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Abstract The existing sharable file searching methods have at least one of the
following disadvantages: (1) they are applicable only to certain topology patterns,
(2) suffer single point failure, or (3) incur prohibitive maintenance cost. These draw-
backs prevent their effective application in unstructured Peer-to-peer (P2P) systems
(where the system topologies are changed time to time due to peers’ frequently enter-
ing and leaving the systems), despite the considerable success of sharing file search
in conventional peer-to-peer systems. Motivated by this, we develop several fully dy-
namic algorithms for searching sharing files in unstructured peer to peer systems. Our
solutions can handle any topology pattern with small search time and computational
overhead. We also present an in-depth analysis that provides valuable insight into the
characteristics of alternative effective search strategies and leads to precision guar-
antees. Extensive experiments validate our theoretical findings and demonstrate the
efficiency of our techniques in practice.
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1 Introduction

Peer-to-peer (P2P) systems have become a popular medium to share a huge amount of
data in that they distribute the main cost of sharing data across the peers in the system
[5]; thus, enabling applications to scale without the need for powerful and expensive
servers [9]. With the explosive growth of the World Wide Web (WWW), the amount
of files sharable via networks has been dramatically increased and is still increasing
at a high speed [6]. The main concern of the P2P system user-base has been moved
from what kind of files is sharable on the Internet to how to find desirable files on the
Internet. Efficient search is therefore of extremely importance to the popularization
of P2P systems [3, 10].

Currently, all search on the Internet and large networks is carried out by dedicated
and centralized search engines such as Yahoo and Google, and most Internet search
engines maintain a very large centralized database which is updated by crawling the
Internet and indexing web sites [7]. Developing such systems tends to be extremely
expensive in terms of hardware, bandwidth requirements, and also the specialized
algorithms and software that are necessary. When a query is received, the database
replies with a list of web sites that are deemed to be in some way related to the original
query [8]. This kind of indexing works is unsuitable for large dynamic P2P systems
in spite of the fact that it works well on web sites that contain static information,
as the search engine may not visit the web site regularly enough to be able to index
new content. Some other works focus on data placement to improve search efficiency
[6–8], which we will not take into concern in this paper.

We are interested in solutions that incur small computational overhead for process-
ing each incoming query, as opposed to methods (e.g., the random walk reviewed in
the next section) that have low amortized computational cost but poor worst-cast
performance on response time. As elaborated in Sect. 2, the existing searching algo-
rithms have at least one of the following disadvantages: (1) they rely on certain as-
sumptions on client queries (e.g., the query has been performed before and its horizon
does not change much), (2) they require considerable redundancy (e.g., replicated su-
per peers for single point failure), or (3) they incur prohibitive maintenance cost (e.g.,
they must periodically scan the entire system by flooding). These problems prevent
their effective deployment on P2P systems.

In this paper, we develop searching algorithms that are fully dynamic (supporting
any sequence of peers’ joining and leaving), efficient (processing each query with
very low computational overhead and response latency), and harmonious (produc-
ing answers for client queries with consideration on alleviating traffic congestions).
Specifically, for client request, our methods significantly improve the well-known
flooding and random walk approaches in the presence of intensive dynamics and
heavy workloads. For system performance, we propose the first search algorithm that
not only makes inference on the known traffic information, but also balances the traf-
fic load on each link in the system (previous solutions discuss only the known traffic
information). In addition, we present an in-depth analysis that provides valuable in-
sight into the characteristics of alternative solutions. Extensive experiments validate
our theoretical findings and confirm the efficiency of the proposed techniques in prac-
tice.
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The rest of this paper is organized as follows. Section 2 reviews previous work
that is directly related to ours. Section 3 and Sect. 4 present algorithms for searching
in conventional systems, and analyze their effectiveness on client queries. Section
5 focuses on searching on a hierarchical system structure. Section 6 contains the
experimental results, and Sect. 7 summarizes our work and concludes this paper.

2 Related work

2.1 Breadth-first-search

Breadth-first search (BFS) is a search algorithm that begins at the root node and
explores all the neighboring nodes. Then for each of those nearest nodes, it explores
their unexplored neighbor nodes, and so on, until it finds the goal.

