Information and Media Technologies 7(4) : 1565-1570 (2012)

reprinted from: Journal of the DBSJ 11(2) : 7-12 (2012)

© The Database Society of Japan

A Study on Graph Similarity
Search

oooo Y ooo o ¢
Haichuan SHANG Masaru KITSUREGAWA

Graph similarity search is to retrieve graphs
that approximately contain a given query graph. It
has many applications, e.g., detecting similar func-
tions among chemical compounds. The problem is
challenging as even testing subgraph containment
between two graphs is NP-complete. Hence, exist-
ing techniques adopt the filtering-and-verification
framework with the focus on developing effective
and efficient techniques to remove non-promising
graphs.

Nevertheless, existing filtering techniques may
be still unable to effectively remove many ”low”
quality candidates. To resolve this, in this paper we
propose a novel indexing technique to index graphs
according to their ”distances” to features. We then
develop lower and upper bounding techniques that
exploit the index to (1) prune non-promising graphs
and (2) include graphs whose similarities are guar-
anteed to exceed the given similarity threshold.
Considering that the verification phase is not well
studied and plays the dominant role in the whole
process, we devise efficient algorithms to verify can-
didates. A comprehensive experiment using real
datasets demonstrates that our proposed methods
significantly outperform existing methods.

1. Infroduction

Graphs have a wide range of applications including
bioinformatics, chemistry, social networks, pattern recog-
nition, software engineering. In these applications, graphs
are used to model complex structured data and relation-
ships. For example, graphs have been used to model and
store chemical compounds. UML and ER diagrams are
other examples. There has been a considerable effort,
from both database and data mining communities, in de-
veloping techniques for managing, processing, and ana-
lyzing graph databases, including graph pattern discovery
structure-based graph queries etc.

The substructure search problem, also called subgraph
containment query, is that for a graph database and a
given query graph, we want to find all data graphs which
contain the query graph. Figure 2 shows a sample graph

¥ Non Member Institute of Industrial Science, Tokyo
University shang@tkl.iis.u-tokyo.ac.jp
* Regular Member Institute of Industrial Science, Tokyo
University kitsure@tkl.iis.u-tokyo.ac.jp

Q1 a2

Fig. 1 Query Graphs

:BG:@GQ@@GGQ::

9 92 93

Fig. 2 A Sample Graph Database

database. Suppose that ¢; in Figure 1 is used as a query
graph; then {gs} is the result of the subgraph search. Such
queries are very useful for an exploration purpose in many
applications (e.g., drug design, computer vision and pat-
tern recognition, and medical images) to extract and iden-
tify a small set of molecules and graph models for further
analysis. A common problem is that in many occasions,
there could be no match for such an exploratory query; for
instance, ¢» in Figure 1 is not contained by any graph in
Figure 2. In stead of refining a query graph manually by
users, [6] proposes to ask systems to find out graphs that
“nearly” contain the query graph; it is formulated as the
substructure similarity search, also called subgraph sim-
ilarity search. To capture global structure information,
the subgraph similarity search problem is defined [6] as
the problem of detecting the Maximum Common Subgraph
(MCS) between the query graph and the database graphs,
and the measure of similarity is then based on the differ-
ence of the query graph and the MCS. It is well known that
detecting MCS is NP-complete [2]. Hence, existing tech-
niques [6, 7], to support the subgraph similarity search,
follow the filtering-and-verification paradigm with the fo-
cus on removing non-promising graphs as many as possi-
ble in filtering to avoid expensive verification.

Connected Subgraph Similarity Search. MCS may
include many low-quality results in subgraph similarity
search. Intuitively, it is possible that different parts of
a query are mapped to very different locations in a data
graph g which are far away from each other. For exam-
ple, if ¢; in Figure 1 is used and we are allowed to miss at
most 2 edges, then the MCS-based similarity search will
return g, in Figure 3 as a result. Clearly, such a result is
usually not desirable from users. This phenomenon is not
uncommon in subgraph similarity search, as data graphs
are usually much larger than a query graph in typical set-
tings. Motivated by this, in this paper we investigate the
problem of substructure similarity search based on maxi-
mum connected common subgraphs (MCCS).

