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ABSTRACT
Data intensive applications such as MapReduce can have
large performance degradation from the effects of I/O in-
terference when multiple processes access the same I/O re-
sources simultaneously, particularly in the case of disks. It
is necessary to understand this effect in order to improve
resource allocation and utilization for these applications. In
this paper, we propose a model for predicting the impact
of I/O interference on MapReduce application performance.
Our model takes basic parameters of the workload and hard-
ware environment, and knowledge of the I/O behavior of the
application to predict how I/O interference affects the scala-
bility of an application. We compare the model’s predictions
for several workloads (TeraSort, WordCount, PFP Growth
and PageRank) against the actual behavior of those work-
loads in a real cluster environment, and confirm that our
model can provide highly accurate predictions.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Distributed systems

General Terms
Performance

Keywords
MapReduce, Cloud Computing, Data Intensive, Cost Model,
I/O Interference, I/O Behavior

1. INTRODUCTION
The need to process and analyze large volumes of data

is still increasing. The web, social networks, sensors, etc.
provide more data than ever before, and cloud computing
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has put the resources necessary to analyze big data within
everyone’s reach. Data processing applications are often im-
plemented using MapReduce [5], in particular using its open
source implementation Hadoop [1], and can often benefit
greatly from multi-core systems.

Modern server nodes typically have many CPU cores, so
it is desirable to use parallelism on each node to utilize the
CPU power. However, data intensive applications are often
dominated by disk I/O operations, and I/O resources are
more limited than CPU. Disk storage can range from single
local disks to a large storage array attached to a node, but
they are often represented as a single logical device. When
multiple processes—or even multiple virtual machines run-
ning on a node—access such a device simultaneously this
causes interference, leading to significant performance losses
in real applications.

Figure 1 shows the scalability of two typical MapReduce
workloads when per-node parallelism is increased on a clus-
ter where each node has 8 CPU cores and 1 disk I/O de-
vice (see Table 2). WordCount [5] is CPU bound because it
performs string processing, has a combiner, and very small
output data. This allows it to scale from 1 to 8 cores with
95% efficiency. TeraSort is I/O bound because it performs
very little processing and has very large input, intermediate
and output data. It only achieves 29% efficiency with 8 par-
allel tasks, so is unable to fully utilize the CPU resources.
At more than 5 parallel tasks per node overall performance
actually decreases.
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Figure 1: Scalability of WordCount and TeraSort
with per-node parallelism.



This example shows how I/O interference can prevent the
systems from being fully utilized. Data intensive applica-
tions are becoming more and more pervasive in the cloud
computing era, so being able to predict the effects of I/O in-
terference is required to improve scheduling and provisioning
decisions. Predicting I/O interference is a complex problem
that no existing models for MapReduce address as far as we
are aware.

In this paper, we analyze the I/O behavior of MapRe-
duce in detail and propose a comprehensive I/O cost model
that combines the application behavior with hardware mod-
els derived from micro-benchmarks to predict the effect of
I/O interference. This model is evaluated with several rep-
resentative workloads on a real cluster, and the results show
it is able to make predictions with very high accuracy.

2. RELATED WORK
The difficulty of efficiently using MapReduce has been rec-

ognized for some time. There have been a number of works
that attempt to automatically optimize MapReduce execu-
tion [12, 21, 10, 20, 8, 11], typically focusing on optimizing
query execution and sharing work between workloads, or
automating cluster provisioning and Hadoop configuration.
In these works, I/O is only considered when the goal is to
reduce the total amount of I/O performed by the applica-
tion; the impact of I/O interference on existing MapReduce
applications is not considered.

Recently, there has been an increasing amount of work in
modeling the behavior of MapReduce. Huai et al [9] propose
a model that generalizes Map-Reduce and similar frame-
works into a matrix-based representation of the data flow.
Verma et al [19] propose a model to estimate job completion
time based on the observed task completion times measured
previously. Jindal et al [11] model the read I/O behavior
of map tasks. Yang et al [22] propose a statistical model to
evaluate the effect of various configuration parameters.

