
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS IEICE Technical Report

A Study on Graph Similarity Search

Haichuan Shang Masaru Kitsuregawa
Institute of Industrial Science

University of Tokyo

{shang,kitsure}@tkl.iis.u-tokyo.ac.jp

ABSTRACT
Graph similarity search is to retrieve graphs that approx-
imately contain a given query graph. It has many appli-
cations, e.g., detecting similar functions among chemical
compounds. The problem is challenging as even testing
subgraph containment between two graphs is NP-complete.
Hence, existing techniques adopt the filtering-and-verification
framework with the focus on developing effective and effi-
cient techniques to remove non-promising graphs.

Nevertheless, existing filtering techniques may be still un-
able to effectively remove many ”low” quality candidates.
To resolve this, in this paper we propose a novel indexing
technique to index graphs according to their ”distances” to
features. We then develop lower and upper bounding tech-
niques that exploit the index to (1) prune non-promising
graphs and (2) include graphs whose similarities are guar-
anteed to exceed the given similarity threshold. Considering
that the verification phase is not well studied and plays the
dominant role in the whole process, we devise efficient al-
gorithms to verify candidates. A comprehensive experiment
using real datasets demonstrates that our proposed methods
significantly outperform existing methods.

1. INTRODUCTION
Graphs have a wide range of applications including bioin-

formatics, chemistry, social networks, pattern recognition,
software engineering. In these applications, graphs are used
to model complex structured data and relationships. For
example, graphs have been used to model and store chemi-
cal compounds. UML and ER diagrams are other examples.
There has been a considerable effort, from both database
and data mining communities, in developing techniques for
managing, processing, and analyzing graph databases, in-
cluding graph pattern discovery structure-based graph queries
etc.

The substructure search problem, also called subgraph con-
tainment query, is that for a graph database and a given
query graph, we want to find all data graphs which contain
the query graph. Figure 2 shows a sample graph database.
Suppose that q1 in Figure 1 is used as a query graph; then
{g3} is the result of the subgraph search. Such queries are
very useful for an exploration purpose in many applications
(e.g., drug design, computer vision and pattern recognition,
and medical images) to extract and identify a small set of
molecules and graph models for further analysis. A common

.

q1

BD

A

C

A

C

q2

D B

A

C

Figure 1: Query Graphs

g1

B B

A

C

A

C

g2

D DB B

A

C

A

C

g3

D

D

B

DA

C

A

C

Figure 2: A Sample Graph Database

problem is that in many occasions, there could be no match
for such an exploratory query; for instance, q2 in Figure 1
is not contained by any graph in Figure 2. In stead of re-
fining a query graph manually by users, [7] proposes to ask
systems to find out graphs that “nearly” contain the query
graph; it is formulated as the substructure similarity search,
also called subgraph similarity search. To capture global
structure information, the subgraph similarity search prob-
lem is defined [7] as the problem of detecting the Maximum
Common Subgraph (MCS) between the query graph and the
database graphs, and the measure of similarity is then based
on the difference of the query graph and the MCS. It is well
known that detecting MCS is NP-complete [2]. Hence, ex-
isting techniques [7, 8], to support the subgraph similarity
search, follow the filtering-and-verification paradigm with
the focus on removing non-promising graphs as many as
possible in filtering to avoid expensive verification.

Connected Subgraph Similarity Search. MCS may in-
clude many low-quality results in subgraph similarity search.
Intuitively, it is possible that different parts of a query are
mapped to very different locations in a data graph g which
are far away from each other. For example, if q1 in Figure 1
is used and we are allowed to miss at most 2 edges, then the
MCS-based similarity search will return g4 in Figure 3 as a
result. Clearly, such a result is usually not desirable from
users. This phenomenon is not uncommon in subgraph sim-
ilarity search, as data graphs are usually much larger than
a query graph in typical settings. Motivated by this, in this
paper we investigate the problem of substructure similari-
ty search based on maximum connected common subgraphs
(MCCS).

The filtering techniques [7, 8] inherently do not provide

B

A

D ...

C C

A

g4

Figure 3: Cloud Contains a Large Number of Nodes

a very effective support to connected subgraph similarity
search; for instance, it is impossible to exclude the data
graph g4 in Figure 3 from candidate graphs by these two ex-
isting filtering techniques. Moreover, the verification phase
is not studied in the existing work [7, 8] though it plays the
dominant role in the whole computation. In fact, to the best
of our knowledge there is no existing algorithm to conduct
verification for the MCCS-based subgraph similarity search.

