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Abstract Performing mobile k nearest neighbor (MkNN)

queries whilst also being mobile is a challenging problem.

All the mobile objects issuing queries and/or being queried

are mobile. The performance of this kind of query relies heav-

ily on the maintenance of the current locations of the objects.

The index used for mobile objects must support efficient up-

date operations and efficient query handling. This study aims

to improve the performance of the MkNN queries while re-

ducing update costs. Our approach is based on an observa-

tion that the frequency of one region changing between being

occupied or not by mobile objects is much lower than the

frequency of the position changes reported by the mobile ob-

jects. We first propose an virtual grid quadtree with Voronoi

diagram (VGQ-Vor), which is a two-layer index structure that

indexes regions occupied by mobile objects in a quadtree and

builds a Voronoi diagram of the regions. Then we propose

a moving k nearest neighbor (kNN) query algorithm on the

VGQ-Vor and prove the correctness of the algorithm. The ex-

perimental results show that the VGQ-Vor outperforms the

existing techniques (Bx-tree, Bdual-tree) by one to three or-

ders of magnitude in most cases.

Keywords location based services, mobile k nearest neigh-

bor query, mobile object index, Voronoi diagram

1 Introduction

Location based services (LBSs) provide personalized
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services to users of mobile devices based on their up-to-date

locations. With the development of wireless communications

and positioning technologies, LBSs are becoming increas-

ingly important due to numerous emerging applications (such

as, location-based search, vehicle tracking, traffic control,

and accessing), where the services are provided in different

forms of spatio-temporal queries. One of the common queries

is k nearest neighbors (kNNs) query, which searches for the

k data objects that lie closest to a given query point. Because

both data object and query may be mobile, such queries rely

heavily on the maintenance of the current locations of the mo-

bile objects. The challenges in this type of query are efficient

indexing and query processing techniques on the mobile ob-

jects.

In this paper, we focus on mobile k nearest neighbor

(MkNN) queries, we provide a more general specification of

this type of query whereby both source and target of a query

may be mobile. One example is finding the three nearest com-

panions when a tourist moves with a guided tour. Another

example is finding the two nearest medics in the battlefield.

Traditionally, research on kNN queries has focused on static

objects [1–3], these approaches usually utilize index struc-

tures on static objects. Most of the work on static kNN query

processing over moving objects is either static kNN queries

over moving objects [4,5] or moving queries over static ob-

jects [6–10]. Some work has addressed the problem of MkNN

[11–14]. At the same time, MkNN queries can be imple-

mented based on mobile object indices, such as, TPR-tree

[15], TPR*-tree [16], STRIPES [17], RUM-tree [18], Bx-tree

[19], Bdual-tree [20], and ST2B-tree [21], where different un-
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derlying data structures (like R-tree and B+-tree ) and strate-

gies to reduce the cost of update operations are used. Many

of them [8–10] utilize Voronoi diagrams [22] to enhance the

kNN query processing because Voronoi diagrams are efficient

data structures for exploring a local neighborhood in a geo-

metric space. In these prior works, a single Voronoi diagram

is built on static data objects.

The goal of this paper is to utilize the properties of Voronoi

diagrams for efficient processing of MkNN queries. It is ex-

pensive to utilize Voronoi diagrams for MkNN queries di-

rectly. This is because the number of mobile objects is large

and the frequency of update operations derived from position

changes is high. Based on an observation that the frequency

of region occupation change by a mobile object is much lower

than the frequency of the position changes reported by the

mobile objects, the main idea of our solution is to partition

the space of LBS applications into grid regions and build a

Voronoi diagram on the occupied regions rather than the indi-

vidual objects. Further, we incorporate the Voronoi diagram

into a virutal grid quadtree (VGQ) (Our previous work on

VGQ is reported in [23]). The resulting data structure, called

VGQ-Vor, is a VGQ index enriched by the Voronoi diagram

of the grid regions stored in a VGQ.

The main contributions of this paper are: 1) we propose a

data structure VGQ-Vor to support efficient MkNN queries;

2) we propose an MkNN query algorithm and prove the cor-

rectness of the algorithm; 3) we perform an experimental

evaluation comparing our solution to the existing works.

