
Exploration on Effectiveness and Efficiency of
Similar Sentence Matching

Yanhui Gu, Zhenglu Yang, Miyuki Nakano, Masaru Kitsuregawa
Institute of Industrial Science, University of Tokyo

Komaba 4-6-1, Meguro, Tokyo, Japan 153-8505
Email: {guyanhui,yangzl,miyuki,kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract—Similar sentence matching is an essential issue for
many applications, such as text summarization, image extraction,
social media retrieval, question-answer model, and so on. A
number of studies have investigated this issue in recent years.
Most of such techniques focus on effectiveness issues but only
a few focus on efficiency issues. In this paper, we address both
effectiveness and efficiency in the sentence similarity matching.
For a given sentence collection, we determine how to effectively
and efficiently identify the top-k semantically similar sentences to
a query. To achieve this goal, we first study several representative
sentence similarity measurement strategies, based on which we
deliberately choose the optimal ones through cross validation
and dynamically weight tuning. The experimental evaluation
demonstrates the effectiveness of our strategy. Moreover, from
the efficiency aspect, we introduce several optimization techniques
to improve the performance of the similarity computation. The
trade-off between the effectiveness and efficiency is further
explored by conducting extensive experiments.

I. INTRODUCTION

Similar sentence matching is an essential issue because it
is the basis of many applications, such as as text summariza-
tion, image extraction, social media retrieval, question-answer
model, and so on.

Traditional techniques for measuring the similarity between
documents (long texts), e.g., TF-IDF, have been introduced
based on an intuitive assumption that a large number of
common words exit in similar documents. However, these
methods are inappropriate for measuring similarities between
sentences because in short texts common words are few or
even nonexistent [14], [15], [19]. To address this issue, nu-
merous strategies have been proposed to measure the similarity
between sentences. These strategies can be classified into four
categories: (1) knowledge-based [15], [19]; (2) string similarity
based [2], [16]; (3) corpus-based [10], [11]; and (4) hybrid
strategies [10], [14].

As far as we know, the most comprehensive framework for
sentence similarity calculation is introduced in [10]. The au-
thors integrate several representative string-based and corpus-
based (i.e., BNC) similarities. It is well known that WordNet
and Wiki are important semantic resources and have been
extensively studied on the measurement of semantic simi-
larities [4], [14], [15]. An intuitive idea is to incorporate
these semantic resources (i.e., WordNet and Wiki) into the
general framework (i.e., [10]) to improve the effectiveness.
In the first part of this paper, we thoroughly explore the
idea, that evaluates the effect of different measurements on
calculating sentence similarities. We believe that this is the first

work which comprehensively studies the sentence similarity
measurement by using most semantic resources.

In addition to the effectiveness aspect, efficiently searching
similar sentences from a large number of data has become
an important issue [6], [17] in the literature. From a given
sentence collection, such queries aim to identify sentences
that are most semantically similar to a given one. A naive
approach can employ the following procedure: we first measure
the semantic similarity score between the query and each
sentence in the data collection using state-of-the-art techniques.
The sentences are then sorted based on the score. Finally,
the top-k sentences are identified and returned to the user.
However, as the data collection size increases, the scale of
the problem likewise increases, thus rendering state-of-the-
art techniques impractical [5], [17], which highlights the
importance of the efficiency issue. Several works explored
optimization strategies for similarity measurement. In [21],
the author addressed the efficiency issue by optimizing the
string similarity, WordNet similarity and semantic similarity
of words. An efficient method for the extraction of similar
sentences was proposed in [6], where different strategies were
combined by applying the threshold algorithm. In this paper,
taking into account the new similarities (i.e., WordNet and
Wiki), we introduce the corresponding optimization strategies
to improve the efficiency. The trade-off between effectiveness
and efficiency is also studied in this paper.

The contributions of this paper are as follows:

• We introduce several representative similarity mea-
surement strategies and evaluate the effectiveness of
each strategy individually as well as that of different
combinations.

• We propose a dynamic weight tuning strategy to
improve the effectiveness of the similarity measure.
In addition, we also study the weight setting of the
combination of different similarity strategies.

• We introduce optimization strategies for the new se-
mantic resources (i.e., WordNet and Wiki) to improve
the efficiency of sentence similarity matching.