The model proposed by Herodotou et al [8, 7] is to our
knowledge the most complete analytical model of Hadoop,
focusing on relative performance between environments and
optimizing Hadoop configuration.

Our work focuses on the I/O performance of MapReduce,
and differs from these existing models because all of them
make simplifying assumptions about I/O or ignore it en-
tirely.

For I/O interference itself, there has been a considerable
effort to characterize and predict I/O performance [16, 14,
6], which focuses primarily on the hardware environment.

Chiang et al [4] propose a scheduling system that takes
I/O interference into account, but unlike our work it applies
to VM scheduling rather than application scheduling, and
was only evaluated using simulation.

Related to our work is the work of Shan et al [17], which
characterizes the entire I/O behavior of an application using
a micro-benchmark; this differs from our work because we
use micro-benchmarks only to establish basic hardware I/O
performance and use an analytical model to describe the
application’s behavior. They also target more traditional
supercomputers rather than cloud environments.

3. EFFECTS OF I/O INTERFERENCE
A MapReduce application consists of many map and re-

duce tasks that read and write data on the Distributed File
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Figure 2: Partial time-line of map task execution of
the TeraSort workload.
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Figure 3: Average CPU and I/O cost of TeraSort
tasks.

System (DFS) and local disks. In order to utilize multi-core
systems, Hadoop schedules multiple tasks to run simultane-
ously on each node. In this case, the node’s I/O resources
are divided between these tasks.

Figure 2 shows a partial time-line for one node in a cluster
taken from an actual execution of the TeraSort workload.
When the number of parallel tasks per node is increased
from 1 to 4 the tasks increase in duration and become highly
variable. Although only map tasks on a single node are
shown here, the same effect is observed on all nodes and for
reduce tasks, and also occurs with different workloads.

The cause of the increased execution time can be seen if we
look at the CPU and I/O cost for the tasks. The CPU cost is
the time it takes for the tasks’ CPU processing to complete,
and the I/O cost is the time it takes for I/O devices to
finish servicing requests from the tasks. These costs include
the time spent waiting for devices to become available, so
they increase under contention. The task execution time is
determined by a combination of these two, though it is not
a simple sum since I/O operations are done asynchronously.

Figure 3 shows how the average CPU and I/O costs of the
tasks in the TeraSort workload increase when per-node par-
allelism is increased. Because we do not run more tasks than
the number of CPU cores (8 cores in our case; see Table 2),
CPU contention does not occur and these costs remain the
same. However, I/O costs clearly increase significantly due
to interference.

Although we can reduce I/O costs—and thus the impact
of interference—by using compression, this often adversely
affects the overall performance of the application [3].

It is necessary to consider the I/O behavior of data inten-
sive applications in further detail to accurately model I/O
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costs under interference.

4. I/O BEHAVIOR OF MAPREDUCE
The effects of I/O interference are determined by the I/O

patterns and the overall work flow of the application. Since
this depends on the specific implementation of MapReduce,
this section focuses on Hadoop.

While Section 3 discussed CPU and I/O costs in the con-
text of tasks, in reality we must further break down each
task into phases: individual steps in the execution of a task.
These phases perform distinct operations, and have their
own individual costs.

Figure 4 shows the processing work flow of map and re-
duce tasks, where each box represents a phase. The read/
map/collect and read/reduce/write blocks represent cycles of
interleaved operations which are considered as single phases
for our purposes. For each phase, the type of I/O performed
is indicated.

MapReduce performs primarily sequential I/O. Each map
task reads a single DFS block sequentially. Similarly, all
write operations write large amounts of data sequentially
to a file. Merge operations read multiple input files in an
interleaved fashion, but aggressive buffering is used to avoid
overhead.

The shuffle phase is the only one that has a different I/O
pattern. Reduce task input is divided into segments (one
segment from each map task), and must be read from all
nodes in the cluster. The segments for a particular reduce
task are not stored sequentially, which means there is a cost
for performing random I/O (latency and seek) involved for
each segment.