Section 2 introduces related work. Section 3 describes

Voronoi diagrams and VGQ in brief. Section 4 presents the

architecture of VGQ-Vor, the MkNN query algorithm, and

the correctness proof of the algorithm. Section 5 reports ex-

perimental evaluation. Finally, we provide conclusions in

Section 6.

2 Related work

Much work has been done on mobile object indexing and

kNN query processing. Research on kNN query can be

broadly divided into two categories: 1) index built on static

objects; 2) index built on mobile objects. Note that a mobile

object may be either the source or target of a query, or even

both. Our work belongs to the second category.

2.1 kNN queries over indexes of static objects

Some work has been done with static kNN queries on moving

objects [4,5] and index is built on queries. In [4], the queries

are indexed by a grid structure held in memory. In [5], the

queries are indexed by a binary partitioning tree.

Many works focus on kNN queries from mobile devices on

static objects with indices built on static points and road net-

work data. In [6], methods are proposed to reduce the cost

of each query operation by using information of previous

queries and pre-fetched results that are stored in an R-tree.

In [7], an algorithm is proposed to find the kNNs for all po-

sitions by searching an R-tree only once. In [24], best-first

network expansion (BNE) algorithm is proposed for monitor-

ing k-path nearest neighbor (kPNN) queries, where an expan-

sion tree and a candidate set are utilized for efficient kPNN

updates and results. In [25], uncertain trajectories hierarchy

(UTH) is proposed to process spatio-temporal range queries

for uncertain trajectories on road networks. In UTH, for each

edge, time periods are stored in an R-tree within which ob-

jects are moving.

Many techniques utilizing Voronoi diagrams have been

proposed for kNN queries because it enables a very efficient

search [22]. In [8], a first order Voronoi diagram is used in the

processing of kNN queries in a spatial network. Here a large

network is partitioned into small Voronoi regions and the dis-

tances are pre-computed. In [9], an incremental safe-region-

based technique for moving kNN queries, called v*-diagram

which exploits the current information of the query point and

the search space in addition to data object. In [10], a new

index structure, called Vor-tree, is proposed to use Voronoi

diagrams with R-tree for efficient processing spatial nearest

neighbor queries, there Voronoi cells are stored in R-tree.

All the above techniques are based on indices built on static

queries or data, cannot be applied to MkNN queries directly.

2.2 kNN queries based on index built on mobile objects

In order to index mobile objects, many indices have been

proposed, such as, TPR-tree [15], TPR*-tree [16], STRIPES

[17], RUM-tree [26], Bx-tree [19], Bdual-tree [20], ST2B-

tree [21]. Different underlying data structures and strategies

are used to reduce the cost of update operations on the in-

dices. TPR-tree [15], TPR*-tree [16] use R-tree [27] structure

with time-parameterized bounding boxes, there each bound-

ing box has an associated velocity. TPR*-tree [16] outper-

forms the basic TPR-tree [15]. STRIPES [17] indexes pre-

dicted trajectories in a dual transformed space with a multi-

dimensional PMR-quadtree as its underlying index. RUM-

tree [26] is a memo-based approach to avoid disk accesses

for purging old entries so as to minimize the cost of ob-

ject updates on R-tree. Both Bx-tree [19] and Bdual-tree [20]

use B+tree as their underlying index. In Bx-tree[19], moving
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object position locations are represented as vectors that are

timestamped based on their update time. The vectors are lin-

earized with a space filling curve and the value is indexed by

B+tree. Bdual-tree [20] extended Bx-tree by utilizing veloc-

ity information. In ST2B-tree [21], the entire space is parti-

tioned into regions of different different object density using a

set of reference points and each region uses an individual grid

file index with different cell sizes. Bx-tree is used for each re-

gion and a new set of reference points and new grid file index

are chosen and rebuilt according to the latest data density. All

the above indices support MkNN queries directly.