Contributions. Motivated by these, we develop a novel
index technique, GrafD-index, which indexes data graphs
according to their distances (to be defined in Section 2) to a
feature (for each feature). We then characterize a tight con-
dition under which triangular inequality holds for defined
distance functions. Consequently, a novel lower-bounding
technique is developed to prune data graphs that are guar-
anteed not in the query result. We also develop an upper-
bounding technique to perform early validation to include
data graphs into the query result without any costly verifica-
tion. Both pruning and validation are supported efficiently
by the GrafD-index. Finally, we develop an efficient verifica-
tion algorithm that is “optimized” to share the computation.
Our contributions can be summarized as follows:

1. We develop a novel index technique, GrafD-index, to
effectively index data graphs according to their MCCS-
based distances to features.

2. We formally prove triangular inequality holds on the
MCCS-based distance function under a tight sufficient
condition based on graph connectivity.

3. Based on the GrafD-index and the triangular inequal-
ity, new pruning and validation techniques are devel-
oped to quickly identify non-answers and sure-answers.

4. We develop novel, efficient algorithms to verify whether
a candidate graph satisfies the similarity threshold a-
gainst the query graph.

Comprehensive experiments using real datasets demon-
strate that our techniques are efficient and scalable, and sig-
nificantly outperform the (only) two existing filtering tech-
niques [7, 8]. They also indicate that our total computation
(filtering, validation, and verification) is more efficient than
the filtering technique in [8] for high-similarity search. Our
filtering and validation techniques significantly reduce (up
to 80% size reduction) the size of the candidate set by Grafil

[7]. To further evaluate the effectiveness of our filtering tech-
niques, our experiment results show that the total costs of
our techniques are always significantly lower than those of
Grafil combining with our verification techniques.

The rest of the paper is organized as follows. Section 2
presents problem definitions and the preliminaries. Section 3
introduces pruning and validation rules, as well as the frame-
work of our approach. Section 4 reports the experimental
results. The conclusion is given in Section 5.

2. BACKGROUND INFORMATION
The research in this paper is focused on undirected vertex-

labeled connected graphs.1 Given a set of labels, ΣV , a graph
is denoted by G = (V,E, l) where V is the set of vertices,
E ⊆ V × V is the set of edges, and l is a labeling function:
V → ΣV . We denote the vertex set and the edge set of a
graph g by V (g) and E(g), respectively. l(u) denotes the
label of u. |V (g)| and |E(g)| represent the number of ver-
tices and edges, respectively. For presentation simplicity, an
undirected vertex-labeled graph is hereafter abbreviated to
a graph.

2.1 Problem Statement

Substructure Similarity Search. Subgraph isomorphism
and maximum connected common subgraphs (MCCS) are
defined as follows.

Definition 1. (Subgraph Isomorphism) Given two graphs
g′ = (V ′, E′, l′) and g = (V,E, l), g′ is subgraph-isomorphic
to g, denoted as g′ ⊆F g, if there is an injective function
F : g′ → g such that

1. ∀v ∈ V ′, F(v) ∈ V (g) such that l′(v) = l(F(v)).

2. ∀(u, v) ∈ E′, (F(u),F(v)) ∈ E.

g′ ⊆F g is used to denote that a graph g′ is subgraph-
isomorphic to g under the function F where g′ is called a
subgraph of g and g is also called a supergraph of g′; we may
also simply say that g contains g′. g′ ⊆F g is abbreviated
to g′ ⊆ g if there is no ambiguity. Note that more than one
subgraph isomorphic mapping may exist between g′ and g.

Definition 2. (Maximum Common Connected Subgraph -
MCCS) Given two graphs g1 and g2, the maximum common
connected subgraph of g1 and g2 is the largest connected
subgraph of g1 that is subgraph-isomorphic to g2, denoted
as mccs(g1, g2).

Note that in Definition 2, the size of a graph is measured
by the number of edges.

Definition 3. (Query Relaxation Distance) Given a query
graph q and a data graph g, the query relaxation distance
based on MCCS is defined as,

dist(q, g) = |E(q)| − |E(mccs(q, g))|.

Definition 4. (Subgraph Similarity Search) Given a graph
databaseD = {g1, g2, . . . , gn}, a query graph q, and a thresh-
old σ, the subgraph similarity search problem is to retrieve
all the graphs gi ∈ D with dist(q, gi) ≤ σ. σ is also called a
distance threshold.

