
DEIM Forum 2012 D6-5

Toward modeling the I/O behavior of Map-Reduce applications

Sven GROOT†, Kazuo GODA†, Daisaku YOKOYAMA†, Miyuki NAKANO†, and Masaru

KITSUREGAWA†

† Institute of Industrial Science, The University of Tokyo,

4-6-1 Komaba, Meguro-ku, Tokyo, 153–8505 Japan

Abstract Map-Reduce is a very popular framework that is often used for very large-scale data mining and pro-

cessing. Although many recent works introduce models of the Map-Reduce system, these existing models ignore

the non-linearity of disk I/O performance under contention, which is a critical aspect of estimating the performance

of data-intensive applications. To utilize multi-core machines, multiple tasks are often scheduled simultaneously on

one node, and these tasks can interfere with each other accessing the same disk. In this paper, we give a preliminary

model to estimate the I/O behavior of Map-Reduce applications and evaluate its viability.

Key words Map-Reduce, cloud computing, data intensive

1. Introduction

The popularity of Map-Reduce [3] continues to increase,

and Hadoop [2] is a popular implementation that has been

used in cloud environments, for example with Amazon Elas-

tic Map-Reduce [1].

Map-Reduce is commonly used for large-scale data analyt-

ics, involving workloads with very large amounts of data. In

these situations, the cost of reading and writing that data

to and from disks in the cluster is likely to dominate the

processing time of the workload.

In order to understand and reason about the behavior of

Map-Reduce, it is important to have a model that describes

the behavior of the jobs and tasks. Such a model would es-

timate the run-time costs of executing a particular workload

on a particular system, and because I/O costs have a large

influence on the total costs, these must be treated with care.

Modeling the I/O behavior of Map-Reduce is complicated

by the issue of contention. Map-Reduce is often deployed on

commodity hardware, and while these systems tend to have

only a limited number of disks, even very cheap systems will

have two or more CPU cores and large amounts of memory.

In order to take full advantage of the CPU power of such sys-

tems, Hadoop is normally configured to run multiple tasks

simultaneously on a single node. The rule of thumb is to use

as many task slots are there are CPU cores.

However, in this situation the multiple concurrent tasks

will compete for more limited resources, such as disk or net-

work bandwidth. Map tasks read input data and write in-

termediate data; reduce tasks shuffle intermediate data and

write replicated output data. This causes many concurrent

accesses to those resources.

Disk I/O in particular is a complex topic, because disks

are mechanical devices that often exhibit non-linear behav-

ior under contention. Factors such as disk head movement

mean that disks are often not able to reach their full band-

width when multiple streams are being read concurrently.

Smart read-ahead policies—such as those employed by hard-

ware RAID arrays—can partially alleviate this difficulty.

For a Map-Reduce model to offer reasonable accuracy for

large-scale data intensive workloads, it must consider the in-

terference that each task may see due to resource contention.

Most existing models ignore these factors or assume that

they do not vary when the job schedule changes, which in

our experience is not realistic. For this reason, we propose

to develop a model that takes this interference into account.

In the following sections, we will discuss existing work done

for modeling Map-Reduce. We will then discuss the struc-

ture of a Map-Reduce job and the various interference factors

that can arise. Finally, we will show some of our experi-

mental results in observing Map-Reduce behavior, and our

preliminary steps toward working these results into a model.

2. Related Work

Only recently has there been any significant work in at-

tempting to model Map-Reduce. Most of the current models

are limited in scope depending on what the authors intended

to use it for.

Huai et al [6] propose a model that generalizes Map-Reduce

and similar frameworks such as Dryad [7] into a matrix-based

representation of the data flow. This model is aimed at prov-

ing the reliability guarantees and does not consider perfor-



mance at all.

Verma et al [9] propose a model to estimate job comple-

tion time based on the observed task completion times mea-

sured previously. It does not consider the detailed behavior

of tasks, and assumes that task completion times will not

change if resource allocation is changed, which is likely not

accurate under heavy contention.

Jindal et al [8] use a simple model that considers only read-

ing of input data. This model assumes that disk performance

is a constant and does not take into account the performance

degradation that can occur due to contention.