BFS is an uninformed search method that aims to expand and examine all nodes of
a graph systematically in search of a solution. In other words, it exhaustively searches
the entire graph without considering the goal until it finds it. It does not use a heuris-
tic.

From the standpoint of the algorithm, all child nodes obtained by expanding a node
are added to a FIFO queue. In typical implementations, nodes that have not yet been
examined for their neighbors are placed in some container (such as a queue or linked
list) called “open” and then once examined are placed in the container “closed.” The
algorithm can be mainly described as follows: First, put the ending node (the root
node) in the queue. Then pull a node from the beginning of the queue and examine
it. If the searched element is found in this node, quit the search and return a result.
Otherwise, push all the (so-far-unexamined) successors (the direct child nodes) of
this node into the end of the queue, if there are any. If the queue is empty, every
node on the graph has been examined—quit the search and return “not found.” This
process will continue until all nodes are checked. Since all nodes discovered so far
have to be saved, the space complexity of breadth-first search is O(|V | + |E|) where
|V | is the number of nodes and |E| the number of edges in the graph. Note: another
way of saying this is that it is O(BM) where B is the maximum branching factor and
M is the maximum path length of the tree. This immense demand for space is the
reason why breadth-first search is impractical for larger problems.

If there is a solution breadth-first search will find it regardless of the kind of graph.
However, if the graph is infinite and there is no solution breadth-first search will
diverge. In the worst case, breadth-first search has to consider all paths to all possible
nodes the time complexity of breadth-first search is O(|V | + |E|) where |V | is the
number of nodes and |E| the number of edges in the graph. The best case of this
search is O(1). It occurs when the node is found at first time.

For unit-step cost, breadth-first search is optimal. In general, breadth-first search is
not optimal since it always returns the result with the fewest edges between the start
node and the goal node. If the graph is a weighted graph and, therefore, has costs
associated with each step, a goal next to the start does not have to be the cheapest
goal available. This problem is solved by improving breadth-first search to uniform-
cost search which considers the path costs. Nevertheless, if the graph is not weighted
and, therefore, all step costs are equal, breadth-first search will find the nearest and
the best solution.
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2.2 Depth-first-search

Depth-first search (DFS) is an algorithm for traversing or searching a tree, tree struc-
ture, or graph. Intuitively, one starts at the root (selecting some node as the root in the
graph case) and explores as far as possible along each branch before backtracking.

Formally, DFS is an uninformed search that progresses by expanding the first child
node of the search tree that appears, and thus going deeper and deeper until a goal
node is found, or until it hits a node that has no children. Then the search backtracks,
returning to the most recent node it had not finished exploring. In a nonrecursive
implementation, all freshly expanded nodes are added to a LIFO stack for exploration.

Space complexity of DFS is much lower than BFS (breadth-first search). It also
lends itself much better to heuristic methods of choosing a likely-looking branch.
Time complexity of both algorithms are proportional to the number of vertices plus
the number of edges in the graphs they traverse (O(|V | + |E|)).

When searching large graphs that cannot be fully contained in memory, DFS suf-
fers from nontermination when the length of a path in the search tree is infinite. The
simple solution of “remember which nodes I have already seen” does not always work
because there can be insufficient memory. This can be solved by maintaining an in-
creasing limit on the depth of the tree, which is called iterative deepening depth-first
search.

3 Directed depth-first-search

In this section, we present the DDFS algorithm, an extension of Sequence Search
that not only makes reference on known traffic information but also balances the
traffic load in the system. Section 3.1 discusses the algorithmic details of DDFS and
Sect. 3.2 analyzes its characteristics.