Note that the distance is asymmetric as dist(q, g) 6= dist(g, q)
unless |q| = |g|. [7] defines the query relaxation distance

based on MCS and the relaxation ratio dist(q,p)
|q|

is used for

subgraph similarity search. Clearly, techniques for comput-
ing relaxation distances can be immediately applied to com-
puting relaxation ratios.

Problem Statement. In this paper, we will develop effi-
cient algorithms to conduct subgraph similarity search based
on the MCCS-based query relaxation distance.
1The developed techniques can be immediately extended to
edge-labeled and/or directed graphs.

2.2 Preliminaries

Grafil. Grafil [7] is developed to support efficient subgraph
similarity searches and follows the filtering-verification query
processing paradigm. It provides a feature-based index [3,
6] to effectively filter non-promising data graphs. Features
could be paths [3], trees [9], or subgraphs [6].

As shown in Figure 4(a), a feature-graph matrix M is
constructed by Grafil, which stores the number of the sub-
graph isomorphic mappings from a feature to a data graph:
Mij = |{F| fi ⊆F gj}|, where fi is the i-th feature, gj is
the j-th data graph and F is a subgraph-isomorphic map-
ping. When a query graph q is issued, a binary edge-feature-
mapping matrix is built on-the-fly by computing all the sub-
graph isomorphic mappings from each feature to the query
graph.

As shown in Figure 4(b), the number of columns is the
total number of feature mappings found in q, and each cell
in the edge-feature-mapping matrix indicates whether the
edge is involved in a particular mapping. For instance, the
first column shows that feature f1 can be mapped to edges
{ e1, e2 } of q; feature f2 has two mappings f2(1) and f2(2) to
q.

Grafil calculates the maximum number (an upper-bound),
denoted by dmax, of feature mappings that can be missed
by removing σ edges in q. Then, for each data graph g,
Grafil calculates the number of feature mappings to q but
not to g, denoted by d(q, g) and called outstanding number.
If d(q, g) ≤ dmax, then g is included as a candidate graph.

g1 g2 g3
f1 2 0 2
f2 0 3 0
f3 2 0 1
f4 0 0 1
(a) Feature Graph matrix

f1 f2(1) f2(2) f4
e1 1 1 1 0
e2 1 1 0 1
e3 0 0 1 0

(b) Edge Feature Matrix

Figure 4: Matrices Used in Grafil

Example 1. Consider the two matrices in Figures 4(a)
and 4(b), respectively. Let σ = 1. It can be verified that
at most 3 feature mappings may be missed by removing one
edge; thus dmax = 3. Note that the query graph contains
f1 once, f2 twice, and f4 once. Regarding g1, g1 contains
f1 twice and f3 twice. Thus, the outstanding number is 0
regarding f1, 2 regarding f2, 0 regarding f3, and 1 regarding
f4, respectively. Summing them together gives 3. Since 3 ≤
dmax, g1 is a candidate graph. Similarly, g2 and g3 are also
kept as the candidate graphs.

QuickSI. An efficient verification algorithm, QuickSI [5], is
developed to determine whether there is a subgraph isomor-
phic mapping from q to g.

Clearly, a mapping F of q to g is fixed if the mapping
F from all vertices of q to g is determined. Nevertheless, a
vertex in q may be mapped to many vertices in g with the
same label. Consequently, there may be too many feasible
combinations to consider; for instance, if each vertex from q

has the same label with that of m vertices in g, then we need
to consider nm combinations in the worst case. Instead of
trivially enumerating mappings from V (q) to V (g), QuickSI

enumerates mappings from a spanning tree of V (q) to g to
reduce the combinations by the connectivity restriction.

QuickSI first finds a spanning tree T of the query q, and
then convert q into a sequence seq = [E[1], . . . , E[|V (q)|]],
called QI-Sequence. Each entry E[i] has one and only one
spanning edge (E[i], E[j]), denoted by E[i].sEdge, such that
j < i and (E[i], E[j]) is in T where E[1].sEdge is the label of
vertex E[1]. All other edges in q are called backward edges
in seq and the set of backward edges incident to an entry
E[i] is denoted by E[i].bEdges.