The model proposed by Herodotou et al [4], described fully

in [5], is to our knowledge the most complete and detailed

model currently available. It considers in detail the behavior

of the various phases inside each task, and accurately models

the data-flow between these phases. However, the cost model

does not distinguish between CPU and I/O costs, but instead

only assigns a single cost to each action. Since CPU and I/O

show very different scaling characteristics under contention,

we believe this to be inaccurate for many data-intensive sce-

narios.

3. Considerations for Modeling Map-

Reduce

Before we can model the behavior and the costs of a Map-

Reduce job, it is necessary to consider the structure of the

jobs and how they are executed.

A Map-Reduce job consists of two main user-defined func-

tions, map and reduce, which are used to process the data.

The map function is executed for each key/value pair in

the input data, and has as output zero or more interme-

diate key/value pairs. These intermediate key/value pairs

are grouped by key, and the reduce function is executed for

each key and the associated set of values, producing the final

key/value pairs.

When executing the job on a cluster, the input data—

which is stored on a distributed file system—is divided into

pieces called input splits. For every split a map task is

spawned on a node in the cluster that runs the map function

on the data of that split. The map task partitions and sorts

the intermediate data and stores the result on a local disk.

For every partition of the intermediate data, a reduce task is

spawned that reads (shuffles) the data for its partition from

the nodes running the map tasks. It merges the sorted frag-

ments, and then executes the reduce function on the data

and stores the output data on the DFS.

Note that it is also possible for a job to have no reducers,

in which case the map tasks write their output directly to

the DFS.

Each node in the cluster is configured to run a certain

Init

Map

CollectRead

Sort Spill

Sort Spill Merge Shutdown

RR

RR

WW

WW WWRR

RR RR

WW

HDFS read Local read

Local writeWW HDFS write

RR Remote/local read

(a) Map task

Init

Shuffle

Merge

Merge

Reduce

WriteRead

Shutdown

WW

WWRR

WWRR

RR WW

RR

(b) Reduce task

図 1 Phases of map and reduce tasks.

number of map and reduce tasks in parallel (the number of

task slots), and the total number of tasks that the cluster as

a whole can execute simultaneously is its task capacity. If

the number of tasks in a job exceeds the cluster’s capacity

(or in the case of multiple simultaneous jobs, exceeds the ca-

pacity available to that job) there will be multiple waves of

tasks. Since the number of map tasks is determined by the

input data, it is quite common for there to be multiple waves

of map tasks. The number of reduce tasks is controlled by

the user, so it is more common to try to set this number

so that only a single wave is necessary, except in very large

jobs. There can still be multiple waves of reduce tasks if part

of the capacity becomes unavailable due to failures, or other

jobs are occupying some of the slots.

3. 1 Map-Reduce Task Structure

It is not sufficient to look at the structure of the job at

task-level. Instead, we must consider the processing that

happens inside the tasks.

Figure 1(a) shows the processing phases of a map task,

which are as follows:

Init The JVM is started, task configuration is loaded, and

input and output files are opened.

Read The input split is read from the DFS, verifying

its checksum and parsing the file structure to retrieve the

key/value pairs. If the input file is compressed, this phase

also includes decompression.

Map The map function is executed on every key/value

pair. This happens interleaved with the read phase, on the

same thread.

Collect The map function’s output is partitioned and se-

rialized into an in-memory buffer. This happens interleaved

with the map and read phase, on the same thread.

Sort and spill When the in-memory buffer is filled to a

certain threshold, the data in the buffer is sorted and writ-

ten to disk. If the job has specified a combine function, it



will be executed here. Spilling happens concurrently in a

background thread during task execution, and after the map

phase finishes the remaining data will be flushed to disk. De-

pending on the size of the buffers and the output data, there

can be one or more spills.

Merge If there was more than one spill, the results of the

spills must be merged into the final sorted intermediate data.

Depending on the configuration and the number of spills, the

combiner may be executed again at this stage.

