Í Æ Æ Æ ¾ Í

Î
Ï Î Î

Ð Î Î
Ñ Î Î
Ò Î Î

Ó Ô Ó Ó Ó Õ Ó Ö Ó × Ø Ô
Ù Ú Û Ü Ý Þ Û ß Û à Þ á â ã ä á Ü Ý à å Ý æ á ç ã à

è ç á â ç à á â Û é Ý ê ç é Ý ß å Û ë ì Û à æ Ûí å ì î ï ð ñ ò ó

ô õö
ö÷ öøù÷ ú
ûü ý þ ÿ � � � � � � � �

� 	
 � �
 � � � � � �
� � � � � � � � �

� � � � � � � ! " # $

Figure 7 Varying the parameters of the data sets

� � � � � � � � � � � � � 	
 �

�

 � � �

� � � �
� � � � �
� � � � �

� � � � � � � � � � � � � �
 � � � � � � � � � �
� 	
 	 � � � � � � � � � � � � �

� ���� �� � !"
$% & ' () * + , - . /0 1 2 3 4 5 6 7 8 8 9 :; < = > ? @ ; A >

B C D E C F C G H F I J C K C I F H K L G F L I G

M N O N P Q O R S T U O Q V W X

Y
Z Y Y

[Y Y
\ Y Y
] Y Y

^ ^ _ ^ Z ^ ^ _ ^ ` ^ ^ _ ^ [^ ^ _ ^ a ^ ^ _ ^ \
b V W V c d c P d e e U T O R f X

g hi
jkl hm n
oik
hpqr s t u v w x y z { |} ~ � � � � � � � � � �

� � � � � � � � �

� �

 ¡ ¢ £ ¤ ¥ ¦ ¡ § ¤ ¨ © ª ¥ ¡ ¤ ¡ « ¬ ª ¥ ¦ ­ © « ®

¯ ° ± ° ² ³ ± ´ ² ³ µ ¶ ³ · ¸ ³ ² ´ ¹ ± ³ º ² » ¹ · ¼ ³ · ½ » ° ¾ ¼ ³ · ½ ¿ À Á ½ ¼ ³ · ½ Â Ã ± ° ¼ ² ¹ Ä ³Å ° Ä ³ ¼ ¼ ³ Æ Ç È É Ê Ë Ç Ì Í Ê È Ì Ê ½ Æ Í ½ Ë »Î Ï Ã ± ³ ¹ · Í Í È Í Ë Ê Ê Ë Ë É É È É É Ë Ð Ê Ë Ñ Ð »
Ò Ó Ô Ó Õ Ö Ô × Ø Ó Ù Ö Ú Ú Ö Û

Ü
Ý Ü Ü Ü

Þ Ü Ü Ü
ß Ü Ü Ü

Ü à Ü á á Ü à Ü á â Ü à Ü á ã Ü à Ü ä Ý
å æ ç æ è é è Õ é ê ê ë ì Ô × í Û

î ïððñ ðòóñ ôõ
ö ÷ø ù ú û ü ý þ ÿ � � �� � � � � � 	
 � � �

� � � � � � � � �

� � � � � � � � � � � � � � � �

�
 �

! �
" # �
" $ �

� % � & & � % � & ' � % � & (� % � $ "
) * + * , - , � - . . / 0 � � 1 �

2 34
567 38 9
:46
3;<= > ? @ A B C D E F GH I J K L M N O P P Q R

S T U V W X S Y V

Figure 8 Real data sets

proposed method using real-life data.

4. Conclusions

In this work, we have proposed a series of novel algorithms,
LAPIN, for efficient sequential pattern mining. Our main idea is that
the last position of an item,α, in each sequence is very useful, and
is the key to judging whether or not a k-length frequent sequence
could grow to a frequent (k+1)-length sequence by appending the
item α to it. Therefore, LAPIN can reduce searching significantly
by only scanning a small portion of the projected database or the
ID-List, as well as handling dense data sets efficiently, which is
inherently difficult for most existing algorithms. By thorough ex-
periments and evaluations, we have demonstrated that LAPIN out-
performs PrefixSpan by up to an order of magnitude, which is in
accordance with our theoretical analysis. Our experimental results
also show that LAPIN is very efficient at using synthetic data and
using real-world data, such as web access patterns and protein se-
quences.

We plan to continue our work by applying our algorithm to other
application domains, and will investigate how to extend it to deter-
mine a closed frequent sequence.

References
[1] B. A. Davey and H. A. Priestley, “Introduction to Lattices and Order,”

Cambridge University Press, 1990.
[2] D. Chiu, Y. Wu, and A. L. P. Chen, “An Efficient Algorithm for min-

ing Frequent Sequences by a New Strategy without Support Count-
ing,” In 20th Int’l Conf. of Data Engineering (ICDE’04), pp. 375-
386, Boston, USA, Mar. 2004.

[3] E. Eskin and P.A. Pevzner, “Finding Composite Regulatory Patterns
in DNA Sequences,” In10th Int’l Conf. on Intelligent Systems for
Molecular Biology (ISMB’2002), pp. 354-363, Edmonton, Canada,
Aug. 2002.

[4] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, “Sequential Pattern
Mining using A Bitmap Representation,” In8th ACM SIGKDD Int’l
Conf. Knowledge Discovery in Databases (KDD’02), pp. 429-435,
Alberta, Canada, Jul. 2002.

[5] J. Pei, J. Han, M. A. Behzad, and H. Pinto, “PrefixSpan:Mining Se-
quential Patterns Efficiently by Prefix-Projected Pattern Growth,” In
17th Int’l Conf. of Data Engineering (ICDE’01), Heidelberg, Ger-
many, Apr. 2001.

[6] M. J. Zaki, “SPADE: An Efficient Algorithm for Mining Frequent
Sequences,” InMachine Learning, Vol. 40, pp. 31-60, 2001.

[7] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association
Rules,” In20th Int’l Conf. on Very Large Databases (VLDB’94), pp.
487-499, Santiago, Chile, Sep. 1994.

[8] R. Agrawal and R. Srikant, “Mining sequential patterns,” In11th Int’l
Conf. of Data Engineering (ICDE’95), pp. 3-14, Taipei, Taiwan, Mar.
1995.

[9] R. J. Bayardo, “Efficiently mining long patterns from databases,” In
ACM-SIGMOD Int’l Conf. Management of Data (SIGMOD’98), pp.
85-93, Seattle, WA, Jun. 1998.

[10] R. Kohavi, C. Brodley, B. Frasca, L. Mason, and Z. Zheng, “KDD
-cup 2000 organizer’s report: Peeling the Onion,” InSIGKDD Ex-
plorations, vol. 2, pp. 86-98, 2000.

[11] R. Srikant and R. Agrawal, “Mining sequential patterns: Generaliza-
tions and performance improvements,” In5th Int’l Conf. Extending
Database Technology (EDBT’96), pp. 13-17, Avignon, France, Mar.
1996.

— 7 —