To identify a subgraph-isomorphic mapping from q to g,
QuickSI iteratively grows each possible mapping on T in a
depth-first manner according to the vertices order in seq.
QuickSI can terminate earlier if a prefix of seq cannot be
sub-isomorphically mapped to g. To effectively reduce the
search costs, QuickSI proposes to order the QI-Sequence seq
as follows. Pick up the vertex v from q, such that its la-
bel has the lowest occurrence among the candidate graphs,
as the 1st entry E[1] in seq. Then, iteratively pick up an
unchosen vertex as E[i] (for 2 ≤ i ≤ |V (q)|) such that the
spanning edge has the lowest occurrence in the candidate
graphs among all valid options.

A

B C

D

E

F

q

A

B

C

D

E

F

seq

Figure 5: An Example Query and Its QI-Sequence

Example 2. A query q and its QI-Sequence are shown in
Figure 5. The QI-Sequence has 6 entries. Spanning edges
are depicted by solid lines and backward edges are depicted
by dashed lines (only one in this example).

3. DISTANCE BASED FILTERING
In this section, we first characterize a tight condition un-

der which the triangular inequality holds. Then, we present
the pruning and validation rules based on the triangular in-
equality. This is followed by the framework description.

3.1 Triangular Inequality
The triangular inequality regarding graph relaxation dis-

tances does not always hold. A counter example is given
in Figure 6, where dist(g1, g3) = 3, dist(g1, g2) = 0, and
dist(g2, g3) = 1. Below, we show that the triangular in-
equality holds under a connectivity dominance condition.

g1

B B

A

C

A

C

g2

B B

A

C

A

C

g3

B B

A

C

A

C

Figure 6: Counter Example

Definition 5. The connectivity of mccs(g1, g2) dominates
the connectivity of g2 if there is a subgraph isomorphic map-
ping F from mccs(g1, g2) to g2 (i.e. mccs(g1, g2) ⊆F g2)
such that if removing a set S of edges in mccs(g1, g2) causes
mccs(g1, g2) disconnected, then removing F(S) in g2 always
causes g2 disconnected.

In the above example, the connectivity of mccs(g1, g2)
does not dominates the connectivity of g2 and the connec-
tivity of mccs(g2, g3) does not dominate g2.

Theorem 1. Given three graphs g1, g2, and g3, if the
connectivity of mccs(g1, g2) dominates the connectivity of
g2 or the connectivity of mccs(g3, g2) dominates g2, then
dist(g1, g3) ≤ dist(g1, g2) + dist(g2, g3).

Proof. We first show that the theorem holds if the con-
nectivity of mccs(g1, g2) dominates the connectivity of g2.

Suppose that F is a subgraph isomorphic mapping from
mccs(g1, g2) to g2 such that if removing a set S of edges in
mccs(g1, g2) causes mccs(g1, g2) disconnected, then remov-
ing F(S) in g2 always causes g2 disconnected. Note that
F(mccs(g1, g2)) and mccs(g2, g3) are subgraphs of g2, re-
spectively. Below we first show that the common part of
F(mccs(g1, g2)) and mccs(g2, g3) is either ∅ or a connected
subgraph of g2, denoted as F(mccs(g1, g2)) ∩mccs(g2, g3)).

Suppose that F(mccs(g1, g2)) ∩mccs(g2, g3) (6= ∅) is dis-
connected. Then, there are at least two connected compo-
nents c1 and c2 in F(mccs(g1, g2))∩mccs(g2, g3). Note that
c1 and c2 are maximum in F(mccs(g1, g2)) ∩ mccs(g2, g3)
and disconnected to each other. Let S′ be the set of edges
in F(mccs(g1, g2)) each of which is either incident to a ver-
tex in c1 or to a vertex in c2 but is not contained in c1 or
c2. It is immediate that S′ ∩ E(mccs(g2, g3)) = ∅ since c1
and c2 are maximum in F(mccs(g1, g2)) ∩mccs(g2, g3).