There also exist some works [11–14,28,29] to deal with

MkNN queries. In [28], an analysis tool, the transformed

minkowski sum (TMS) is introduced to determine the in-

tersection of two moving objects of arbitrary shapes, which

can be used to optimize range and kNN queries on mobile

objects. Here mobile objects are indexed in TPR*-tree. In

[14], a possibility-based vague kNN algorithm is proposed

to process the query efficiently over the objects with uncer-

tain velocity in road networks. The underlying index struc-

ture is build based on TPR-tree. In [29], a filter-and-refine

strategy was proposed to find kNN on moving object trajecto-

ries which are indexed in a 3D-R-tree. In [11], two solutions

(object-indexing and query-indexing) are proposed. In both

methods, grid indices are used to index moving objects or

moving queries to relax the assumption that the trajectories of

the objects are fully predictable. In [13], an incremental mon-

itoring algorithm is proposed to re-evaluate queries at a time

when updates occur for road networks. The road network is

index by PMR-quadtree and there is no update operation on

the road network PMR-quadtree. In [12], an algorithm, called

SEA-CNN is proposed to improve the performance of con-

tinuous kNN queries by incremental evaluation and shared

execution, grid file is used as underlying index.

Orthogonal, but related to our work, a benchmark has been

proposed for evaluating moving object index and kinds of

mobile queries [30]. Our proposal is compared with the ex-

isting works using the data created in [30].

VGQ-Vor is different from the existing works in two as-

pects. First, Voronoi diagrams are used to support MkNN

queries. Second, the underlying index is VGQ [23], where

a mobile object index is built to index regions occupied by

the mobile objects.

3 Preliminaries

In this section, we introduce Voronoi diagrams [22] and VGQ

[23] in brief.

3.1 Voronoi diagram

A Voronoi diagram is a special kind of decomposition of a

given space determined by the distances to a specified fam-

ily of objects (subsets) in the space [22]. The Voronoi di-

agram of a given set of points P={p1, p2, ..., pn} partitions

the space into n regions. Each region corresponds a point p

of P and each region consists of all points in the data space

which are closer to p than any other points in P. Figure 1(a)

shows an example Voronoi diagram for a set of points in a

two-dimensional space.

Voronoi diagrams have many useful properties. Here, we

review two of the basic geometric properties of Voronoi dia-

grams. These properties are relevant to the kNN query algo-

rithm to be introduced in Section 4.

Property 1 The closet pair of points corresponds to two

adjacent cells in the Voronoi diagram.

Property 2 The dual structure for a Voronoi diagram in a

two-dimensional Euclidean space corresponds to a Delaunay

triangulation of the same set of points.

Property 3 The average number of edges in the boundary

of a Voronoi region is less than 6.

The Delaunay triangulation of a point set is a collection of

edges. Figure 1(b) shows the Delaunay triangulation (in solid

lines) corresponding to the Voronoi diagram (in dotted lines)

shown in Fig. 1(a). The Delaunay triangulation satisfies the

following properties relevant to the kNN query algorithm.

Property 4 The closest two points are connected by an edge

of the Delaunay triangulation.

We utilize Property 1 and Property 4 in design and imple-

mentation of the kNN query algorithm. Property 3 is used to

estimate the time and space needed to store the Voronoi dia-

gram.

Fig. 1 Example of (a) Voronoi diagram and (b) Delauany triangulation

3.2 VGQ

We first presented VGQ in [23]. VGQ is an index of the re-

gions occupied by mobile objects instead of the mobile ob-
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jects themselves. It is designed based on the observation that

the frequency of change between a region being occupied or

empty is much lower than the frequency of position reports

from the mobile objects. As an example, one can consider

the traffic in a city; even though there are many cars mov-

ing at the same time, the regions covered by these cars do

not change that dramatically. The number of updates to a re-

gion index will be much fewer than that of the mobile index.

Consider a road intersection as a region with ten cars passing

through. For that minute there will not be a status update as

the junction has at least one car within its region. However

those ten cars would register ten updates to a mobile update

index as they individually change region. Consequently, the

maintenance cost of the region index is lower than that of the

mobile object index.