Shutdown The task commits its DFS output, if any, and

shuts down. There are potentially two waits here that de-

pend on time-outs: if there is DFS output to commit, this

must wait until the next time the Tasktracker sends a heart-

beat to the Jobtracker to confirm the commit. Then, the

reporter thread is shutdown, which uses a non-configurable

three second sleep interval to check when it needs to do work

or stop.

If the job has no reduce tasks, the collect, spill and merge

phases do not occur. Instead, the map function writes its

output to the DFS.

Reduce tasks consist of the following phases, as shown in

Figure 1(b):

Init Same as for map tasks.

Shuffle Checks are performed whether intermediate data

from the map tasks is available, and if so it is transferred

over the network and stored in an in-memory buffer. If a

single segment is too large to fit in the buffer, it will be

stored on the local disk.

Merge When the in-memory buffer is filled to a certain

threshold, it triggers a merge pass, the output of which is

written to the local disk. Similarly, when the number of on-

disk segments is larger than twice the merge factor (the max-

imum number of disk inputs for a single pass), a disk merge

is triggered. After all data has been shuffled, remaining data

in the buffer is shuffled to disk, and preliminary merge passes

are executed until the number of remaining segments is less

than the merge factor.

Reduce The result of the final merge pass is read from

disk, and the reduce function is executed on each key.

Write The output from the reduce function is written to

the DFS. This includes serializing the records, computing

checksums, and if necessary compressing the data. This hap-

pens interleaved with the reduce phase, on the same thread.

DFS writes are typically replicated to multiple nodes in the

cluster.

Shutdown Same as for map tasks.

Many of the phases in both map and reduce tasks involve

both CPU activity and I/O activity. When modeling the be-

havior of those phases it is important to separate the costs for

those activities because they may scale very differently when

multiple concurrent tasks are executing simultaneously.

3. 2 I/O Interference

Figure 1 indicates for each of the phases of the map and

reduce tasks what kind of disk I/O they perform. For map

tasks, the read phase reads from the DFS, the spill phase

writes to the local disk, and the merge phase both reads

from and writes to the local disk. For reduce tasks, the shuf-

fle phase reads from local and remote disks, and may write to

the local disk. The merge phases read from and write to the

local disk, and the reduce phase reads from the local disk.

Finally, the write phase writes to the DFS.

DFS reads for map tasks usually access local storage due

to the way map tasks are scheduled. However, if a task can-

not be scheduled locally with its data, the DFS read may

in fact access the disks of another node. Additionally, if the

last record in the split crosses the split boundary, the task

will have to read a small portion of the next split, which

may also be a non-local access. Multiple tasks reading from

a single Hadoop Datanode, regardless of whether those tasks

are actually running on that node, can interfere with each

other.

Writing to the DFS involves local access, but if replication

is enabled—which is usually the case—it will also involve ac-

cesses to storage on remote nodes. DFS writes can interfere

with each other, and with DFS reads on the same nodes.

Depending on the number of disks and the kinds of stor-

age, intermediate data may or may not be stored on the same

disks as the DFS data. If it is stored on the same disks, these

accesses can interfere with DFS reads and writes as well as

each other.

Writing also introduces an additional layer of complica-

tions, because disk writes usually happen to cache and are

not immediately committed. Hadoop does not perform syn-

chronous writes, so a disk write will actually cause interfer-

ence not while the data is being written by the tasks, but

at some later point in time when the data is flushed to disk.

When this occurs depends on the amount of available cache

space and various caching policies.

This delayed writing has an interesting consequence: it

means that a map task writing data may not necessarily in-

terfere with other map tasks running at the same time, but

instead could interfere with subsequent waves of map tasks,

or with the reduce tasks.

Another factor to consider is read caching. Even if none

of the job’s input data is cached when the job starts execut-

ing, caching will come into play; intermediate data written

by the map tasks may still be in the cache when it gets read,

either by the map task merge phase or the reduce task shuffle

phase. Whether this will be the case depends on the size of

the cache and the amount of data being written per node.



0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

# of streams

Read

Write

Hadoop read

図 2 Combined throughput of reading and writing between 1 and

8 streams of 1GB in length in parallel.