• We conduct comprehensive experiments to evaluate
the performance of the proposed strategies. The results
show that the proposed strategies outperform the state-
of-the-art method. We also illustrate the trade-off
between effectiveness and efficiency.



II. PRELIMINARIES

To measure the similarity sim(Q, P ) between two sen-
tences Q and P , we apply state-of-the art strategies by assem-
bling multiple similarity metric features [10], [14]. Given that
we cannot evaluate all the similarity measurement strategies in
this paper, we select several representative features based on
the framework presented in [10]. Notably, considering that a
sentence comprises a set of words, the similarity score between
two sentences denotes the overall scores of all word pairs,
the components of which belong to each sentence. See [10]
for detail on computing sentence similarity based on word
similarity.

A. Similarity Measurement Strategies

1) String Similarity:
String similarity measures the difference in syntax between
strings. An intuitive idea is that two strings are similar to
each other if they have adequate common subsequences (e.g.,
LCS [8]). String similarity measurement strategies, including
edit-distance, hamming distance and so on. We focus on three
representative string similarity measurement strategies intro-
duced in [10], namely, NLCS, NMCLCS1 and NMCLCSn

1.

2) Corpus-based Similarity:
The corpus-based similarity measurement strategy recognizes
the degree of similarity between words using large corpora,
e.g., BNC, Wikipedia, Web and so on. Corpus-based similarity
measurement strategies are of several types: PMI-IR, LSA,
HAL, and so on. In this paper, we apply the Second Order
Co-occurrence PMI (SOC-PMI) [9], [10] which employs PMI-
IR to consider important neighbor words in a context window
of the two target words from a large corpus. They use PMI-
IR to calculate the similarities between word pairs (including
neighbor words). High PMI scores are then aggregated to
obtain the final SOC-PMI score.

3) Common Word Order Similarity:
Common word order similarity measures how similar the order
of the common-words is between two sentences, as either
the same order, almost the same order, or very different
order. Although [20] indicates that syntactic information is
less important during the semantic processing of sentences, we
incorporate this similarity measurement strategy to test how
much order similarity affects the whole sentence similarity.
See [10], [14] for detail.

B. General Framework for Measuring Sentence Similarity

To measure the overall similarity between two sentences, a
general framework is presented by incorporating all similarity
measurement strategies. To the best of our knowledge, [10]
presented the most comprehensive approach that incorporates
representative similarity metrics. They construct a similarity
matrix and recursively extract representative words (maximal-
valued element) which are then aggregated to obtain the
similarity between two sentence.

1NLCS: Normalized Longest Common Substring; NMCLCS1: Normalized
Maximal Consecutive LCS starting at character 1; NMCLCSn: Normalized
Maximal Consecutive LCS starting at any character n. See [10] for detail.

III. EFFECTIVENESS IMPROVEMENT WITH ADDITIONAL
SEMANTIC RESOURCES

Hybrid approaches incorporate different similarity strate-
gies, such as string similarity, knowledge-based similarity,
corpus-based similarity, etc. It is well known that WordNet
and Wiki are two representative semantic resources and have
been extensively studied on the measurement of semantic
similarities [4], [14], [15]. Based on the general framework
which is introduced in [10], in this paper we propose to
take into account the additional important semantic resources
(i.e., Wordnet and Wiki), to improve the effectiveness of
the sentence similarity measurement. We explore the effect
of different similarity metrics by using equal-weight setting
(Section III), cross validation (Section IV), and dynamic
weight tuning (Section V). Efficiency optimization on sentence
similarity matching is introduced in Section VI.

A. Two Additional Semantic Resources

1) WordNet-based Similarity Strategy: A word thesauri
such as WordNet, constitutes the knowledge base for text-
related research. An intuitive idea to determine whether two
words are semantically similar to each other is by finding if the
shortest path between them is small. This edge-counting ap-
proach has been extended by incorporating additional features
in the knowledge base, such as depth, information content, or
semantic density. We select one representative metric proposed
in [12], that is, Leacock and Chodorow strategy. We take two
words wi,wj , the similarity of which is determined as follows:

Simlch(wi, wj) = −ln
length(wi, wj)

2 ∗ D

where length(wi, wj) is the length of the shortest path be-
tween two concepts (by applying node-counting strategy). D
is the maximum depth of the taxonomy.