Figure 2 shows the data structures used in VGQ. As shown

in the lower right corner of the figure (“Virtual grid file”), the

entire space is divided into grid cells. Each grid cell has a

unique identifier (CID) and corresponds one region. Each re-

gion clusters a set of mobile objects and a mobile object can

only be within one region. There only Regions 1, 6, 10, 11

and 14 are occupied by mobile objects and only these regions

are inserted into the index shown in the upper right corner

(We use a Quadtree index). The object hash table stores the

information of mobile objects, such as the identifier (OID),

CID, and its coordinate. The caddress hash table stores the

information of the occupied regions, such as the CID of a re-

gion, its coordinate (CXY), and the set of all the mobile ob-

jects inside the region (PLEAF). A bidirectional link is built

between each region item of the caddress hash table and its

corresponding leaf node of the Quadtree. The query data is

stored in the query hash table, such as the identifier of a query

(QID) and its results (QVALUE).

Fig. 2 Data structures used in VGQ

When a mobile object reports a position or issues a range

query, the processes of update operation and query operation

based on VGQ are described as follows:

• Update operation. There are three main steps. The first

step is to get the previous and current regions occupied

by the mobile object. The previous region is obtained

by checking the object hash table and the caddress hash

table, and the current region is obtained by mapping the

coordinate of the mobile object to its corresponding grid

cell (region). The second step is to delete the mobile ob-

ject from the previous region and insert it into the cur-

rent region. The final step is to maintain the Quadtree,

if the occupancy status of the regions change. The pre-

vious region will be deleted from the Quadtree if the

previous region becomes empty (not occupied by any

mobile object) and the current region will be inserted

into the Quadtree if the current region is not indexed by

the Quadtree.

• Query operation. This is a two step process. The first

setp is to obtain a set of regions that intersect the

range by searching the Quadtree using a conventional

quadtree range search algorithm. The second step is to

refine the final results by range checking on the mobile

objects inside the regions obtained in the previous step.

The grid file is not built physically, only the mapping re-

lationship between mobile objects and regions is utilized, we

call this the virtual grid file. Only the regions being occupied

by mobile objects are indexed and the corresponding data

structures are kept and maintained in the caddress hash ta-

ble. Quadtree [31] is used as underlying index structure. Note

however, that the underlying index structure is not limited to

quadtree index, other spatial indices, like R-tree [27] and its

variants, can also be used. No matter what kind of underly-

ing index structure is used, the input of the index are regions

occupied by mobile objects rather than mobile objects them-

selves, which is the key idea of VGQ. We select quadtree be-

cause its update operation is simpler than that of R-tree and

its variants. For details of VGQ, please refer to [23].

4 VGQ-Vor and kNN query algorithm

In this section, we first introduce the architecture of VGQ-

Vor, then propose a kNN algorithm based on VGQ-Vor

(VGQ-Vor kNN), finally we give the correctness proof of the

algorithm.

4.1 Architecture of VGQ-Vor

The main idea is to incorporate a Voronoi diagram into VGQ

and build the Voronoi diagram from the regions occupied by
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mobile objects instead of the mobile objects themselves. The

resulting data structure, called VGQ-Vor, is a VGQ index

enriched by a Voronoi diagram. Since the cost of building

and maintaining a Voronoi diagram is high and the position

changings of mobile objects are frequent, it is not efficient to

build the Voronoi diagram directly from mobile objects. This

is our motivation to build the Voronoi diagram on regions.

Figure 3(a) shows the architecture of VGQ-Vor. The

Quadtree and virtual grid file are same as those shown in Fig.

2. Figure 3(b) shows an example of a Voronoi diagram built

on the occupied regions. The occupancy status and identi-

fiers are same as those shown in Fig. 2. The center points of

the occupied regions are used to build the Voronoi diagram

(in dotted lines). The corresponding Delaunay triangulation

is drawn in solid lines.

Fig. 3 (a) Archtecture of VGQ-Vor; (b) Voronoi diagram

When one empty region is occupied or one occupied re-

gion becomes empty, the maintenance algorithms are applied

to VGQ-Vor. Given one occupied region, it is easy to find its

kNN regions directly by following the connected edges of the

Delaunay triangulation (Property 4 of Section 3 introduced

on the Voronoi diagram). But for a mobile object inside a re-

gion, finding its kNN mobile objects can not be applied in

the same way, because a region is not a point and there is a

set of mobiles that are inside each region. The kNN mobile

objects of a given point can be inside or outside the region

where the point is located. So a new kNN algorithm based

on VGQ-Vor is required. In next subsection, we introduce a

kNN query algorithm based on VGQ-Vor.