According to the definition of S′, the removal of S′ makes
F(mccs(g1, g2)) disconnected. Hence, the removal of F−1(S′)
makes mccs(g1, g2) disconnected. Therefore, the removal of
S′ makes g2 disconnected according to the assumption; that
is, g2 − S′ is disconnected. Since S′ ∩ E(mccs(g2, g3)) = ∅,
c1 ⊂ mccs(g2, g3), c2 ⊂ mccs(g2, g3), and g2 − S′ is discon-
nected, it is immediate that mccs(g2, g3) is disconnected.
Contradicting! Therefore, F(mccs(g1, g2)) ∩mccs(g2, g3) is
either ∅ or connected. Thus,

|E(mccs(g1, g3))| ≥ |E(F(mccs(g1, g2)))∩E(mccs(g2, g3)))|
(1)

We can represent |E(g2)| as follows where α (≥ 0) is the
number of edges in g2 not included in F(mccs(g1, g2)) nor
in mccs(g2, g3).

|g2| =α+ |E(F(mccs(g1, g2)))|+ |E(mccs(g2, g3))|

− |E(F(mccs(g1, g2)) ∩mccs(g2, g3))|
(2)

From (1) and (2), together with the definition of graph
relaxation distance, the theorem follows.

Similarly, we can prove the theorem if the connectivity
mccs(g3, g2) dominates g2.

3.2 Pruning and Validation
Based on the triangular inequality, features can be used to

filter non-promising graphs and to include (validate) graph-
s, with similarity guaranteed to exceed the given similarity

threshold, into the answer set. Features discussed here could
be any graph structures (paths, trees, subgraphs).

By Theorem 1, there could be totally 6 triangular inequal-
ities among q, f , and g. It can be immediately shown that
dist(q, g) ≤ dist(q, f)+dist(f, g) is equivalent to dist(g, q) ≤
dist(g, f)+ dist(f, q), dist(f, q) ≤ dist(f, g)+ dist(g, q) is e-
quivalent to dist(q, f) ≤ dist(q, g)+dist(g, f), and dist(f, g)
≤ dist(f, q) +dist(q, g) is equivalent to dist(g, f) ≤ dist(g, q)
+dist(q, f), respectively. Note that the equivalence of t-
wo inequalities also means that the connectivity dominance
conditions to make the two inequalities hold are the same.
Thus, there are essentially 3 different triangular inequalities
among q, f , and g. We use two of them for pruning and one
of validation.

As the verification of whether the connectivity ofmccs(q, g)
dominates the connectivity of g involves computingmccs(q, g),
it does not make sense to use this condition in a pruning rule.

Pruning Rule 1. For a feature f , if the connectivity of
mccs(g, f) dominates the connectivity of g, then g can be
pruned when dist(q, f)− dist(g, f) > σ.

Proof. Since the connectivity of mccs(g, f) dominates
the connectivity of g, dist(q, f) ≤ dist(q, g) + dist(g, f) ac-
cording to Theorem 1. Thus, if dist(q, f) − dist(g, f) > σ,
then dist(q, g) > σ.

Similarly, dist(f, g) ≤ dist(f, q) + dist(q, g) gives the fol-
lowing pruning rule.

Pruning Rule 2. For a feature f , if the connectivity of
mccs(f, q) dominates the connectivity of q, then g can be
pruned when dist(f, g)− dist(f, q) > σ.

Validation Rule 1. For a feature f , if the connectivity
of mccs(f, q) dominates the connectivity of f or the connec-
tivity of mccs(f, g) dominates the connectivity of f , then g

is a result graph when dist(q, f) + dist(f, g) ≤ σ.

Proof. Note that dist(q, g) ≤ dist(q, f)+dist(f, g) holds
according to Theorem 1. Thus, dist(q, g) ≤ σ.

3.3 Framework
Existing techniques [7, 4] follow the filtering-verification

paradigm. In this paper, we propose an efficient algorithm
DistVP that employs distances-based triangular inequalities
for validation and pruning. It has three phases, pruning-
validation-verification, based on our distance-based index,
as shown in Figure 7. We outline the three phases of Algo-
rithm DistVP as follows. Initially, put all data graphs g in
Cq with |E(q)| − |E(g)| ≤ σ.

1. Pruning. Regarding each indexed feature, a data
graph will be removed from the candidate set Cq if
the pruning conditions hold in Pruning Rules 1 or 2.

2. Validation. Graphs are immediately added to the
result set V without an expensive verification if the
conditions holds in Validation Rule 1.

3. Threshold-based Verification. The candidate graph-
s in Cq − V are processed by our new threshold-based
detection algorithms.

Next two sections will give the algorithmic details of Al-
gorithm DistVP. Since our pruning, validation, and index
construction techniques will use our verification technique.
Next we first present our verification algorithm.