The filtering techniques [6, 7] inherently do not provide
a very effective support to connected subgraph similarity
search; for instance, it is impossible to exclude the data
graph g4 in Figure 3 from candidate graphs by these two
existing filtering techniques. Moreover, the verification

1565

Information and Media Technologies 7(4) : 1565-1570 (2012)

reprinted from: Journal of the DBSJ 11(2) : 7-12 (2012)
© The Database Society of Japan

= %.0&2

94

Fig. 3 Cloud Contains a Large Number of Nodes

phase is not studied in the existing work [6, 7] though it
plays the dominant role in the whole computation. In fact,
to the best of our knowledge there is no existing algorithm
to conduct verification for the MCCS-based subgraph sim-
ilarity search.

Contributions. Motivated by these, we develop a novel
index technique, GrafD-index, which indexes data graphs
according to their distances (to be defined in Section 2.)
to a feature (for each feature). We then characterize a
tight condition under which triangular inequality holds for
defined distance functions. Consequently, a novel lower-
bounding technique is developed to prune data graphs that
are guaranteed not in the query result. We also develop
an upper-bounding technique to perform early validation
to include data graphs into the query result without any
costly verification. Both pruning and validation are sup-
ported efficiently by the GrafD-index. Finally, we develop
an efficient verification algorithm that is “optimized” to
share the computation. Our contributions can be summa-
rized as follows:

1. We develop a novel index technique, GrafD-index, to
effectively index data graphs according to their MCCS-
based distances to features.

2. We formally prove triangular inequality holds on the
MCCS-based distance function under a tight sufficient
condition based on graph connectivity.

3. Based on the GrafD-index and the triangular inequal-
ity, new pruning and validation techniques are de-
veloped to quickly identify non-answers and sure-
answers.

4. We develop novel, efficient algorithms to verify
whether a candidate graph satisfies the similarity
threshold against the query graph.

Comprehensive experiments using real datasets demon-
strate that our techniques are efficient and scalable, and
significantly outperform the (only) two existing filtering
techniques [6, 7]. They also indicate that our total compu-
tation (filtering, validation, and verification) is more effi-
cient than the filtering technique in [7] for high-similarity
search. Our filtering and validation techniques signifi-
cantly reduce (up to 80% size reduction) the size of the
candidate set by Grdfil [6]. To further evaluate the effec-
tiveness of our filtering techniques, our experiment results
show that the total costs of our techniques are always sig-
nificantly lower than those of Grafil combining with our
verification techniques.

The rest of the paper is organized as follows. Section 2.
presents problem definitions and the preliminaries. Sec-
tion 3. introduces pruning and validation rules, as well
as the framework of our approach. Section 4. reports the

experimental results. The conclusion is given in Section 5..

2. Background Information

The research in this paper is focused on undirected
vertex-labeled connected graphs.! Given a set of labels, Xy,
a graph is denoted by G = (V, E,l) where V is the set of
vertices, E C V x V is the set of edges, and [is a labeling
function: V' — X,,. We denote the vertex set and the edge
set of a graph g by V(g) and E(g), respectively. I(u) de-
notes the label of u. |V (g)| and |E(g)| represent the num-
ber of vertices and edges, respectively. For presentation
simplicity, an undirected vertex-labeled graph is hereafter
abbreviated to a graph.

2.1 Problem Statement

Substructure Similarity Search. Subgraph iso-
morphism and maximum connected common subgraphs
(MCCS) are defined as follows.

Definition 1 (Subgraph Isomorphism) Given two graphs
g = (V',E' l'")and g = (V, E,1), ¢’ is subgraph-isomorphic
to g, denoted as g Cx g, if there is an injective function
F: g — g such that

1. Vv € V', F(v) € V(g) such that l'(v) = I(F(v)).
2. V(u,v) € E', (F(u), F(v)) € E.

g Cz g is used to denote that a graph g’ is subgraph-
isomorphic to g under the function F where ¢’ is called a
subgraph of g and g is also called a supergraph of g'; we
may also simply say that g contains ¢g’. ¢’ Cx g is abbre-
viated to g’ C g if there is no ambiguity. Note that more
than one subgraph isomorphic mapping may exist between
¢’ and g.