3.1 Algorithm

Let P = {vi, i = 1, . . . , n} be a set of nodes in multidimensional space. A sharable
file query retrieves the optimal route (e.g., the shortest or the fastest) in a segment
qij = [vi, vj ]. In particular, the result contains a set of 〈vk,Ovk

〉 tuples, where vk

(for results) is a point of P , and Ovk
is the order of vk in the route. Thus, vi ∈ P

maintains an array vmi with size Mi , whose value is determined by the amount of
available memory. At any time, only a subset of valid files in vmi belongs to the
current sharable file set. Each element vmi[j ] (1 ≤ j ≤ Mi) is associated with a tag
vmi[j ].valid that equals TRUE if vmi[j ] is valid, and FALSE, otherwise. Initially,
every vmi.valid equals FALSE, indicating an empty sharable file set. Specifically, for
each share-command (let t be the file being shared), a random integer x is generated
in the range [1, n.si], where n.si is the total number of share processed on vi so far. If
x ≤ Mi , t is placed at the xth position vmi[x] of vmi , and set vmi[x].valid to TRUE.
Otherwise, (x > M), no further action is taken and t is ignored. To handle an unshare-
command {unS, id}, on the other hand, it will be checked whether the tuple with the
requested id belongs to the sharable file set, namely, whether there exists a number
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x (1 ≤ x ≤ Mi) such that the id of vmi[x] equals id, and vmi[x].valid = TRUE.
If s is found, unsharing is completed by simply modifying vmi[x].valid to FALSE,
without affecting the other elements in vmi . In order to efficiently retrieve files with
particular ids, an B-tree index [2, 12] I (vsi) on the file ids is created for each vi ∈ P

(i = 1, . . . , n). The size of I (vsi) is 1/d of the occupied space where d is the number
of attributes of a tuple, since I (vsi) contains only the ids of the tuples.

3.2 Analysis

In a mobile agent-based P2P system, there will be a number of mobile agents run-
ning in the system which will certainly consume a certain amount of computational
resource on each peer in the system. The purpose of using the LNSS is to help travel-
ing SeA select neighboring peers to move to. The main idea of the LNSS is that when
a SeA makes its selection, it should consider about not only the traffic information
collected by InAs and OuAs, but also the load balance of the system.

Let pij be the probability that a SeA on peer νi selects the peer νj from its neigh-
boring set NB(i) to move. Suppose that originally, each peer in the P2P system knows
nothing about the traffic situation of the system. Therefore, for a SeA on peer νi , every
peer νj in NB(i) has an equal probability pij = 1/|NB(i)| to be selected as the target
to move to. Obviously, this probability distribution is unbiased to every peer in NB(i)

and can mostly balance the traffic load in the current situation. This uniform probabil-
ity distribution of agents’ neighboring peer selection will be updated with time going.
After a certain period, the probability distribution of neighboring peers to be selected
by a mobile agent as its target will be affected by collected traffic information. The
new probability distribution should satisfy two constraints:

1. It makes inference on all the known traffic information.
2. It is unbiased. That is, the probability should mostly balance the traffic cost on

each link.

In the following, we will mathematically model and solve the probability distribu-
tion that both makes inference on the known information and approximates to the
unbiased (uniform) distribution.

Objective 1: making inference on known information

The effect of the known traffic information on an agent’s migrating decision making
is expressed by the function fji(x) which is defined as the traffic cost of an agent
moving from νj to νi where i ∈ NB(j). Thus, the maximum traffic cost function,

f
(j)
max(x), of an agent moving out from νj can be defined as

f
(j)
max(x) ≡ max

i∈NB(j)
{fji(x)}, (1)

which is also decided by collected traffic information. Therefore, the traffic cost bal-
ance on each link can be mathematically modeled by minimizing the maximum cost
to neighboring peers which is a min-max problem as follows:

min
x∈Rn

f
(j)
max(x). (2)
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Without lose of generality, we assume that functions fji(i ∈ NB(j)) are differen-

tiable. Obviously, the maximum value function f
(j)
max(x) is an nondifferentiable func-

tion.
Let us look at the following Lagrange function:

�j (x,pj ) =
∑

i∈NB(j)

pjifji(x) ∀x ∈ Rn, pj ∈ �j, (3)

where pj = (pj1,pj2, . . . , pj,|NB(j)|)T is the vector of Lagrange multiplier, �j is a
simplex set defined as follows:

�j ≡
{
pj ∈ R|NB(j)|

∣∣∣∣
∑

i∈NB(j)

pji = 1,pji ≥ 0

}
. (4)

It is easy to see that no matter which value the multiplier vector pj is chosen, the
value of the Lagrange function �j (x,pj ) is less than or equal to the maximum value

function f
(j)
max(x), i.e.,

�j (x,pj ) ≤ f
(j)
max(x). (5)

From the definition of Lagrange function �j (x,pj ), we have the following lemma.