2) Wiki-based Similarity Strategy: Unlike taxonomy-based
methods, such as the WordNet-based strategy, Wiki-based sim-
ilarity cannot employ a new entity. An representative strategy,
ESA [4], which applies the Wiki encyclopedia as a knowledge
base to map text into Wiki-based concepts. In this approach,
each Wiki concept is represented as an attribute vector of
words that occur in the corresponding article. Entries of these
vectors are assigned weights by using the TF-IDF scheme
which quantifies the strength of association between words
and Wiki concepts. ESA measures similarity between sen-
tences (arbitrary length) by aggregating each word distribution
on concepts, i.e., sentence is a vector based on concepts with
weight of each concept ci calculated as:

∑
wi∈T vi ·kj , where

vi is TF-IDF weight of wi and kj quantifies the strength of
association of word wi with Wiki concept cj .

B. Experimental Evaluation

In this section, we first evaluate the single strategy and
then the different combination of similarity strategies. Besides
SimBaseline (baseline is the combination of string similar-
ity and BNC-based semantic similarity), we incorporate two
different strategies, such as SimWordNet and SimWiki into
the framework with equal weight. We apply benchmark
dataset (Miller-Charles’ dataset) which has also been used
in [14] to evaluate the effectiveness in this and the following



sections. Figure 1 illustrates the results of the correlation
coefficient with human ratings.

Different Strategies

0.78186 0.80125
0.84199

0.60707

0.69327

0.78901

0.86070
0.80262

0.73333

0.85131

0.75775

Fig. 1. Results of different strategies combination with equal weight

C. Result Explanation

The figure shows that all single similarity strategies are
worse than the baseline strategy. Wiki is a good semantic
resource because the combination of Wiki achieve better
results than others but WordNet is not good on this dataset.
However, the combination strategies are better than single
similarity strategies but still falls short of the baseline strategy.
Given their equal weights, all similarity strategies have the
same proportion of similarity aggregation, that is, the weight
is static and set arbitrarily.

IV. EFFECTIVENESS IMPROVEMENT WITH CROSS
VALIDATION

Considering that the weight in Section III is set to be
equal, in this section, we test each possible weight of the
combination strategy. Obtaining the optimal values of these
weights is certainly an important issue. We argue that this
work is orthogonal to the existing effectiveness oriented studies
in a complementary manner. We try to achieve the best
effectiveness by testing each possible weight.

A. Cross Validation

Cross validation strategy can test all the possible weight
combination results with human ratings. In this paper, we apply
a 10-fold cross validation strategy and study what weight can
achieve the best effectiveness.

B. Experimental Evaluation

We conduct experiments on the benchmark dataset. Table I
shows that, by applying cross validation, we can obtain better
results from combination strategies. From Table I, we observe
that the WordNet strategy still has extremely low effectiveness.
In addition, combination strategies that contain the WordNet
strategy are also outperformed by other strategies.
TABLE I. CORRELATION COEFFICIENT ON COMBINATION WITH CROSS

VALIDATION

Strategy Correlation
Weight

String Semantic WordNet Wiki
Baseline+WordNet 0.82019 0.377 0.531 0.092 -
Baseline+Wiki 0.86073 0.470 0.210 - 0.320
Baseline+WordNet+Wiki 0.81002 0.406 0.301 0.072 0.221
String+WordNet 0.77815 0.699 - 0.301 -
String+Wiki 0.86132 0.579 - - 0.421
String+WordNet+Wiki 0.80126 0.470 - 0.110 0.420

Note: Baseline strategy involving string and semantic strategy.

C. Result Explanation

The experiment results show that setting weight arbitrarily
and equally is improper for similarity measurement, especially
in combination strategies. We can achieve better results by
using cross validation strategy. However, from the experiment
results of Section III and Section IV, we can see that, the
results of combination of WordNet are still low.

V. EFFECTIVENESS IMPROVEMENT WITH DYNAMIC
WEIGHT TUNING

From Section IV we can see that, WordNet is not a good
semantic resource when measuring the semantic similarity
under the benchmark dataset. Because of the omission of two
word pairs in WordNet, similarity score of these words are “0”
which affect the whole similarities. In this section, we reduce
the weight of these words which are not included in WordNet
by dynamically weight tuning.