4. Measuring I/O Interference

In order to incorporate interference into a model of Map-

Reduce, it is necessary to know how I/O interference affects

the performance of applications. Obviously this will depend

on the hardware platform and, in some cases, software con-

figuration.

We have performed experiments to determine how our

hardware behaves under contention. Because Map-Reduce

performs primarily sequential access, this has been the focus

of our experimentation.

Our experiments were performed using servers with dual

quad-core Intel Xeon E5530 2.4GHz CPUs, giving us a to-

tal of eight cores per node. These CPUs support hyper-

threading, but this has been disabled for the purposes of the

experiments. Each node has 24GB RAM, two local SATA

disks, and a RAID array connected with 4Gbps fiber-channel.

The RAID array has a RAID6 volume consisting of 10 disks

with a total volume capacity of 7.2TB.

We have chosen to perform the experiments using the

RAID array because it provides more predictable perfor-

mance and is less dependent on the behavior of the Linux

I/O scheduler. The RAID array can achieve a maximum

throughput of 380MB/s; this is limited by the fiber-channel

and does not vary depending on the offset from the start of

the volume at which we are reading or writing. Since the ar-

ray is a single sequential device, it can at best achieve a total

throughput of 380MB/s regardless of the number of active

streams. The RAID volume is formatted using ext3 and all

data is stored in files.

Because our system has eight cores, Hadoop will not be

configured to run more than eight map or reduce tasks in

parallel. For that reason, we have done our stream interfer-

ence experiments with up to 8 streams.

Figure 2 shows the results of reading and writing multiple

streams. We can see that the RAID array is able to maintain

a stable speed in most cases, and we found that it evenly

divides the bandwidth between the streams. On a regular

single disk, disk seek times and rotational latency will cause

a non-linear degradation of performance, but the RAID ar-

ray’s large cache and efficient read-ahead policy allows it to

avoid these additional costs.

For reading, we observed that there is a delay of between

50 and 100ms before a stream reaches a stable throughput.

This appears to be the cost of seeking, combined with the

cost of starting the read-ahead. When the number of paral-

lel streams is increased, the startup delay increases for each

stream. While this has no observable effect in Figure 2, we

observed that this overhead increases in significance when the

streams are at larger offsets from each other or the streams

are shorter, leading to a roughly linear increase in overhead

with the number of streams. Reading performance can also

decrease when the input file is heavily fragmented.

The write experiments were done using write-through I/O,

bypassing the page cache and the RAID array’s own cache.

Under normal circumstances, a process writes into the page

cache, which is flushed to disk later by a kernel thread. How-

ever, when the write load becomes high enough the kernel

starts to force writes and the RAID array will not be able

to write data to disk as fast as it gets added to the cache.

Therefore, this experiment gives us an indication of worst-

case write performance.

We see that write performance is considerably slower than

reading. We observed that this is limited by the speed at

which the RAID array can write data to the underlying disks,

and that there are periodic drops in performance that are

caused when the file system needs to read meta-data from

the disk to allocate new blocks. These reads can be quite slow

when they are done while writing, and they are also the pri-

mary reason for the variation in write throughputs when the

number of streams is changed. Various environmental fac-

tors and the way the reads and writes overlap cause a slight

degradation in performance when the number of streams gets

above four.

4. 1 I/O Interference and Hadoop

In order to take I/O measurements with Hadoop, we cre-

ated a custom input format for Map-Reduce where the key

and value are just fixed-size byte arrays read directly from

the input. This input format incurs little to no parsing over-

head, so we can observe the raw costs of reading a file with

Hadoop in a map task.

To measure read performance, we used this input format

in a dummy map task that performs no processing and has

no output. We executed jobs with 256MB input splits and

between 1 and 8 map slots. We changed the CPU affinity

of the tasks such that regardless of the number of task slots,

each task could only use a single CPU core. This is necessary

to ensure that the amount of time taken by CPU processing



0

50

100

150

200

250

0%

20%

40%

60%

80%

100%

120%

140%

160%

0 500 1000 1500

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

C
P

U
 u

sa
g

e

Elapsed time (ms)

Global CPU (user) Global CPU (sys) Global CPU (iowait)

Global CPU (irq) Task 1 throughput

図 3 Time-line of throughput and CPU usage for the read phase

of a map task reading 256MB of data.

is consistent between the experiments, because some of the

processing is done in multiple threads.