{gi|gi ∈ D}

Pruning

Validation

{gi|dist(q, gi) < σ is true} {gi|dist(q, gi) < σ is still unknown} {gi|dist(q, gi) < σ is false}

Verification: MCCS Detection

{gi|dist(q, gi) < σ is true} {gi|dist(q, gi) < σ is false}

∪

Output

Figure 7: Pruning-Validation-Verification

4. EXPERIMENTS
Below is a summary of the techniques developed and im-

plemented for a comprehensive performance study.

• Verification: There are no techniques available in the
literature to compute MCCS-based similarity. We e-
valuate our verification algorithm based on two pro-
posed strategies: Ad-HocStrategy andMemorizingStrat-

egy; they are denoted by AdHOC and MEMO, re-
spectively

• Filtering: We evaluate the pruning, validation, and
GrafD-index techniques proposed.

We use the (only) two filtering algorithms in [7, 8] as the
benchmark techniques to evaluate our techniques. We use
Grafil+ to denote the combination of Grafil filtering tech-
niques [7] and our verification technique MEMO, use editD
to denote the filtering technique in [8], and use DistVP to
denote the combination of our filtering, pruning, and MEM-
O verification techniques. Since there is no code available
for Grafil filtering techniques, we code them by ourself.

All algorithms are implemented in standard C++ with
STL and complied with GNU GCC. Experiments were run
on a PC with Intel Xeon 2.40GHz CPU and 4G memory
running Debian Linux.

Real Datasets. A popular benchmark dataset, the AIDS an-
tiviral database, is used in our performance evaluation. The
dataset contains totally 62 distinct vertex labels. Following
the recent performance study settings [1, 5, 6], edge label-
s are ignored for a tough evaluation. The default dataset
consists of randomly chosen 10K graphs from AIDS. On av-
erage, each graph has 25.4 vertices and 27.3 edges.

Query Set. To thoroughly evaluate our techniques, we down-
load the five benchmark query sets, Q8, Q12, Q16, Q20 and
Q24 from the web-site as pointed and used by [1, 5, 6]. Each
query graph in Qi has exactly i edges.

Threshold in GrafD-index. The default value of the thresh-
old k used in GrafD-index is 3.

Below we report the results of our performance study. Un-
less otherwise specified, we will use the above default settings
in our experiment.

Evaluating Verification Techniques. Figure 8 reports
the experiment results on the response time of our two veri-
fication algorithms, AdHOC and MEMO. The time recorded
is the average response time per query. It shows that MEM-
O is significantly more efficient than AdHOC and can achive
more than two orders of magnitude speed-up. Thus, in the

rest of our experiment we use MEMO as the verification
technique in DistVP and Grafil+.

DistVP editD-Filtering

101

102

103

104

Q24Q20Q16Q12Q8R
es

po
ns

e
T

im
e(

m
s)

Query Graph Size

(a) σ=1

101

102

103

104

Q24Q20Q16Q12Q8R
es

po
ns

e
T

im
e(

m
s)

Query Graph Size

(b) σ=2

Figure 9: Comparing with editD

Comparing with editD. As depicted in Figure 9, the total
computation time (pruning, validation, and verification) of
DistVP is more efficient than the editD-based filtering tech-
nique in [8] when the similarity degree is high. Note that
the released binary code by the authors of [8] outputs the fil-
tering time only and does not provide the candidate graphs
so that we cannot conduct the verification evaluation. On
the other hand, the edit distance based filtering technique
proposed in [8] is a general framework that serves for a wide
range of graph structure search; it is unfair to continue to
evaluate it only against the problem studied in the paper.
These make us exclude the editD technique from a further
evaluation.

DistVP σ=1

Grafil+ σ=1

DistVP σ=2

Grafil+ σ=2

DistVP σ=3

Grafil+ σ=3

 0
 2000
 4000
 6000
 8000

 10000

Q24Q20Q16Q12Q8C
an

di
da

te
 N

um
be

r

Query Graph Size

(a) Candidate Size

10-1

100

101

Q24Q20Q16Q12Q8R
es

po
ns

e
T

im
e(

s)

Query Graph Size

(b) Total Response Time

Figure 10: Using Grafil’s features

DistVP σ=1

Grafil+ σ=1

DistVP σ=2

Grafil+ σ=2

DistVP σ=3

Grafil+ σ=3

 0
 2000
 4000
 6000
 8000

 10000

Q24Q20Q16Q12Q8C
an

di
da

te
 N

um
be

r

Query Graph Size

(a) Candidate Size

10-1

100

101

Q24Q20Q16Q12Q8R
es

po
ns

e
T

im
e(

s)