4.2 kNN query algorithm on VGQ-Vor

The algorithm is called VGQ-Vor kNN. The idea is to check

mobile objects inside neighboring regions of the region oc-

cupied by the mobile object which issued the query. As in-

troduced above, the neighbor regions can be quickly ob-

tained according to Voronoi diagram (Delaunay triangula-

tion) built on regions (see Fig. 3(b)) and the neighbor regions

are scanned in ascending order of distances between these

regions and the kNN query object. The algorithm gets k can-

didate results from the query region and neighboring regions

first, and then starts the checking process. The process ends

when no more mobile objects with distance closer to the kNN

query object than any of the k candidate results can be found.

Based on the properties of the Voronoi diagram, the search

space of the kNN query can be pruned by just scanning the

regions which are the neighboring regions of the region con-

taining the query.

Before introducing VGQ-Vor kNN in detail, we introduce

some procedures and functions to be used in VGQ-Vor kNN

as follows:

• FillPointListWithRegion(region, pointList) is a proce-

dure to insert the points included in region to pointList.

region is a grid cell of the virtual grid file and pointList

is a linked-list of mobile objects. Each mobile object is

regarded as a point.

• SortPointListByQuery(pointList, query) is a proce-

dure to sort pointList in ascending order of distance to

the query object.

• FillRegionListWithRegion(region, regionList) is a

procedure to fill regionList with neighboring regions of

region on the Voronoi diagram. regionList is a linked-

list of regions.

• PointToRegionDistance(point, region) is a function to

calculate the distance between point and region. The

distance between a point to a region is the shortest dis-

tance from the point to the boundary of the region.

• SortRegionListByQuery(regionList, query) is a pro-

cedure to sort regionList in ascending order of distance

to the query object.

• PointToPointDistance(pointlist, k, query) is a func-

tion to calculate the distance between the kth point of

pointList and the query object.

• GetAndRemoveFirstRegion(regionList) is a function

to return and remove the first region from regionlist.

The related algorithms of the above procedures and func-

tions are straightforward. The pseudo code of VGQ-Vor kNN

is shown in Algorithm 1. There are two exits (Line 10 and

Line 21) in the algorithm. The algorithm comprises two parts.

The first part (Lines 1–10) is to find k candidate points. The

second part (Lines 11–21) checks the k points obtained in

the first part, and find the kNN points of query point q. In

the two parts, the region containing q is scanned first, then

the neighboring regions (perhaps not adjacent to the region)

in the Voronoi diagram are scanned. The critical problem
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is how to scan the relevant regions and terminate the scan.

In the following, we explain the algorithm in detail based

on the example shown in Fig. 4, where q is a kNN query

point and seven points {p1, p2, p3, p4, p5, p6, p7} occupy six

regions {1, 3, 4, 6, 10, 16}.

First we show an 8NN query example wherein the algo-

rithm exits at Line 10. Line 1 sets curRegion to 6 and Line

2 sets regionList to {6}. Since Region 6 contains p4, p4 is

added to pointList (Lines 4–5). The neighbor regions {1, 3,

10, 16} of Region 6 in the Voronoi diagram are added to re-

gionList (Line 6) and regionList is sorted to {3, 1, 10, 16}

(Line 7). Because pointList.length (1) is less than k at Line 8,

the loop (Lines 3–8) is repeats. In the next iteration, curRe-

gion is 3, at the end of this iteration, the content of pointList

is {p4, p3, p2} and the content of regionList is {(1, 10, 4, 16}.

Here, Region 4 is inserted into regionList (Line 6) and it is not

adjacent to Region 6. In the same way, the loop (Lines 3–8)

is iterated until regionList becomes empty (regionList.length

= 0) because there are a total of 7 points and k is 8. The algo-

rithm exits at Line 10.