Figure 2 also shows the throughput of the read phase in a

map task. This shows very different behavior than the reg-

ular file reads, because reading in Hadoop performs check-

sum verification, making it CPU intensive even if there is

no actual processing done in the map task. However, when

the number of simultaneous streams is increased, the results

change from being primarily CPU-bound to being primar-

ily I/O-bound. This underscores the necessity of separating

CPU and I/O costs when analyzing Hadoop behavior.

The combined throughput of the read phase never man-

ages to reach the same maximum as the regular file read,

even though they are I/O-bound. Figure 3, which shows

a time-line of the throughput of a single map task running

without interference (1 slot), shows why that is: there is

a relatively long (approximately 500ms) period before the

map task reaches a stable throughput. This is caused by

high CPU usage incurred by JVM and Hadoop initialization

costs. For reasons that we were unable to determine, the

startup overhead is very sensitive to buffer size; we chose

a buffer size of 64KB which appears to minimize it. We

observed that after stable throughput is reached, the total

throughput matches that of the regular file reads for higher

numbers of streams, but this startup period keeps the aver-

age down.

It is unfortunately not possible to do a similar experiment

with writes, since forcing write-through is not possible in

Hadoop. However, we expect the results to be similar to

reads.

4. 2 Modeling Map Tasks

In order to model the behavior of map tasks, we make the

following assumptions:

• Task phases that do not have any I/O do not have any

interference. As long as the number of tasks is less than the

number of CPU cores, this should hold. As such, we assume

the cost of initialization and sorting to be constant, because

the number of records for each task is constant in our experi-

ments. In reality, the sorting cost would have to be adjusted

to the number of records similar to how this is done in [5].

• Read I/O costs may overlap with the CPU costs of the

read, map and collect phases.

• Write I/O costs may overlap with the CPU costs of

the spill or merge phases.

• The merge phase causes no additional read I/O. The

data that the merge phase must read has been written very

recently by the spill phase of the same task, and in our ex-

periments this data is always still in the page cache.

• All tasks have maximum interference (if there are N

slots, read and write bandwidth is divided by N). Although

in practice some tasks may have more or less interference,

this will give us a good worst-case average.

We can determine, by measuring the tasks of a job using

only one slot, the CPU costs of all phases. We use a modified

version of Hadoop 0.20.203.0 that takes timing measurements

that allows us to determine this; the user’s code for the tasks

does not need to be modified. From the raw values we calcu-

late the cost per byte by dividing the CPU time of each phase

by the amount of data read or written by that phase. Addi-

tionally, we estimate the I/O costs of reading and writing per

byte based on the expected stable throughput: 1/370MB/s

for reading, and 1/150MB/s for writing.

We can therefore estimate the costs of a phase that reads

or writes as follows:

T = Srw ·max(RWcpu;Nmapslots ·RWio) + fi

Here, T is the time to process the relevant phase, Srw is

the size of the data being read or written in bytes, RWcpu

is the CPU cost per byte of the phase, RWio is the I/O cost

per byte, Nmapslots is the number of map slots configured

in Hadoop, and fi is a function describing the amount of

additional interference between simultaneous streams.

Because we ensured that every task always has one CPU

core available, the CPU cost for a stream will be the same

regardless of how many tasks are active. The I/O cost when

there are N active streams is N times the I/O cost for a sin-

gle stream running in isolation, because we observed that the

bandwidth will be divided evenly between otherwise identical

tasks.

The interference function fi will be different depending on

the hardware environment, and in the general case can be

very complex to estimate. However, the predictability of the

RAID array makes it fairly simple for our environment.

For reads, we use fi to account for the additional read-

ahead penalty observed in some situations where the stream

offsets were far apart. For simplicity, we assume this over-

head to be 100ms per stream. This means that for reads,



fi = 0.1Nmapslots.