A. Dynamic Weight Tuning

To address this issue, one possible solution is to remove
these words when calculating the similarity score. However,
such a strategy may affect the similarity score of other strate-
gies because of the reduction in the number of words. Another
solution is by dynamically tuning the combination weight.
We take the String + WordNet strategy as an example.
If the similarity score of some word pairs are “0”, but this
value holds a rather large weight, which can reduce the final
similarity score. We propose a dynamic combination weight
tuning strategy to address this issue. We denote two sentences
Q and P , which have m and n words, respectively. A total
of γ words are not included in WordNet of sentences P and
Q. Based on the strategy in [10], at least γ ∗ min(m, n) or
at most γ ∗ max(m, n) word pairs are “0” (we apply average
value (m+n)

2 ·γ). Therefore, we mitigate the effect of WordNet
by tuning the weight to 1

k · (1 − m+n
2mn · γ), where k is the

number of combination strategies. So, SimString+WordNet

= 1
k · 2mn(k−1)+(m+n)·γ

2mn · SimString+ 1
k · 2mn−(m+n)·γ

2mn · γ ·
SimWordNet, where k = 2 in this case.

B. Experimental Evaluation

We apply this strategy and conduct experiments on the
benchmark dataset. Table II shows the results by dynamically
tuning the weight.

TABLE II. CORRELATION COEFFICIENT ON DYNAMICALLY WEIGHT

TUNING

Strategy Correlation
Weight

String Semantic WordNet Wiki
Baseline+WordNet 0.83033 0.408 0.375 0.217 -
Baseline+Wiki 0.86073 0.470 0.210 - 0.320
Baseline+WordNet+Wiki 0.84752 0.334 0.314 0.157 0.195
String+WordNet 0.79378 0.649 - 0.351 -
String+Wiki 0.86132 0.579 - - 0.421
String+WordNet+Wiki 0.86201 0.420 - 0.210 0.370

Table II shows that, we obtain better correlation coefficient
by dynamically tuning the weight. For String + WordNet +
Wiki, we obtain a better result than Baseline + Wiki and
String + Wiki.



C. Result Explanation

From the experiment results, we can see that dynamically
tuning the weight of each similarity strategy is a possible
solution to improve the effectiveness. However, all the weight
tuning is conducted on the benchmark dataset. The weight
may be changed if we apply the strategy to another dataset.
Supervised learning techniques could solve such an issue but
are out of the scope of this paper.

Common word order is an important strategy in similarity
measurement. To evaluate the effect of common word order
similarity, we incorporate such similarity strategy into the
framework. We incorporate common word order similarity into
baseline strategy. Experiments conducted on the benchmark
dataset illustrated that only 19 of 30 pairs have common
words. Of all these 19 pairs, 15 pairs have exactly the same
order (including 10 pairs which have only “1” common word).
Such similarity only affects 4 pairs. We set weight of common
word order similarity from 0 to 0.5 with the granularity “0.01”
and we obtain the best correlation coefficient “0.81972” at 0.01
which is less than baseline.

VI. EFFICIENCY IMPROVEMENT

Searching for similar sentences from a large amount of
data has become an important issue [1], [6] in the liter-
ature. From a given sentence collection, such queries aim
to identify sentences that are most semantically similar to
a given one. A naive approach could be: we first measure
the similarity score between the query and each sentence
in the data collection using state-of-the-art techniques [10],
[14], [15]. The sentences are then sorted based on a score.
Finally, the top-k statements are identified and returned to
the user. However, as the size of the collected data, testing
each candidate sentence becomes time consuming. In [6],
the author proposed a solution which optimized state-of-the-
art techniques to retrieve top-k sentences. Techniques that
optimize string similarity and semantic similarity is proposed.
From the analysis in Section V, we select a best similarity
combination strategy that has the best effectiveness. We select
one representative strategy which achieves best performance,
that is, string, WordNet and Wiki, with the weight “0.420”,
“0.210” and “0.370”, respectively.

A. Optimization on WordNet

We apply the Leacock and Chodorow strategy as a WordNet
evaluator which is an efficient technique [21].