Definition 2 (Maximum Common Connected Subgraph -
MCCS) Given two graphs g; and g», the maximum common
connected subgraph of g; and g» is the largest connected
subgraph of g; that is subgraph-isomorphic to g», denoted
as mces(gi, g2)-

Note that in Definition 2, the size of a graph is measured
by the number of edges.

Definition 3 (Query Relaxation Distance) Given a query
graph g and a data graph g, the query relaxation distance
based on MCCS is defined as,

dist(q,g9) = |E(q)| — | E(mces(q, 9))I-

Definition 4 (Subgraph Similarity Search) Given a graph
database D = {gi1,92,...,9n}, @ query graph ¢, and a
threshold o, the subgraph similarity search problem is to
retrieve all the graphs g; € D with dist(q, g;) < 0. o is also
called a distance threshold.

Note that the distance is asymmetric as dist(q,g9) #
dist(g,q) unless |g| = |g|. [6] defines the query relaxation

distance based on MCS and the relaxation ratio di%(‘lz’p) is

! The developed techniques can be immediately extended
to edge-labeled and/or directed graphs.

1566

Information and Media Technologies 7(4) : 1565-1570 (2012)

reprinted from: Journal of the DBSJ 11(2) : 7-12 (2012)

© The Database Society of Japan

used for subgraph similarity search. Clearly, techniques
for computing relaxation distances can be immediately ap-
plied to computing relaxation ratios.

Problem Statement. In this paper, we will develop ef-
ficient algorithms to conduct subgraph similarity search
based on the MCCS-based query relaxation distance.

2.2 Preliminaries

QuickSl. An efficient verification algorithm, QuickSI [4],
is developed to determine whether there is a subgraph iso-
morphic mapping from q to g.

Clearly, a mapping F of g to g is fixed if the mapping F
from all vertices of ¢ to g is determined. Nevertheless, a
vertex in ¢ may be mapped to many vertices in g with the
same label. Consequently, there may be too many feasible
combinations to consider; for instance, if each vertex from
q has the same label with that of m vertices in g, then
we need to consider n™ combinations in the worst case.
Instead of trivially enumerating mappings from V(q) to
V(g), QuickSl enumerates mappings from a spanning tree
of V(q) to g to reduce the combinations by the connectivity
restriction.

QuickS! first finds a spanning tree T of the query ¢, and
then convert ¢ into a sequence seq = [E[1],..., E[|[V ()],
called QI-Sequence. Each entry E[i] has one and only
one spanning edge (E[i], E[j]), denoted by E[i].sEdge, such
that j < ¢ and (E[é], E[j]) is in T where E[1].sEdge is the
label of vertex E[1]. All other edges in ¢ are called back-
ward edges in seq and the set of backward edges incident
to an entry E[i] is denoted by E[i].bEdges.

To identify a subgraph-isomorphic mapping from ¢ to g,
QuickSl iteratively grows each possible mapping on T in a
depth-first manner according to the vertices order in segq.
QuIickSI can terminate earlier if a prefix of seq cannot be
sub-isomorphically mapped to g. To effectively reduce the
search costs, QUICkS| proposes to order the QI-Sequence
seq as follows. Pick up the vertex v from ¢, such that its la-
bel has the lowest occurrence among the candidate graphs,
as the 1st entry E[1] in seq. Then, iteratively pick up an
unchosen vertex as E[i] (for 2 < i < |V(g)|) such that the
spanning edge has the lowest occurrence in the candidate
graphs among all valid options.

3. Distance based Filtering

In this section, we first characterize a tight condition
under which the triangular inequality holds. Then, we
present the pruning and validation rules based on the tri-
angular inequality. This is followed by the framework de-
scription.

3.1 Triangular Inequality

The triangular inequality regarding graph relaxation
distances does not always hold. A counter example is given
in Figure 4, where dist(g1,93) = 3, dist(g1,g92) = 0, and
dist(g2,g93) = 1. Below, we show that the triangular in-
equality holds under a connectivity dominance condition.