Second we show a 4NN query example where the algo-

rithm exists at Line 21. Since k is 4, the first loop (Lines 3–

8) is repeated 3 times. The content of pointList is {p4, p3,

p2, p1} and the content of regionList is {10, 4, 16}. Since

pointList.Length (4) is not less than k (4), the second loop

(Lines 11–20) is executed. Line 12 sorts pointList into {p3,

p2, p4, p1}. boundDis is the distance between q and p1 (Line

13), curRegion is Region 10 (Line 14) and newDis is the

distance between q and Region 10 (Line 15). Because the

newDis is less than the boundDis at Line 16, Lines 17–19 are

executed and we repeat the loop once more (Lines 12–20).

At this point, the content of regionList is {4, 16} and the con-

tent of pointList is {p3, p2, p4, p1, p5}. After executing Line

12, the content of pointList is sorted to {p3, p2, p4, p5, p1},

because the distance between q and p5 is less than that be-

tween q and p1. boundDis is the distance between q and p5

(Line 13), curRegion is Region 4 (Line 14) and newDis is the

distance between q and Region 4. In Fig. 4, newDis is larger

than boundDis, so we terminate the loop (Lines 11–19). Line

21 returns the results of the 4NN query {p3, p2, p4, p5}.

Fig. 4 Example of a kNN query based on VGQ-Vor

The update operation of a Voronoi diagram is more costly

than that of a quadtree. So the the time complexity of the

update operation on VGQ-Vor is the same order as that of a

Voronoi diagram. Because the average number of neighbors

of one point in a Voronoi diagram is less than 6 (Property 3 in

Section 3.1). For a VGQ-Vor kNN query, the best time com-

plexity is O(k), the average time complexity is O(6k) and the

worst time complexity is O(n), n is the number of regions.

In order to store the Voronoi diagram, all the edges of the

Delauany triangulation are stored, and it needs extra space.

According to Property 3, the space complexity is O(n).

4.3 Correctness proof of Vor-VGQ kNN algorithm

Based on the properties of Voronoi diagrams, the search

space of a kNN query can be pruned by simple scanning the

regions which are neighbors regions of the region containing

q or the regions having been scanned. As shown in Fig. 4,

the neighbors do not need to be adjacent to the region con-

taining q, it depends on the value of k and data distribution.

The sequence of scanning regions is in ascending order of

their distances to q. Next, we prove that the VGQ-Vor kNN

algorithm finds kNNs correctly.
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Theorem 1 Let P be a set of points, R be a set of points ob-

tained by VGQ-Vor kNN(q, k) on P, boundDis be the distance

from q to the kth point in R. For a point ṕ ∈ P with distance

to q ṕDis, if ṕDis < boundDis, then ṕ must be included in R.

Proof Suppose there exists a point ṕ ∈ P, ṕ � R and

ṕDis < boundDis. If ṕ is not be found by the VGQ-Vor kNN

algorithm, it means the distance between q and the region

containing ṕ ( ṕRegionDis) is larger than or equal to bound-

Dis. Because ṕ is inside the region and ṕDis � ṕRegionDis

is true, so ṕDis � boundDis is true. This is contradictory to

the supposition ṕDis < boundDis. Meaning that ṕ cannot be

missed by VGQ-Vor kNN. �

5 Evaluation

5.1 Environment setup

VGQ-Vor algorithm is evaluated in a simulated environment

and compared with existed works (Bx-tree [19], Bdual-tree

[20]). As introduced in Section 2, a lot of work have been

done on this topic. A benchmark was proposed in [30] for

evaluating moving object indexes comparing the representa-

tive mobile indexes (TPR-tree [15], RUM-tree [26], Bx-tree

[19], STRIPES [17], Bdual-tree [20]) which support mobile

queries on mobile objects. Here we compare VQG-Vor with

Bx-tree and Bual-tree, because they have better performance

than the others. In our evaluation, two data generators are

used, the Spade [30] and Brinkhoff data generators.

All algorithms are implemented in C++ and compiled

with GNU GCC. The source code of the Spade data

generator, Bx-tree, and Bdual-tree can be downloaded

from http://www.comp.nus.edu.sg/˜ spade/releases.html. The

source code of Brinkhoff data generator is downloaded from

http://iapg.jade-hs.de/personen/brinkhoff/generator/.The

hardware platform is an IBM X3500 server with 2 Quad

Core 1 333 MHz CPUs and 16 GB of memory under linux

(Red Hat 4.1.2–42).