Lemma 1 (Ordering in WordNet): Let Q be the query. Let
P and S be two candidates that exist in the same taxonomy
of Q, that is, TP and TQ. The shortest path between Q and
P (or S) is LP in TP (or LS in TS). The maximum depth of
TP is DP (or DS of TS). P is more similar to Q compared
with S. Thus, we have DP

LP
> DS

LS
.

The lemma tells us that the similarity ordering between
candidates in WordNet depends on the integration of the
shortest path and the maximum depth of the taxonomy. For
example, father is in both a noun taxonomy (i.e., D

L = 19)

and a verb taxonomy (i.e., D
L = 14)2. Thus, father in a

noun taxonomy should be accessed before that in a verb
taxonomy. Sequentially we access the synonyms set between
two taxonomies successively based on the value of D

L . Based
on this lemma, we index all the candidates together with their
neighbors and maximum taxonomy depth. We sequentially
access nodes based on Lemma 1 and obtain the top-k results
in a progressive manner.

B. Optimization on Wiki

ESA measures the similarity between sentences (arbitrary
length) by aggregating each word distribution on concepts, that
is, a sentence is a vector based on concepts with the weight of
each concept ci calculated as:

∑
wi∈T vi · kj , where vi is TF-

IDF weight of wi and kj quantifies the strength of association
of word wi with Wiki concept cj . The traditional approach has
to test each candidate in the data collection. In our optimized
strategy, we first calculate all the similarity scores between
each word in Wiki and between sentences in the data collection
to obtain a set of lists during preprocessing which is illustrated
in Figure 2. Then we build a weighted inverted list, here each
list indicates a word with sorted corresponding sentences based
on the similarity score. Given a query sentence Q, each word
in Q corresponds a list of sentences. Therefore, we apply
the threshold algorithm [3] with TF-IDF weight to retrieve
the top-k sentences. This manner accesses a small number of
components of the data collection without need to test every
candidate sentence.

Weighted inverted list

...

S3 S7 S5 S9

S2 S9 S6 S8

S6 S3 S4 S2

W1

W2

Wn

... ... ... ...

...

...

...

S2

S9

S8

S3

S6

S4

S8

S2

S6

... ... ...

query: w2 w5 w9

w2 w5 w9

Data Collection

Ranked list

Preprocessing

Online query

<                     >weight vector

vw2 vw5
vw9

vw2

vw2

vw9vw5

Fig. 2. Optimization on Wiki based strategy

C. Assembling Similarity Features

We introduce an efficient assembling approach to accelerate
the process of searching for top-k similar sentences [3]. In [6],
the author illustrated the method by using a concrete example.
In this paper, we apply three different similarity measure-
ment strategies, String, WordNet and Wiki. We apply the
threshold based strategy in assembling different similarities as
well as in assembling words into a sentence to obtain the top
elements. Given the page limitation, we do not include detailed
explanations here.

2The maximum depths of the two taxonomies are 19 for noun and 14 for
verb by querying WordNet during preprocessing.



D. Experimental Evaluation on Efficiency

To evaluate the efficiency, we conduct extensive exper-
iments on two large real datasets: BNC dataset (extracted
from British National Corpus); MSC dataset (extracted from
Microsoft Research Paraphrase Corpus).3 Table III shows the
statistics of these two datasets (Statistics after preprocessing is
italicized.).

TABLE III. DATASET STATISTICS

BNC MSC
Avg. sentence length 11.72 7.19 15.23 9.31
Min. sentence length 3 2 5 3
Max. sentence length 107 38 29 17
Max word length 17 17 13 13

1) Evaluation on Effect of Data Collection Size:
Figure 3 shows the top-5 results after 10 randomly selected
queries. We can see that our proposed optimized strategy is
significantly faster than the baseline strategy for both datasets
because our strategy substantially reduces the number of
candidates tested. As the size of collected data increases, the
query time of our proposed strategy also increases linearly and
proportionately well.

(a) BNC dataset

(b) MSC dataset

Fig. 3. Effect of data collection size

2) Evaluation on Effect of k value:
In addition, we also verify the effect of k value. We randomly

chose 10 queries from both datasets and fix the data size to be
5k for BNC and the whole size for MSC. Figure 4 shows that
the baseline has to access all candidate sentences, such that, the
query time is the same for all the situations. For our proposed
method, the top-1 can be returned almost instantly. The query
time increases when k increases because more candidates need
to be accessed.