Lemma 1 The maximum value function f
(j)
max(x), defined in (1), can be expressed as

follows:

f
(j)
max(x) = sup

pj ∈�j

�j (x,pj ) = max
pj ∈�j

�j (x,pj ). (6)

Proof ∀x ∈ Rn and pj ∈ �j , it is easy to see that

∑

i∈NB(j)

pjifji(x) ≤ f
(j)
max(x). (7)

Therefore, we have

sup
pj ∈�j

�j (x,pj ) ≤ f
(j)
max(x). (8)

Let I
(j)
max(x) be the indicator set of element functions fji(x)(i ∈ NB(j)) that is

equal to the maximum value function f
(j)
max at point x, i.e.,

I
(j)
max(x) := {k|fjk(x) = f

(j)
max(x)}. (9)

If k ∈ I
(j)
max(x), then ∀x ∈ Rn and pj ∈ �j , we have

sup
pj ∈�j

�j (x,pj ) ≥
∑

i∈NB(j)

p̄j ifji(x) = f
(j)
max(x)b, (10)
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where

p̄j i =
{

1, i = k;
0, i 	= k.

(11)

From (8) and (10), the first equality in (6) holds. Consider that �j is a tight set and
�j (x,pj ) is a continuous function on pj , the second equality in (6) also holds. �

From Lemma 1, it can be seen that since the Lagrange function �j (x,pj ) is a

linear function on variable pj , (6) has multisolutions. Therefore, function f
(j)
max(x)

defined in (1) is a nondifferentiable function.
From Lemma 1, it can also be seen that since the multiplier vector pj is limited

inside the simplex �j , the Lagrange function �j (x,pj ) can be interpreted as a con-
vex combination of all element functions fji(x) (i ∈ NB(j)) and multipliers pji are
the combination coefficients. Therefore, (2) can be solved by solving an equivalent
problem of finding a set of value of pji, (i ∈ NB(j)) such that the Lagrange func-
tion �j (x,pj ) approximates to the maximum value function, i.e., to find the optimal
combination p̂j from all combinations that satisfies (4) such that (5) becomes the
following equality:

�j (x, p̂j ) =
∑

i∈NB(j)

p̂j ifji(x) = f
(j)
max(x). (12)

On the other hand, if the Lagrange multipliers pji (i ∈ NB(j)), also called the
combination coefficients, is endued with a probability sense, i.e., describing them as
the corresponding probabilities such that the element function fji(x) becomes the

maximum value function f
(j)
max(x), then from the concept of probability, (2) can be

transferred into a maximized problem of finding the optimal probability distribution
that satisfies:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max
pj ∈R|NB(j)|

�j (x,pj )

s.t.
∑

i∈NB(j)

pji = 1;

pji ≥ 0, i ∈ NB(j).

(13)

Objective 2: unbiased selection

Suppose that there are a set of possible peers in NB(i) whose probabilities to be
selected are pi1,pi2, . . . , pin. These probabilities are known but that is all we know
concerning which peer to be selected. Can we find a measure of how much “choice”
is involved in the selection of the peer or of how uncertain it is of the outcome?
It is proved in [11] that the “entropy” function H = −k

∑n
j=1 pij lnpij is the only

measure that satisfies the following properties:

1. H is continuous on pij .
2. If all pij are equal, i.e., pij = 1/n, then H is a monotonically increasing function

of n.
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3. If a choice is broken down into two successive choices, the original H is the
weighted sum of the individual values of H .

Here, k is a positive constant decided by measurement units. Usually, k is set to be 1.
“Entropy” is a measurement of the degree of uncertainty, and the greater the entropy’s
value, the less known information.