Table 1 summarizes the parameters used in the evaluation

which may have a potential impact on our performance. In

the experiments, all parameters use the default values unless

Table 1 Specifications of parameters

Parameter Value range Default value

Number of mobile objects 40k, 60k, 80k, 100k, 150k, 200k 100k

k 5, 10, 15, 20, 25, 30, 40, 50, 60, 10

70, 80, 90, 100

Update/query ratio 1, 10, 100, 1 000, 10 000 100

Regions 100×100, 150×150, 200×200, 250×250

(row×column) 250×250, 300×300, 350×350

otherwise specified.

5.2 Evaluation results

The evaluation has two parts. In the first part, we evaluate

kNN queries on VGQ-Vor with different parameters specified

in Table 1 with data generated by the Brinkhoff data genera-

tor. In the second parts, we compare VGQ-Vor with existing

works with data generated by the Spade data generator.

5.2.1 Evaluation of VGQ-Vor and kNN algorithm

Figure 5 shows the average query time with different numbers

of mobile objects. The number of mobile objects ranges from

40 000 to 200 000. The average query time shows a trend

of light growth with regard to the number of mobile objects.

When the number of mobile objects increases, the number

of mobile objects inside a region becomes larger. So it takes

more time to check the mobile objects inside regions.

Fig. 5 Average query time with different number of mobile objects

Figure 6 shows the average update time with different

numbers of mobile objects. The average update time de-

creases with the increment of mobile objects. The reason is

that the more objects there are, the less the frequency of occu-

pancy status changes. Since the average query time increases

lightly and the average update time decreases with regard to

the number of mobile objects, we feel Vor-VGQ is suitable to

Fig. 6 Average update time with different number of mobile objects
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deal with mobile applications within a reasonable scale, for

example 40k–200k.

Figure 7 shows the average query time with different k val-

ues. The k value ranges from 5 to 30. The average time be-

comes larger with the increment of k value, because more

regions needs to be scanned. The reason that the query time

increases slowly with the increment of k is that the number

of regions to be accessed does not increase linearly with k.

In our case, one region contains about 1.5 points. When k is

30, the results are kept in at least 20 regions. Because each

region has fewer than six neighbors on average, so VGQ-Vor

scans about 120 regions on average, which contains about

360 points. It is very possible that the kNN query results can

be found with these points. When k is smaller than 360 in a

reasonable range, for example (20–50) shown in Fig. 13, the

query time does not change very much.

Fig. 7 Average query time with different k values

Figure 8 shows the throughput of VGQ-Vor with different

ratios of update/query. The ratio of number of update oper-

ations to the number of query operations ranges from 1 to

10 000. The value 1 means there is one position update for

each mobile query. According to the results shown in Fig. 5

and Fig. 6, the performance of query operation is better than

that of update operation. The difference depends on the num-

ber of mobile objects and changing frequency of occupancy

state of a region. The higher the ratio is, the lower the cost

Fig. 8 Throughput of VGQ-Vor with different ratios of update/query

benefit of query operation is. Here, when the ratio is larger

than 1 000, the performance of update is dominant. Since a

query mobile object is retrieved by other mobile objects, so

a query mobile object triggers both query operation and up-

date operation, that is the reason that the throughput increases

with the ratio.

Figure 9 shows the average query time with different space

partitions. Here the number of regions ranges from 100×100

to 350×350. The average query time reduces as the number of

regions becomes large. The reason is that when the number

of mobiles objects remains constant, the larger the number

of regions is, the fewer mobile objects are in each region. It

means the Vor-VGQ kNN checks fewer mobile objects for

each region. So the query time becomes shorter.

Fig. 9 Average query time with different different space partitions

Figure 10 shows the average update time with different

number of space partitions. In contrast to the average query

time, the average update time increases with the increases

in the number of regions. When the number of mobile ob-

jects is fixed, the larger the number of regions is, the higher

the frequency of occupancy state changing is. The extreme

case is that each region corresponds to a single point, in this

case, each movement of a mobile object causes an occupancy

change. This is why the average update time becomes large

when the number of regions becomes large.

Fig. 10 Average update time with different space partitions
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5.2.2 Comparison with existing work

We compare VGQ-Vor with Bx-tree [19] and Bdual-tree [20].