4.1 I/O Interference Effects on Phases
Every phase can potentially interfere with any other phase,

because tasks running on the same node are not guaranteed
to execute the same phase at the same time. This is evi-
dent from Figure 5, which shows a partial time-line similar
to Figure 2. Figure 5 includes additional information about
which phase is currently active in each task; the half-height
blocks indicate background spills that happen during the
read/map/collect phase.

The changing overlap between phases means not all tasks

read/map/collect sort spill merge
140 150 160 170 180 190 200 210

init or shutdown

Four parallel tasks per node:

Figure 5: Partial time-line of map task phases of the
TeraSort workload.

receive the same interference, which causes the observed
variability between the tasks. We cannot predict exactly
which phase will receive how much interference at any given
time, but when running the same workload multiple times
we observed that the overall job execution time and the av-
erage costs for each phase varied by at most 3% across exe-
cutions. This means that while some phases may have more
or less interference, the overall effect on the workload does
not change substantially.

4.2 Fragmentation
Hadoop stores both DFS blocks and intermediate data in

regular files. Physical block allocation on the disks is not
controlled by Hadoop, but by the file system and may be
subject to file fragmentation.

Reading a fragmented file can be much slower than reading
a sequentially stored one, but it does not have a significant
impact on interference. However, interference between mul-
tiple tasks that are simultaneously writing files can cause
heavy fragmentation, adversely affecting performance when
those files are read back.

Intermediate files are written and read by the same job,
so interference while those files are written affects the per-
formance of that same job. Intermediate file fragmentation
was observed to have a significant impact on the overall per-
formance in some cases, so we must be able to predict what
effect interference while writing has on the read performance
of those files.

5. I/O COST MODEL
Figure 6 shows the work flow of our modeling process.

The model consists of a MapReduce model and a hardware
model. The latter is used to calculate I/O cost under inter-
ference by first assuming I/O bandwidth is split evenly be-
tween tasks and then applying hardware specific interference
functions. These interference functions are determined for a
specific hardware environment by using micro-benchmarks.
CPU costs are considered constant, as we never run more
tasks than there are CPU cores.

The MapReduce model is used to calculate the phase cost,
which is made up of the CPU cost and the I/O cost under
interference. The larger of the two values is used, because
I/O is performed asynchronously. We then calculate the
average task execution time, the map and reduce stage exe-
cution time, and the overall job execution time.

The model has as input several parameters for each work-
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Workload (global)

Nmap
tasks

Number of map tasks

Nreduce
tasks Number of reduce tasks

Workload (phase)

Sread Data read in bytes
Swrite Data written in bytes
CPUphase CPU cost in seconds

Environment (system)

Nnodes The number of nodes in the cluster

Nslots
Number of parallel tasks per node (map
or reduce)

Environment (hardware)
Rdisk Cost of reading 1 byte, in seconds
Wdisk Cost of writing 1 byte, in seconds
Crandom Cost of a random I/O operation
F The fragmentation factor
fi Hardware-specific interference function

Table 1: Model parameters

load describing the CPU costs and input and output data
sizes for each task phase, and some related to the environ-
ment. Table 1 lists these parameters. Workload parameters
are split into global parameters, which apply to the entire
workload, and phase parameters that have different values
for each phase. How workload parameters are obtained is
described in Section 5.1, and hardware parameters in Sec-
tion 5.4.

I/O costs can include network transfer costs for I/O oper-
ations that are performed on remote hosts. However, in our
experiments the disk I/O costs always exceeded the network
transfer costs, and since cloud data centers provide gener-
ous network bandwidth this is expected to often be the case.
Therefore, network transfer costs are omitted from the I/O
costs in this section.

The goal of the model is to predict how performance is
affected when the system parameter Nslots changes, which
expresses the degree of parallelism per node. There are actu-
ally two separate values for this parameter; one for map and
one for reduce tasks. Since most calculations are the same
for both types of tasks we do not distinguish this in the for-
mulas, and the appropriate value should be used depending
on the type of task the calculation is applied to.

The output of the model is a prediction about the effect
of interference for each value of Nslots on the average task

execution time and overall job execution time; it also pro-
vides per-phase predictions that provide insights into which
parts of the application are I/O bottlenecks.