Definition 5 The connectivity of mccs(g1,g2) dominates
the connectivity of g» if there is a subgraph isomorphic
mapping F from mces(g1, g2) to g2 (i.e. mces(g1, g2) Cx g2)

0@ R P
o ® e.@ o ®
OJo SR OYOAIR 0%
91 93

92

Fig. 4 Counter Example

such that if removing a set S of edges in mccs(g1, g2) causes
mces(g1, g2) disconnected, then removing F(S) in g» al-
ways causes g» disconnected.

In the above example, the connectivity of mccs(g1, g2)
does not dominates the connectivity of g» and the connec-
tivity of mccs(gz, g3) does not dominate g-.

Theorem 1 Given three graphs gi, g2, and g3, if the
connectivity of mccs(gi, g2) dominates the connectivity of
g2 or the connectivity of mccs(gs, g») dominates g», then
dist(g1, g3) < dist(g1,g2) + dist(gz, gs).

Proof 1 We first show that the theorem holds if the con-
nectivity of mccs(g1, g2) dominates the connectivity of g-.

Suppose that F is a subgraph isomorphic mapping from
meces(gi, g2) to g2 such that if removing a set S of edges in
mces(g1, g2) causes mces(g1, g2) disconnected, then remov-
ing F(S) in g, always causes g, disconnected. Note that
F(mees(g1,92)) and mces(g2, g3) are subgraphs of g, re-
spectively. Below we first show that the common part of
F(mees(g1,92)) and mces(go, g3) is either () or a connected
subgraph of ¢», denoted as F(mces(g1, g2)) N mees(gz, g3))-

Suppose that F(mces(g1, g2)) N mees(ge, gs3) (£ 0) is dis-
connected. Then, there are at least two connected compo-
nents ¢; and ¢z in F(mces(g1, g2)) Nmees(gz, g3). Note that
¢1 and ¢y are maximum in F(meccs(gi,g2)) N mees(gz, g3)
and disconnected to each other. Let S’ be the set of edges
in F(mces(g1, g2)) each of which is either incident to a ver-
tex in ¢; or to a vertex in ¢y but is not contained in ¢; or c».
It is immediate that S’ N E(mces(gs, g3)) = 0 since ¢; and
¢z are maximum in F(mces(g1, g2)) N mees(gz, g3)-

According to the definition of S’, the removal of S’
makes F(mces(g1, g2)) disconnected. Hence, the removal
of F~1(S') makes mccs(gy, g2) disconnected. Therefore,
the removal of S’ makes g» disconnected according to
the assumption; that is, g» — S’ is disconnected. Since
S’ N E(meces(ga,93)) = 0, c1 C mees(ge,93), ¢c2 C
mces(go, g3), and go — S’ is disconnected, it is immediate
that meccs(g2, g3) is disconnected. Contradicting! There-
fore, F(mces(g1, g2)) Nmees(gs, gs) is either @) or connected.
Thus,

|E(mces(91, 93))| 2 |E(F(mees(g1, g2))) N E(mees(g2, 93)))]

1

We can represent |E(g2)| as follows where o (> 0) is the

number of edges in g, not included in F(mces(g1, g2)) nor
in mees(g2, g3)-

lg2| =a + |E(F(mees(g1, g2)))| + | E(mees(g2, gs))|
— |E(F(mces(g1, g2)) N mees(gz, g3))|
From (1) and (2), together with the definition of graph

(2

1567

Information and Media Technologies 7(4) : 1565-1570 (2012)

reprinted from: Journal of the DBSJ 11(2) : 7-12 (2012)
© The Database Society of Japan

relaxation distance, the theorem follows.
Similarly, we can prove the theorem if the connectivity
mces(gs, g2) dominates go.

3.2 Pruning and Validation

Based on the triangular inequality, features can be used
to filter non-promising graphs and to include (validate)
graphs, with similarity guaranteed to exceed the given
similarity threshold, into the answer set. Features dis-
cussed here could be any graph structures (paths, trees,
subgraphs).