VII. TRADE-OFF BETWEEN EFFECTIVENESS AND
EFFICIENCY

In Section VI-D, we prove that, our proposed optimization
strategy can significantly reduce the execution time when re-
trieving top-k values. However, effectiveness and efficiency re-
quire a trade-off. We conducted experiments on the benchmark

31k, 5k, 10k, 20k sentences are extracted from BNC and 10%, 20%, 50%,
100% of MSC are divided. After removing the duplicated sentences in MSC,
11,212 sentences are remained.

(a) BNC dataset

(b) MSC dataset

Fig. 4. Effect of k-value

dataset by using Baseline and Baseline+WordNet+Wiki
strategies to retrieve top-5 results. Table IV tells us combining
several strategies can achieve high precision but may be time
consuming. Therefore, designing an effective similar sentence
matching framework with high efficiency remains a challenge.

TABLE IV. TRADE-OFF BETWEEN EFFECTIVENESS AND EFFICIENCY

Strategy
Effectiveness Efficiency

Correlation Execution Time(Sec.)

Baseline(String+Semantic[BNC]) 0.84019 2.90

Baseline+WordNet+Wiki 0.86201 3.32

VIII. RELATED WORK

Measuring similarity between long texts has been exten-
sively studied [7], [11]. However, only a few of them can be
directly applied to sentence similarity measurement [10], [14],
[15]. Based on the different strategies applied, existing works
on similarity measurement between sentences can be classified
into several categories:

String similarity based strategy. Numerous strategies
estimate the string similarity between two texts [13]. One rep-
resentative q-gram based strategy calculates the edit distance
between words. In [22] the authors proposed several strategies,
including adaptive q-gram selection, for the efficient retrieval
of the top-k results. In [18], the authors introduced deliberated
techniques, e.g., divide-skip-merge, to extract similar strings.

Knowledge-based strategy. Knowledge base (sometimes
called word thesauri), e.g., WordNet, contains the labeled (or
semi-labeled) data for text related research tasks. In [19],
they firstly create semantic networks from word thesauri and
then measure the relatedness between words based on these
semantic networks. The hierarchy property of WordNet has
been explored in [14]. The word pair similarity is estimated
from the hierarchy based on a node counting strategy, i.e.,
calculating the number of nodes between the target words.

Corpus-based strategy. Statistics information of large cor-
pus can be used to calculate the similarity between two words
or texts. Some well known methods in corpus-based similarity
are LSA (Latent Semantic Analysis) and HAL (Hyperspace
Analogues to Language), etc. One representative strategy
ESA (Explicit Semantic Analysis) [4] which applies machine



learning techniques to explicitly represent the meaning of any
text as a weighted vector of Wiki-based concepts.

Hybrid strategy. To tackle the drawback of single strategy,
the hybrid strategy was proposed [10], [14]. The combination
of knowledge based strategy and word order based strategy
was proposed in [14]. In [10], the author applies string based,
common word order based, and corpus based strategies to
measure the similarity between sentences.

Currently, several works [6], [21] explore efficiency is-
sue to optimize state-of-the-art similarity strategy. Efficient
extraction on semantic similar words is presented in [21]
by optimizing string-based, WordNet-based and corpus-based
similarity strategies. In [6], the authors address efficiency issue
to efficiently search for semantic similar sentences on three
string similarity strategies and corpus-based strategy.

IX. CONCLUSION

In this paper, we have studied both effectiveness and
efficiency aspect in the sentence similarity matching. The
optimal strategies have been proposed through cross validation
and dynamically weight tuning. We also introduced several
efficient techniques to improve the performance of the simi-
larity computation. The trade-off between effectiveness and ef-
ficiency is also explored by conducting extensive experiments.