5.1 Measuring Workload Parameters
For each phase we need to determine the value of CPUcost,

Sread and Swrite.
We have made two changes to Hadoop: 1) record timing

information in the task log files, from which CPU costs for
each phase are derived; 2) record any additional data sizes
needed. An automated tool reads the job history and task
log files to extract the values and determine the parameters.

In order to get accurate timing information, the measure-
ment must occur in an environment without interference,
which means only 1 map and reduce slot. To save time
during measurement, only part of the workload needs to be
executed; information for the full workload can be inferred.
If the input data or Hadoop configuration changes the ap-
proach used in [7] can be used to adjust the values without
measuring again.

5.2 Phase Cost Estimation
Estimating the cost of each phase (Cphase) is done depend-

ing on the I/O pattern of those phases. The basic formula
for most phases is as follows:

Cphase = max(CPUphase, IO
read
phase + IOwrite

phase) + fi
For phases that perform sequential I/O, the read and write

I/O costs (IOread
phase and IOwrite

phase) are calculated by simply
multiplying the data sizes with the hardware cost of reading
and writing:

IOread
phase = Nslots · Sread ·Rdisk

IOwrite
phase = Nslots · Swrite ·Wdisk

We multiply the I/O costs by the value of Nslots to indi-
cate bandwidth is divided between parallel tasks. The func-
tion fi accounts for additional hardware specific interference
costs (e.g. latency and seek), and is described later. It is
not treated as part of the I/O costs because it may interact
differently with the CPU costs in some environments; if this
is the case it should be reflected by fi itself.

These equations are used to estimate the phase costs of
the map task init, read/map/collect, sort, spill, and merge
phases, and the reduce task init and merge phases. Note
that the init and sort phases do not perform I/O, so their
value is always equal to CPUphase.

For the I/O pattern used by the reduce task shuffle phase,
we replace the value of IOread

phase with an alternate value

IOread
phase

′
:

IOread
phase

′
= Nslots · (Sread ·Rdisk + Nmap

tasks · Crandom)

Here, we add an additional cost for each segment that the
reduce task reads. The number of segments is equal to the
number of map tasks.

To account for intermediate file fragmentation as described
in Section 4.2, we must adjust the cost of reading an interme-
diate file based on the expected level of fragmentation cre-
ated when writing it under interference. To express this level
of fragmentation, we use the fragmentation factor parame-
ter F , whose derivation is described in Section 5.4.3. For
phases where fragmentation is an issue, we replace IOread

phase

with IOread
phase

′′
:

IOread
phase

′′
= Nslots

F · Sread ·Rdisk

Although there are a few phases that could in theory ex-



perience intermediate file fragmentation, in our experiments
we only observed this to be a factor for the reduce task read/
reduce/write phase, so we only use this calculation for that
phase.

5.2.1 Remote I/O
When a task performs I/O on a remote host, it contributes

to the interference on the destination node rather than the
one the task is running on. This can occur for map tasks
when they are scheduled on a node that does not have the
task’s input data. However, the scheduler tries to avoid this
and it does not happen often enough to significantly affect
the execution time.

For reduce tasks, the shuffle phase reads data from both
local and remote hosts. We need to know how much data is
read on average from that node per task. Each task reads
on average 1

Nnodes
· Sread bytes from each node (including

its local node), so the total amount of data read per node

is Ntasks
Nnodes

· Sread. To get the average per task, we need to

divide this by the number of tasks per node, Ntasks
Nnodes

, which

equals Sread. This means no adjustment to the shuffle phase
formula is necessary.

5.3 Task and Workload Estimation
Task execution time can be estimated as a sum of all the

individual phase costs for a task. The exception is the shut-
down phase, since it depends on some wait operations that
mean the task execution time must be rounded up to the
nearest multiple of the wait interval. Since tasks can only
be scheduled on heartbeats, we must again round this value
up to the nearest multiple of the heartbeat interval. If out-
of-band heartbeats are enabled, this is not necessary.

We separately estimate the time of the map stage and
reduce stage. At the end of each stage, there may not be
enough tasks left so that all nodes are running Nslots tasks,
so there would be less interference on those nodes. Because
this is outside the target of this model, we do not include
these last few tasks, although they could be added by doing
a separate interference calculation for those tasks alone.