For writes, there is no additional interference, since we al-

ready used the lowest observed throughput of 150MB/s to

calculate the I/O cost.

This gives us the following equations for estimate the time

of the phases performing I/O.

Trmc = Sinput ·max(Rcpu;Nmapslots ·Rio)

+ 0.1Nmapslots

Tspill = Sspill ·max(Wspill;Nmapslots ·Wio)

Tmerge = Smerge ·max(Wmerge;Nmapslots ·Wio)

Here, Trmc, Tspill, and Tmerge are the time taken by

the read/map/collect, spill and merge phases respectively.

Sinput is the size of the input data, and Sspill and Smerge are

the size of data written by the spill and merge phases respec-

tively. Rcpu is the CPU cost per byte of the read/map/collect

phases, and Wspill and Wmerge are the CPU cost per byte of

the spill and merge phases respectively.

We observed in Section 3. 1 that the shutdown time of a

map task depends on the three-second sleep interval of the

reporter thread, which is a hard-coded constant and not con-

figurable. Since the reporter thread is started at the end of

the initialization phase, the time of the shutdown phase is

estimated by rounding the sum of Trmc, Tspill, Tsort and

Tmerge up to the nearest multiple of three. The total task

execution time is therefore expressed as follows:

Tmaptask = Tinit+ceiling(Trmc+Tsort+Tspill+Tmerge; 3)

The ceiling function is used to represent the rounding up

to a multiple of three.

If we want to use this formula to predict the time of an

entire map stage, there is one more factor to take into ac-

count: Hadoop only schedules tasks on heartbeats, so the

time that a map task occupies a map slot will last until the

next heartbeat after the task finishes. We must therefore

round Tmaptask up to the nearest multiple of the heartbeat

interval:

Tmapslot = ceiling(Tmaptask; Iheartbeat)

The default heartbeat interval is 3 seconds, although this

can be changed in the Hadoop configuration. Hadoop also

allows out-of-band heartbeats, in which case heartbeats are

sent immediately on task completion and Tmapslot becomes

equal to Tmaptask.

The overall time for the map stage can be calculated as

follows:

map1 map2 map3 map4 map5 map6

map1

map2

map3

map4

map6

map7

map5

map8

map9

map10

1 slot

4 slots

Elapsed time (seconds)

図 4 Timeline of map task execution using 1 and 4 map slots.

Tmapstage = ⌈Ntasks

Nslots
⌉ · Tmapslot

4. 3 Experimental evaluation

We evaluated the accuracy of our prediction model us-

ing a a simple job using the custom binary input format

mentioned in 4. 1. We used the identity map function,

so that Smerge = Sspill = Sinput. This job also has re-

duce tasks, which are necessary to create intermediate out-

put, but they are not included in the measurement, and

mapred.reduce.slowstart.completed.maps was set to 1.0, so

that the reduce tasks will not start while the map tasks are

still running.

The job has 8GB of input data and a split size of 256MB,

so there are 32 tasks. The job was executed using a Hadoop

cluster with only a single node, so non-local I/O was not a

factor in this experiment. We varied the number of map slots

between 1 and 8, and evaluated whether our model could pre-

dict the time of each configuration based on measurements

taken from running with 1 slot.

When running the job, we observed that there was a high

level of variability between the tasks when the number of

slots was increased, as shown in Figure 4. Most tasks had an

execution time lower or higher than what our model would

predict. This variability is caused by environmental factors

and the precise behavior of the scheduler and hardware, and

is therefore impossible to accurately model.

Because of this, instead of looking at individual task times,

we only look at the overall time of the map stage. We be-

lieve that our interference prediction will still work to pre-

dict the average task execution time, as interference between

the tasks only gets moved around; some will get less, some

will get more, but the total amount of interference does not

change significantly.

The results are shown in Figure 5(a). We compared the

actual execution time of the map stage with our prediction

and a prediction that did not take interference into account.