Query Graph Size

(b) Total Response Time

Figure 11: Using Our Features in DistVP

Comparing with Grafil+. In our first such experiment,
we use the feature set selected by Grafil to compare our fil-
tering (pruning and validation) techniques with Grafil. Fig-
ures 10(a) shows that the number of candidate graphs per
query (on average) produced by our techniques (DistVP) is

101

102

103

104

Q24Q20Q16Q12Q8V
er

ifi
ca

tio
n

T
im

e(
m

s)

Query Graph Size

AdHOC
MEMO

(a) Query Relaxation σ = 1

101
102
103
104
105

Q24Q20Q16Q12Q8V
er

ifi
ca

tio
n

T
im

e(
m

s)

Query Graph Size

AdHOC
MEMO

(b) Query Relaxation σ = 2

102
103
104
105
106

Q24Q20Q16Q12Q8V
er

ifi
ca

tio
n

T
im

e(
m

s)

Query Graph Size

AdHOC
MEMO

(c) Query Relaxation σ = 3

Figure 8: Verification

significantly less than that by Grafil, about 20%–50% less.
We further verify the effectiveness of our filtering techniques
by recording the total response time per query on aver-
age. Since there is no existing verification technique, we use
Grafil+ (Grafil +MEMO) for the purpose. Figures 10(b)
shows that the total response time follows similar trends to
those in Figures 10(a); this is mainly because the verification
phase plays the dominant role. It is noteworthy that Grafil

can hardly prune away data graphs when q is small and edge
labels are removed. It is also noteworthy that the total re-
sponse time increases significantly with query graph sizes;
this is because the verification cost for large query graphs is
much more expensive than the cost for small query graphs.

We further evaluate the effectiveness of our techniques by
a set of features generated by the feature selection tech-
niques with the frequency threshold 2% and discriminative
ratio 2%. Then we compare with Grafil filtering techniques
using its own features. As depicted in Figure 11, the number
of candidate graphs generated by our techniques is signifi-
cantly smaller comparing with the result in Figures 10(a).
Now, the candidate set size by Grafil can be reduced up to
80%. In the rest of performance evaluation we will exclude
Grafil and only focus on our techniques; the feature set in
this experiment will be used thereafter.

5. CONCLUSION
In this paper, we investigate the problem of connected

subgraph similarity search. We propose a filtering-validation-
verification-based query processing framework with the aim
to minimize the number of candidate graphs. A novel in-
dexing technique, GrafD-index, is proposed which indexes
data graphs based on defined distance functions. Effective
and efficient pruning and validation techniques have been
proposed based on GrafD-index. We also propose novel,
efficient techniques to perform verification aiming to opti-
mize the matching order and computational sharing. A com-
prehensive performance study against real datasets demon-
strates that our filtering (pruning and validation) techniques
are significantly outperform to the (only) two existing filter-
ing techniques. Our techniques are also efficient and scal-
able.

As a possible future study, we will investigate the “optimal
feature” selection problem if a query log exists, as well as this
problem regarding the applications where graphs involved
are larger, say, each graph has tens of thousands vertices.

6. REFERENCES
[1] J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index: towards

verification-free query processing on graph databases. In
SIGMOD, pages 857–872, 2007.

[2] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
1979.

[3] R. Giugno and D. Shasha. Graphgrep: A fast and universal
method for querying graphs. In ICPR, volume 2, pages
112–115 vol.2, 2002.

[4] H. He and A. K. Singh. Closure-tree: An index structure for
graph queries. In ICDE, pages 38–39, 2006.

[5] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming
verification hardness: an efficient algorithm for testing
subgraph isomorphism. In VLDB, pages 364–375, 2008.

[6] X. Yan, P. S. Yu, and J. Han. Graph indexing: a frequent
structure-based approach. In SIGMOD, pages 335–346, 2004.

[7] X. Yan, P. S. Yu, and J. Han. Substructure similarity search
in graph databases. In SIGMOD, pages 766–777, 2005.

[8] Z. Zeng, A. K. H. Tung, J. Wang, L. Zhou, and J. Feng.
Comparing stars: On approximating graph edit distance. In
VLDB, pages 25–36, 2009.

[9] P. Zhao, J. X. Yu, and P. S. Yu. Graph indexing: tree +
delta <= graph. In VLDB, pages 938–949, 2007.