The overall job execution time is the sum of the map and
reduce stage execution times. Note that although the first
wave of reduce tasks can execute during the map tasks, our
observations show this does not affect the overall job execu-
tion time much.

5.4 I/O Interference Estimation
I/O interference depends on a large number of factors in-

cluding the hardware, OS and application behavior. Rather
than attempt to model all of these, we create a black-box
approximation of the hardware behavior based on micro-
benchmarks. In this section, we outline the method used to
determine hardware parameters and functions for the vari-
ous I/O patterns employed by Hadoop. The values in this
section use the hardware environment specified in Table 2,
but the procedure itself is applicable to any environment.
The maximum degree of parallelism we are interested in
equals the number of CPU cores; 8 in our case.

5.4.1 Sequential I/O
For sequential I/O, we need to measure the average read

and write throughput of the I/O device to determine Rdisk

and Wdisk, and estimate the interference function fi. We do
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Figure 7: Sequential I/O performance of our envi-
ronment.
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this using a micro-benchmark that reads or writes several
files with varying numbers of parallel streams.

Figure 7(a) shows the read and write throughput of our
hardware environment for each number of streams. The
value is the aggregate throughput over all streams. Because
of efficient read-ahead caching in our storage system, the to-
tal throughput remains relatively stable even when parallel
streams are increased.

Figure 7(b) shows a time-line of reading a single stream.
It shows that there is a random access cost of approximately
100ms, after which stable throughput is reached. The start-
up overhead was observed to increase with additional par-
allel streams. For writes, no such start-up overhead is ob-
served.

Based on these observations, we estimate Rdisk = 1
380MB/s

and Wdisk = 1
150MB/s

, and fi = 0.1 ·Nslots.

5.4.2 Shuffle I/O
To estimate the random access cost per segment (Crandom)

we use a micro-benchmark that reads a single segment from
each file out of a large number of files. We vary the size of
the segments and observe the delay between the segments.
We observed that the delay matches the earlier observed
100ms, therefore Crandom = 0.1.

5.4.3 Fragmentation
To determine the fragmentation factor F we use a micro-

benchmark that writes a varying number of files in par-
allel, and measures the throughput of reading those files
back (W fragmented

throughput ). We then find F by solving NF−1 =
1

Rdisk·W
fragmented
throughput

for F . We use the average of the values

found as the value of F in the model. For our environment,
we found F = 1.75.



System
CPU 2x quad-core Xeon E5530 2.4GHz
Memory 24GB

Storage (RAID)
Controller JCS VCRVAX-4F RAID
HBA QLogic QLE2462
Disks 10x Hitachi HDS721010CLA332

Table 2: Hardware configuration of each node in our
cluster

Figure 8 shows how the calculated transfer time of reading
the fragmented files compares to the measured values. It also
shows an estimation that does not take the fragmentation
into account; clearly, fragmentation can have a significant
impact on read performance.

6. EXPERIMENTAL EVALUATION
We evaluated our model by running several workloads on

a 10 node cluster using Hadoop 0.20.203.0. Table 2 shows
the hardware configuration of each node. We obtained the
parameters given in Table 1 for the hardware and for each
workload using the methods given in Section 5. We then ex-
ecuted the workloads normally, varying the number of tasks
per node between 1 and 8, and compared the actual perfor-
mance to the predictions made by the model.

The map stage and reduce stage are evaluated separately
because this provides more interesting insights than just the
overall job execution time. To facilitate this, Hadoop was
configured to delay reduce task scheduling until all map
tasks for a job are finished. We have verified that using
background reduce tasks did not affect the overall job exe-
cution time, but those results are not shown here for space
reasons.

The workloads we used are described in Table 3, and were
chosen to provide a representative mix of I/O and CPU in-
tensive behavior. TeraSort [18] is almost entirely I/O in-
tensive, WordCount [5] is entirely CPU intensive, and PFP
Growth [13] and PageRank [15, 2] are I/O intensive in some
parts and CPU intensive in others. Note that the latter two
workloads consist of multiple job; we have verified the model
for all jobs but only one for each workload is shown here.