By Theorem 1, there could be totally 6 triangular in-
equalities among ¢, f, and g. It can be immediately
shown that dist(q,g) < dist(q,f) + dist(f,g) is equiv-
alent to dist(g,q) < dist(g, f) + dist(f,q), dist(f,q) <
dist(f,g)+dist(g,q) is equivalent to dist(q, f) < dist(q,g)+
dist(g, f), and dist(f,g) < dist(f,q) +dist(q,g) is equiva-
lent to dist(g, f) < dist(g,q) +dist(q, f), respectively. Note
that the equivalence of two inequalities also means that
the connectivity dominance conditions to make the two in-
equalities hold are the same. Thus, there are essentially 3
different triangular inequalities among q, f, and g. We use
two of them for pruning and one of validation.

As the verification of whether the connectivity of
meces(q, g) dominates the connectivity of g involves comput-
ing mecces(q, g), it does not make sense to use this condition
in a pruning rule.

Pruning Rule 1 For a feature f, if the connectivity of
mces(g, f) dominates the connectivity of g, then g can be
pruned when dist(q, f) — dist(g, f) > o.

Proof 2 Since the connectivity of mccs(g, f) dominates
the connectivity of g, dist(q, f) < dist(q, g) + dist(g, f) ac-
cording to Theorem 1. Thus, if dist(q, f) — dist(g, f) > o,
then dist(q, g) > o.

Similarly, dist(f,g) < dist(f,q) + dist(q, g) gives the fol-
lowing pruning rule.

Pruning Rule 2 For a feature f, if the connectivity of
mces(f,q) dominates the connectivity of ¢, then g can be
pruned when dist(f,g) — dist(f,q) > o.

Validation Rule 1 For a feature f, if the connectivity of
mces(f,q) dominates the connectivity of f or the connec-
tivity of mces(f, g) dominates the connectivity of f, then g
is a result graph when dist(q, f) + dist(f,g) < o.

Proof 3 Note that dist(q, g) < dist(q, f) + dist(f, g) holds
according to Theorem 1. Thus, dist(q,g) < o.

3.3 Framework

Existing techniques [6, 3] follow the filtering-verification
paradigm. In this paper, we propose an efficient algo-
rithm DistVP that employs distances-based triangular in-
equalities for validation and pruning. It has three phases,
pruning-validation-verification, based on our distance-
based index, as shown in Figure 5. We outline the three
phases of Algorithm DistVP as follows. Initially, put all
data graphs g in C, with |E(q)| — |E(g)| < 0.

Validation

\ {g:|dist(q, g:) < o is true} \ ‘{y,\dist(q, i) < o is still unknown} \ ‘{_q,\(lisi(q, 9:) < o is false} \

Verification: MCCS Detection

[{g:ldist(a, 9:) < o is false}

[gildist(q. 1) < o is true} |

Fig. 5 Pruning-Validation-Verification

1. Pruning. Regarding each indexed feature, a data
graph will be removed from the candidate set C, if the
pruning conditions hold in Pruning Rules 1 or 2.

2. Validation. Graphs are immediately added to the re-
sult set V without an expensive verification if the con-
ditions holds in Validation Rule 1.

3. Threshold-based Verification. The candidate
graphs in C, — V are processed by our new threshold-
based detection algorithms.

4. Experiments

Below is a summary of the techniques developed and im-
plemented for a comprehensive performance study.

e Verification: There are no techniques available
in the literature to compute MCCS-based similar-
ity. We evaluate our verification algorithm based on
two proposed strategies: Ad-HocStrategy and Mem-
orizingStrategy; they are denoted by AdHOC and
MEMO, respectively

e Filtering: We evaluate the pruning, validation, and
GrafD-index techniques proposed.

We use the (only) two filtering algorithms in [6, 7] as
the benchmark techniques to evaluate our techniques. We
use Grafil+ to denote the combination of Grdfil filtering
techniques [6] and our verification technique MEMO, use
editD to denote the filtering technique in [7], and use
DistVP to denote the combination of our filtering, prun-
ing, and MEMO verification techniques. Since there is no
code available for Grdfil filtering techniques, we code them
by ourself.

All algorithms are implemented in standard C++ with
STL and complied with GNU GCC. Experiments were run
on a PC with Intel Xeon 2.40GHz CPU and 4G memory
running Debian Linux.