Bdual-tree is an extension of Bx-tree, which utilizes veloc-

ity information to obtain better performance than Bdual-tree.

Here Spade data generator [30] is used to create test data.

There are two reasons to use Spade data generator instead of

Brinkoff generator [32]. One is that we want to test VGQ-Vor

with different data sets. The second reason is that the data

format requirements of Bx-tree and Bdual-tree are special,

the Brinkoff data generator cannot be used directly. In [30],

Bx-tree and Bdual-tree are compared with data created by the

Spade data generator. In most cases, Bx-tree and Bdual-tree

outperform the other index structures.

Figure 11 and Fig. 12 show the average query time and up-

date time with different number of mobile objects. Just as in

[30], Bdual-tree outperforms Bx-tree on query operation, and

Bx-tree outperforms Bdual-tree on update operation. For both

query operation and update operation, VGQ-Vor outperforms

Bx-tree and Bdual-tree in most of cases. The main reason is

the strategy to build mobile object index. VGQ-Vor indexes

regions occupied by the mobile objects, so the number of up-

date operations can be reduced and the mobile objects can

even move from one region to another region. In Fig. 12, the

average update time increases with the number of mobiles

objects. It seems to be contrary to the time reported in Fig. 6,

the reason is that in the test of Fig. 12, the number of queries

is fixed (same source codes and setting as [30]), the ratio of

the number of update operations to the number of query oper-

ations is not fixed. The ratio increases from 40:1 to 200:1, this

means the number of position changes increases, and there-

fore so do the number of update operations on the Voronoi

diagram.

Fig. 11 Average query time with different number of mobile objects

Figure 13 shows the average query time with regards to

different k values for kNN queries. Here, the k ranges from 1

to 100. Similar to Fig. 11, Bdual-tree outperforms Bx-tree,

Fig. 12 Average update time with different number of mobile objects

and VGQ-Vor outperforms Bdual-tree and Bx-tree.

Figure 14 shows the throughput results. The ratio of the

number of update operations to the number of query opera-

tions ranges from 1 to 10 000. Here, the changing trends of

Bx-tree and Bdual-tree are same as those evaluated in [30].

When the ratio is 1, it means the number of update operations

is the same as that of query operation, VGQ-Vor outperforms

Bx-tree and Bdual-tree by three orders of magnitude in this

case. The reason why the performance of Bx-tree and Bdual-

tree increases with the increment of the ratio is that they use

B-tree. The increment of the ratio means the update operation

becomes dominant. Because the cost of the update operation

is much less than that of a range query operation on B-tree,

Fig. 13 Average query time with regard to different k values for kNN
queries

Fig. 14 Throughput with different ratios of update/query
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so the throughput increases when the ratio increases. The

throughput of VGQ-Vor mainly depends on the performance

of the update operation of Voronoi diagram.

6 Conclusions and future work

Spatial indexes for mobile objects are complicated because

the locations of mobile objects are changing frequently. For

the problem of mobile kNN queries, we have proposed an in-

dex structure called VGQ-Vor, which incorporates Voronoi

diagrams into a VGQ, designed a kNN query algorithm

VGQ-Vor kNN, and provided a correctness proof of the al-

gorithm. The main characteristics of VGQ-Vor are that a

Voronoi diagram is built on the regions occupied by mobile

objects instead of the mobile object themselves in order to re-

duce the number of update operations on the index structure

and improve the efficiency of mobile kNN queries. We eval-

uated VGQ-Vor and the kNN algorithm in two data sets and

compared Bx-tree and Bdual-tree with VGQ-Vor. The results

show that the query performance of VGQ-Vor has good scal-

ability with regards to the number of objects and the update

performance of VGQ-Vor decreases with the increment of the

number of mobile objects if the ratio of number of update op-

erations to the number query operations is fixed. In the most

cases, VGQ-Vor outperforms Bx-tree and Bdual-tree by one

to three orders of magnitude.

In the future, we will focus on: 1) finding the best space

partition to improve the throughput based on the cost tradeoff

between query operation and update operation; 2) to improve

the performance of update operation by optimizing main-

tainence algorithms on Voronoi diagram.
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