6.1 Results
Figure 9 shows a comparison between the model predic-

tions (the line labeled Model) and actual stage execution
time (Actual). We also compare with a model that ignores
interference and assumes linear scalability (Linear scalabil-
ity). For reduce tasks, we show both the prediction with and
without accounting for fragmentation (Model and Model (no
interference) respectively). Figure 10 shows the predicted
CPU and I/O cost for each individual task phase.

TeraSort: Figure 9(a) and (b) show that ignoring inter-
ference is very inaccurate; at 8 slots, the difference between
Actual and Linear scalability is 63% for map tasks and 77%
for reduce tasks. The model correctly estimates the execu-
tion time, with only 5% difference for map tasks and 6% for
reduce tasks (see Section 6.2 for details on the fragmentation
result). Figure 10(a) and (b) show that almost all phases of
TeraSort are I/O bound after 2 or 3 slots.

WordCount: In Figure 9(c) and (d), Model and Lin-
ear scalability are identical because the workload is CPU
bound, and the actual execution time confirms that. The
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Figure 11: TeraSort reduce stage on a 1 node
Hadoop cluster.

small difference for map tasks is likely caused by memory
or cache contention, but this is minor compared to the I/O
interference seen in other workloads. Figure 10(c) and (d)
also reflect the CPU bound nature of this workload.

PFP Growth: In Figure 9(e) and (f), there is a 22% dif-
ference between Linear scalability and Actual for map tasks
at 8 slots, and 59% for reduce tasks. Despite the CPU inten-
sive nature of the map and reduce functions, some parts of
the job are still I/O intensive which our model correctly pre-
dicts, estimating performance to within 11% for map tasks
and 8% for reduce tasks. Figure 10(e) and (f) show that the
spill, merge and shuffle phases are the cause of the perfor-
mance loss.

PageRank: The results shown in Figure 9(g) and (h) are
similar to those of PFP Growth, although there is a slightly
bigger difference between Linear scalability and Actual be-
cause the intermediate data for this job is bigger. At 8 slots,
the model estimates the actual value to within 5% for map
tasks, and 6% for reduce tasks. Figure 10(g) and (h) shows
the I/O interference originates from the same phases as in
PFP Growth.

For each workload, our model was able to estimate the
effect of I/O interference to within 5-10% of the execution
time of actual execution, and indicate where the I/O inter-
ference occurs even for workloads that were CPU intensive
in some parts.

6.2 Fragmentation
For TeraSort in Figure 9(b) it appears that Model (no

fragmentation) is more accurate than Model ; including frag-
mentation is off by 30% for 8 slots. Fragmentation levels are
based on the number of parallel writers, but variability in
the shuffle phase means not all tasks are writing at the same
time so the fragmentation is less than predicted.

However, in other circumstances we have seen a signifi-
cant effect from fragmentation. Figure 11 shows the results
obtained form running TeraSort on a cluster with only one
node. In this case Model (with fragmentation) correctly esti-
mates the performance to within 4% for 8 slots, while Model
(no fragmentation) underestimates the execution time by
34%.

Fragmentation can have a very large impact on perfor-
mance, but it is difficult to know exactly when it will occur.
Improving our handling of fragmentation is part of our on-
going work in this research.



Workload
Data size Tasks CPU usage

Combiner
Input Intermediate Output Map Reduce Map Reduce

TeraSort 160GB 160GB 160GB 640 80 Low Low No
WordCount 40GB 100MB 1MB 400 80 High High Yes
PFP Growth 85GB 240GB 10MB 701 80 High High No
PageRank 120GB 370GB 120GB 1040 80 High Medium No

Table 3: Workloads used in the evaluation.
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(g) PageRank (map)
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Figure 9: Comparison of model prediction and actual execution time on a 10 node Hadoop cluster.

7. DISCUSSION
This model can be used to improve scheduling decisions on

several levels such as static scheduling policy, mixed work-
load scheduling, and dynamic task scheduling.