Real Datasets. A popular benchmark dataset, the AIDS
antiviral database, is used in our performance evaluation.
The dataset contains totally 62 distinct vertex labels. Fol-
lowing the recent performance study settings [1, 4, 5],
edge labels are ignored for a tough evaluation. The de-
fault dataset consists of randomly chosen 10K graphs from
AIDS. On average, each graph has 25.4 vertices and 27.3
edges.

1568

Information and Media Technologies 7(4) : 1565-1570 (2012)

reprinted from: Journal of the DBSJ 11(2) : 7-12 (2012)
© The Database Society of Japan

m @ @
S S S
T 4 |[AJHOC —— T 105 |AdHOC —— T 108 |AdHOC ——
£ MW £ 10t MV £ 105 MEMO —=
10
s § 10° s 10
£ 10 £ 10 5 10
g Q8 Q12 Q16 Q20 Q24 g Q8 Q12 Q16 Q20 Q24 g Q8 Q12 Q16 Q20 Q24
Query Graph Size Query Graph Size Query Graph Size
(a) Query Relaxation o =1 (b) Query Relaxation o = 2 (¢) Query Relaxation o =3
Fig. 6 Verification
Query Set. To thoroughly evaluate our techniques, we DistVPo=1 (OO DistVPo=2 Wmmmmm DistVPo=3 27772
download the five benchmark query sets, Q8, Q12, Q16, ;raﬁh o=l Grafile 0=2 BSSSSH Grafily 0=3 SN
(220 and ()24 from the web-site as pointed and used by 212888 é’ "
[1, 4, 5]. Each query graph in Q; has exactly i edges. % 6000 = E§§
2 v
Threshold in GrafD-index. The default value of the thresh- 8 ‘21888 g x|
. . . aQ N
old %k used in GrafD-index is 3. 2 ;i v v 2 AN H
o Q8 Q12 Q16 Q20 Q24 © Q8 Q12 Q16 Q20 Q24

Below we report the results of our performance study.
Unless otherwise specified, we will use the above default
settings in our experiment.

Evaluating Verification Techniques. Figure 6 reports
the experiment results on the response time of our two
verification algorithms, AJHOC and MEMO. The time
recorded is the average response time per query. It shows
that MEMO is significantly more efficient than AdHOC
and can achive more than two orders of magnitude speed-
up. Thus, in the rest of our experiment we use MEMO as
the verification technique in DistVP and Grafil+.

DistVP —X— editD-Filtering —F—
E 1ot £ 1ot
g 3| T g | .
= 10 = 10
® ®
qé 102 ,é 102 ﬁ
S T s}
o 4 o 4
g 10 2 10
© Q8 Q12 Q16 Q20 Q24 © Q8 Q12 Q16 Q20 Q24

Query Graph Size Query Graph Size

(a) o=1 (b) =2

Fig. 7 Comparing with editD

Comparing with editD. As depicted in Figure 7, the total
computation time (pruning, validation, and verification)
of DistVP is more efficient than the editD-based filtering
technique in [7] when the similarity degree is high. Note
that the released binary code by the authors of [7] out-
puts the filtering time only and does not provide the can-
didate graphs so that we cannot conduct the verification
evaluation. On the other hand, the edit distance based fil-
tering technique proposed in [7] is a general framework
that serves for a wide range of graph structure search; it
is unfair to continue to evaluate it only against the prob-
lem studied in the paper. These make us exclude the editD
technique from a further evaluation.

Comparing with Grafil+. In our first such experi-
ment, we use the feature set selected by Grafil to com-

Query Graph Size

Query Graph Size

(a) Candidate Size (b) Total Response Time

Fig. 8 Using Grdfil’s features

DistVP o=1 KXXXXX DistVP =2 I DistVP 0=3 27772

Grafil+ o=1 Grafil+ =2 XN Grafil+ 0=3

210000] 2 10 -
£ 8000 \l q £ .
Z 6000 | i\ W i 510 o A
2 ¥ i @ A \
% 4000 \ W] , v \
2 2000 { ¥ g 10 v \
S o L& B § AN 1\ 2 Al A VI VI
o Q8 Q12 Q16 Q20 Q24 o Q8 Q12 Q16 Q20 Q24