REFERENCES

[1] Blake, M.B., Cabral, L., König-Ries, B., Küster, U., Martin, D.:
Semantic Web Services: Advancement through Evaluation. Springer
(2012)

[2] Cohen, W.W.: Integration of heterogeneous databases without common
domains using queries based on textual similarity. In: Proceedings of
the ACM SIGMOD International Conference on Management of Data,
SIGMOD ’98, pp. 201–212 (1998)

[3] Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for
middleware. In: Proceedings of the ACM SIGMOD symposium on
Principles of Database Systems, PODS ’01, pp. 102–113 (2001)

[4] Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using
wikipedia-based explicit semantic analysis. In: Proceedings of the
International Joint Conference on Artifical Intelligence, IJCAI’07, pp.
1606–1611 (2007)

[5] Goyal, A., Daumé III, H.: Approximate scalable bounded space sketch
for large data nlp. In: Proceedings of the Conference on Empirical
Methods in Natural Language Processing, EMNLP ’11, pp. 250–261
(2011)

[6] Gu, Y., Yang, Z., Nakano, M., Kitsuregawa, M.: Towards efficient simi-
lar sentences extraction. In: Proceedings of Intelligent Data Engineering
and Automated Learning, IDEAL’12, pp. 270–277 (2012)

[7] Hatzivassiloglou, V., Klavans, J.L., Eskin, E.: Detecting text similarity
over short passages: Exploring linguistic feature combinations via
machine learning. In: Proceedings of the Joint SIGDAT Conference
on Empirical Methods in Natural Language Processing and Very Large
Corpora, EMNLP/VLC ’99, pp. 203–212 (1999)

[8] Hirschberg, D.S.: A linear space algorithm for computing maximal
common subsequences. Communications of ACM 18(6), 341–343
(1975)

[9] Islam, A., Inkpen, D.: Second order co-occurrence pmi for determining
the semantic similarity of words. In: Proceedings of the International
Conference on Language Resources and Evaluation, LREC ’06, pp.
1033–1038 (2006)

[10] Islam, A., Inkpen, D.: Semantic text similarity using corpus-based word
similarity and string similarity. ACM Transactions on Knowledge
Discovery from Data 2(2), 1–25 (2008)

[11] Landauer, T.K., Dumais, S.T.: A solution to Plato’s problem: The latent
semantic analysis theory of the acquisition, induction, and representa-
tion of knowledge. Psychological Review 104, 211–240 (1997)

[12] Leacock, C., Chodorow, M.: Combining local context and wordnet
similarity for word sense identification. In: WordNet: An Electronic
Lexical Database, pp. 305–332. In C. Fellbaum (Ed.), MIT Press (1998)

[13] Levenshtein, V.: Binary codes capable of correcting deletions, inser-
tions, and reversals. Soviet Physics Doklady 10(8), 707–710 (1966)

[14] Li, Y., McLean, D., Bandar, Z., O’Shea, J., Crockett, K.A.: Sentence
similarity based on semantic nets and corpus statistics. IEEE Transac-
tions on Knowledge and Data Engineering 18(8), 1138–1150 (2006)

[15] Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and knowledge-
based measures of text semantic similarity. In: Proceedings of the AAAI
Conference on Artificial Intelligence, AAAI’06, pp. 775–780 (2006)

[16] Navarro, G.: A guided tour to approximate string matching. ACM
Computing Surveys 33(1), 31–88 (2001)

[17] Pantel, P., Crestan, E., Borkovsky, A., Popescu, A.M., Vyas, V.: Web-
scale distributional similarity and entity set expansion. In: Proceedings
of the Conference on Empirical Methods in Natural Language Process-
ing, EMNLP’09, pp. 938–947 (2009)

[18] Sarawagi, S., Kirpal, A.: Efficient set joins on similarity predicates.
In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD ’04, pp. 743–754 (2004)

[19] Tsatsaronis, G., Varlamis, I., Vazirgiannis, M.: Text relatedness based
on a word thesaurus. Journal of Artificial Intelligence Research 37,
1–39 (2010)

[20] Wiemer-Hastings, P.: Adding syntactic information to lsa. In: Pro-
ceedings of the Annual Conference of the Cognitive Science Society,
COGSCI’00, pp. 989–993 (2000)

[21] Yang, Z., Kitsuregawa, M.: Efficient searching top-k semantic similar
words. In: Proceedings of the International Joint Conference on
Artificial Intelligence, IJCAI’11, pp. 2373–2378 (2011)

[22] Yang, Z., Yu, J., Kitsuregawa, M.: Fast algorithms for top-k approximate
string matching. In: Proceedings of the AAAI Conference on Artificial
Intelligence, AAAI’10, pp. 1467–1473 (2010)