All of the I/O intensive workloads we have observed have
a clear point beyond which scheduling additional tasks on
a node has little or no performance benefit. Based on the
model, we can apply a policy on each workload that limits
the number of simultaneous map or reduce tasks on a single
node. The scheduler will then give preference to additional
nodes if they are available, rather than more tasks per node,
improving overall performance. If a job is limited to fewer
parallel tasks than the maximum for a node, the remaining
task slots can be used for other, more CPU intensive, jobs.
For example in Figure 1 it can be seen that TeraSort does
not benefit from more than 3 parallel tasks, so the remaining
slots could be used for WordCount if that job is active at
the same time. This allows the scheduler to determine how
to divide cluster resources between heterogeneous workloads
to obtain improved utilization, especially when the model is
further extended to handle mixed workloads.

The model can also be used for dynamic scheduling. When
a new task must be scheduled on a node, information about
the currently active tasks and the I/O load of the node will
allow an estimation of the performance impact of possible
new tasks. The per-phase estimations as shown in Figure 10
can be used to refine scheduling decisions at this level; for
example, if the currently active tasks have already finished
the I/O intensive part of their work (e.g. the shuffle phase),
scheduling an additional I/O intensive task is possible. Due
to task variability predictions at this level are necessarily

less accurate, but we believe this can still offer a significant
benefit. This type of I/O-aware scheduler would be well-
suited to the resource-based scheduler system used in YARN
for Hadoop 2.0.

7.1 I/O Interference in Other Applications
The problem of I/O interference does not just affect Map-

Reduce, but is a problem for all data intensive applications.
The model we present in this paper is tailored for MapRe-
duce, but the approach itself can apply to other data inten-
sive applications. Our method allows users to break down a
complex workload into smaller pieces (for MapReduce, these
were tasks and phases; for other applications, it can be de-
rived for example from database logs), model the I/O behav-
ior of each part separately, and use an application model to
combine the parts and make statements about the whole
application. Once the I/O behavior of an application is
known, our approach for determining the impact of inter-
ference would be applicable to those applications as well.

8. CONCLUSION
We have analyzed the I/O behavior of MapReduce, and

proposed an I/O cost model that considers the hardware en-
vironment and this behavior to predict the effect of I/O in-
terference. The model is able to accurately predict the effect
of I/O interference for several real workloads. This model
can be used to improve resource utilization and workload
performance.

For our future work, we intend to extend the model to
handle heterogeneous workloads. This will be used to create
a tool that can automatically derive workload parameters by



0

5

10

15

20

25

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Map Spill Merge

C
o

st
 (

se
co

n
d

s)

Phase / Map task slots

CPU I/O

(a) TeraSort (map)

0
100
200
300
400
500
600

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Shuffle Merge Reduce

C
o

st
 (

se
co

n
d

s)

Phase / Reduce task slots

CPU I/O

(b) TeraSort (reduce)

0

5

10

15

20

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Map Spill Merge

C
o

st
 (

se
co

n
d

s)

Phase / Map task slots

CPU I/O

(c) WordCount (map)

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Shuffle Merge Reduce

C
o

st
 (

se
co

n
d

s)

Phase / Reduce task slots

CPU I/O

(d) WordCount (reduce)

0

10

20

30

40

50

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Map Spill Merge

C
o

st
 (

se
co

n
d

s)

Phase / Map task slots

CPU I/O

(e) PFP Growth (map)

0
100
200
300
400
500
600
700

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Shuffle Merge Reduce

C
o

st
 (

se
co

n
d

s)

Phase / Reduce task slots

CPU I/O

(f) PFP Growth (reduce)

0

10

20

30

40

50

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Map Spill Merge

C
o

st
 (

se
co

n
d

s)

Phase / Map task slots

CPU I/O

(g) PageRank (map)

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Shuffle Merge Reduce

C
o

st
 (

se
co

n
d

s)

Phase / Reduce task slots

CPU I/O

(h) PageRank (reduce)

Figure 10: Predicted CPU and I/O cost of each phase.

running a small subset of any new workload in isolation, and
then use this information in a custom task scheduler based
on our model, providing real performance benefits.
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