Query Graph Size Query Graph Size

(a) Candidate Size (b) Total Response Time

Fig. 9 Using Our Features in DistVP

pare our filtering (pruning and validation) techniques with
Grdfil. Figures 8(a) shows that the number of candidate
graphs per query (on average) produced by our techniques
(DistVP) is significantly less than that by Grafil, about
20%—-50% less. We further verify the effectiveness of our
filtering techniques by recording the total response time
per query on average. Since there is no existing verifica-
tion technique, we use Grafil+ (Grafil + MEMO) for the pur-
pose. Figures 8(b) shows that the total response time fol-
lows similar trends to those in Figures 8(a); this is mainly
because the verification phase plays the dominant role.
It is noteworthy that Grdfil can hardly prune away data
graphs when ¢ is small and edge labels are removed. It
is also noteworthy that the total response time increases
significantly with query graph sizes; this is because the
verification cost for large query graphs is much more ex-
pensive than the cost for small query graphs.

We further evaluate the effectiveness of our techniques
by a set of features generated by the feature selection tech-
niques with the frequency threshold 2% and discrimina-
tive ratio 2%. Then we compare with Grdfil filtering tech-
niques using its own features. As depicted in Figure 9, the

1569

Information and Media Technologies 7(4) : 1565-1570 (2012)

reprinted from: Journal of the DBSJ 11(2) : 7-12 (2012)
© The Database Society of Japan

number of candidate graphs generated by our techniques
is significantly smaller comparing with the result in Fig-
ures 8(a). Now, the candidate set size by Grafil can be re-
duced up to 80%. In the rest of performance evaluation we
will exclude Grafil and only focus on our techniques; the
feature set in this experiment will be used thereafter.

5. Conclusion

In this paper, we investigate the problem of connected
subgraph similarity search. @ We propose a filtering-
validation-verification-based query processing framework
with the aim to minimize the number of candidate graphs.
A novel indexing technique, GrafD-index, is proposed
which indexes data graphs based on defined distance func-
tions. Effective and efficient pruning and validation tech-
niques have been proposed based on GrafD-index. We also
propose novel, efficient techniques to perform verification
aiming to optimize the matching order and computational
sharing. A comprehensive performance study against real
datasets demonstrates that our filtering (pruning and val-
idation) techniques are significantly outperform to the
(only) two existing filtering techniques. Our techniques
are also efficient and scalable.

As a possible future study, we will investigate the “opti-
mal feature” selection problem if a query log exists, as well
as this problem regarding the applications where graphs
involved are larger, say, each graph has tens of thousands
vertices.

[References]

[1] J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index: towards
verification-free query processing on graph databases.
In SIGMOD, pages 857-872, 2007.

[2] M. R. Garey and D. S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness.
1979.

[3] H. He and A. K. Singh. Closure-tree: An index struc-
ture for graph queries. In ICDE, pages 38-39, 2006.

[4] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming verifi-
cation hardness: an efficient algorithm for testing sub-
graph isomorphism. In VLDB, pages 364-375, 2008.

[5] X. Yan, P. S. Yu, and J. Han. Graph indexing: a fre-
quent structure-based approach. In SIGMOD, pages
335-346, 2004.

[6] X. Yan, P. S. Yu, and J. Han. Substructure similarity
search in graph databases. In SIGMOD, pages 766—
777, 2005.

[7] Z. Zeng, A. K. H. Tung, J. Wang, L. Zhou, and J. Feng.
Comparing stars: On approximating graph edit dis-
tance. In VLDB, pages 25-36, 2009.

Oooo0O Haoichuan SHANG

He is currently a research associate at the Institute of In-
dustrial Science, the University of Tokyo. He received the
B.S. degree in Computer Software from Tsinghua Univer-
sity, China in 2007 and the PhD degree in Computer Sci-
ence and Engineering from the University of New South

Wales, Australia in 2010.

000 O Masaru KITSUREGAWA

He is a professor at the Institute of Industrial Science, the
University of Tokyo. He received the B.S. and Ph.D de-
grees from the University of Tokyo in 1978 and 1983, re-
spectively. In 1983, he joined the Institute of Industrial
Science at the University of Tokyo as a lecturer. Currently,
he is a full professor at the Institute of Industrial Science,
the University of Tokyo.

1570