The no interference prediction is obviously very inaccurate,

indicating the importance of considering I/O interference. It



0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8

E
xe

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

Map task slots

Prediction (no interference)

Prediction

Actual

(a) Three second heartbeat

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8

E
xe

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

Map task slots

Prediction (no interference)

Prediction

Actual

(b) Out-of-band heartbeat

図 5 Predicted vs. actual execution times.

is only accurate for 1 and 2 slots, where the execution time

is primarily CPU-bound.

The interference prediction on the other hand, has good

accuracy. It slightly over-estimates the execution time in all

cases, but this is desirable: it gives an upper bound on the

execution time of the map stage.

The double rounding to a multiple of three exaggerates

the minimum possible error in the prediction, and makes

it more difficult to accurately determine the prediction ac-

curacy. For this reason, we repeated this experiment with

out-of-band heartbeats enabled. Although the task times

still get rounded by the shutdown phase, we avoid the extra

rounding on the heartbeat interval. The result of this are

shown in Figure 5(b). As you can see, the prediction is still

accurate in this case.

5. Conclusion and Future Work

In this paper, we have shown that modeling Map-Reduce

is quite complex when I/O interference is taken into account.

Many existing models make simplifying assumptions regard-

ing the presence (or lack of) I/O contention, which we be-

lieve are not realistic for data-intensive workloads. CPU and

I/O costs show very different scaling behavior when multiple

tasks are competing for the same resources, and these costs

must therefore be treated separately in the models.

We have shown an analytical model for predicting the ex-

ecution time of the map stage based on an estimation of

I/O interference, which has good accuracy, and because it

over-estimates the results in most cases it can be used as an

upper-bound on the execution time.

The preliminary model shown here is obviously only a part

of the puzzle. We must extend this model to deal with re-

duce tasks, reduce tasks running in parallel with map tasks,

non-local I/O in a cluster with multiple nodes, and tasks

that do not all have the same amount of work. The latter

will be especially important if tasks from different workloads

are executing simultaneously in a multi-job scenario, which

is likely to occur in a multi-tenant cloud environment.

It is our intention that this model, when completed, can

be used to better understand workload management deci-

sions to be taken in Map-Reduce and similar data-intensive

environments.

文 献
[1] Amazon. Elastic MapReduce. http://aws.amazon.com/

elasticmapreduce/.

[2] Apache. Hadoop Core. http://hadoop.apache.org/core.

[3] Jeffrey Dean and Sanjay Ghemawat. MapReduce: sim-

plified data processing on large clusters. Commun. ACM,

51(1):107–113, 2008.

[4] Herodotos Herodotou, Fei Dong, and Shivnath Babu. No

one (cluster) size fits all: automatic cluster sizing for data-

intensive analytics. In Proceedings of the 2nd ACM Sym-

posium on Cloud Computing, SOCC ’11, pages 18:1–18:14,

New York, NY, USA, 2011. ACM.

[5] Herodotos Herodotouo. Hadoop performance models. Tech-

nical report, Duke University, 2010.

[6] Yin Huai, Rubao Lee, Simon Zhang, Cathy H. Xia, and

Xiaodong Zhang. DOT: a matrix model for analyzing, op-

timizing and deploying software for big data analytics in

distributed systems. In Proceedings of the 2nd ACM Sym-

posium on Cloud Computing, SOCC ’11, pages 4:1–4:14,

New York, NY, USA, 2011. ACM.

[7] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and

Dennis Fetterly. Dryad: distributed data-parallel programs

from sequential building blocks. SIGOPS Oper. Syst. Rev.,

41(3):59–72, 2007.

[8] Alekh Jindal, Jorge-Arnulfo Quiané-Ruiz, and Jens Dit-

trich. Trojan data layouts: right shoes for a running ele-

phant. In Proceedings of the 2nd ACM Symposium on Cloud

Computing, SOCC ’11, pages 21:1–21:14, New York, NY,

USA, 2011. ACM.

[9] Abhishek Verma, Ludmila Cherkasova, and Roy H. Camp-

bell. Aria: automatic resource inference and allocation for

mapreduce environments. In Proceedings of the 8th ACM

international conference on Autonomic computing, ICAC

’11, pages 235–244, New York, NY, USA, 2011. ACM.