In many probabilistic executions, the probability distribution pij cannot foreseen;
thus, the entropy cannot be calculated. In [4], Jaynes claimed “in making inference
on the basis of partial information we must use that probability distribution which has
maximum entropy subject to whatever is known. This is the only unbiased assignment
we can make; to use any other would amount to arbitrary assumption of information
which by hypothesis we do not have.” This is the famous “maximum entropy theory.”
The maximum entropy theory can be mathematically expressed as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
pi∈R|NB(i)|

H(pij ) = −
∑

j∈NB(i)

pij lnpij

s.t.
∑

j∈NB(i)

pij = 1;

pij ≥ 0, j ∈ NB(i).

(14)

where pi = {pij , j ∈ NB(i)}T .
In [13], Templeman et al. applied the maximum entropy theory to solve optimiza-

tion problems in which the objective function is unanimously approximated by a
smooth one. By solving the resulting problem, an approximate solution of the origi-
nal problem can be obtained. The purpose of deploying maximum entropy theory in
agents’ search process in our model is to find a probability distribution that both satis-
fies the known routing information and mostly approximate to the unbiased (uniform)
distribution.

Multiobjective problem

According to the analysis above, there are two objective functions to be maximized:

1. To maximize the Lagrange function through selecting the optimal multiplier vec-
tor;

2. To maximize the entropy function by finding an unbiased probability distribution.

Therefore, the problem to be solved is a multiobjective problem as follows:

max
pj ∈R|NB(j)|

{
�j (x,pj ),H(pj )

}
(15)

which can be transformed into a single-objective problem by the weighting coefficient
method as follows:

max
pj

L
(j)
θ (x,pj ) =

∑

i∈NB(j)

�j (x,pj ) + 1

θ
H(pj ), (16)
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where θ ≥ 0 is a weighting coefficient. Obviously, when θ is small, the second item
of the objective function L

(j)
θ (x,pj ) is dominative. Then the gained probability dis-

tribution mainly reflects the requirement of unbiased distribution. With the increase
of θ ’s value, the effect of the first item increases; thus, maximizing the Lagrange
function is the dominative objective.

Unfortunate, it is hard to get the solution of function L
(j)
θ (x,pj ) as it is multiple-

objective and nondifferentiable.
By defining a function F

(j)
θ (x) as

F
(j)
θ (x) = sup

pj ∈�j

L
(j)
θ (x,pj ), (17)

we have the following theorem.

Theorem 1 The function F
(j)
θ (x) defined by (17) is differentiable and uniformly ap-

proximate to function f
(j)
max(x) on the whole space Rn.

Since function F
(j)
θ (x) uniformly converges to the objective function f

(j)
max(x),

the optimal solution, p̂j (x), of (16) can be easily derived from applying the K − T

condition as follows:

p̂j i(x) = exp{θfji(x)}∑
l∈NB(j) exp{θfjl(x)} , i ∈ NB(j). (18)

where pji is the probability that an agent on peer νi migrates to peer νj , θ ≥ 0 is
a weight coefficient defined according to the effect of the known traffic state of the
system. This probability is the only unbiased probability distribution for a mobile
agent on peer νi to select a neighboring peer from NB(i) and move to which makes
inference on all known traffic information.

Substitute the analytical solution p̂j (x) of the multiplier pj in the objective func-
tion of (17) and we have

F̂
(j)
θ (x) = L

(j)
θ

(
x, p̂j (x)

)

= 1

θ
ln

{ ∑

i∈NB(j)

exp[θfji(x)]
}
,

(19)

which is the maximum traffic cost for an agent migrating from peer νj to a neighbor-
ing peer.

4 Controlled flooding

In this section, we develop an alternative searching approach CF, which is motivated
by the flooding reviewed in Sect. 2, but improves its updating performance consider-
ably.
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This algorithm using mobile agents to update available data information and traffic
information inside a peer group. Each peer periodically generates an inner agent (InA)
and dispatches the InA to other peers in the peer group (or groups when the peer
belongs to multiple peer groups) where it resides. The peer is known as the “home
peer (Hp)” for the InA and all future replicas of the InA. The InA has the newest data
information of its Hp and collects the newest traffic information during its journey,
including the bandwidth of a link, the transmission delay of a link, etc. Without losses
of generality, we assume that there are n items each of which is denoted by a random
variable xi (i = 1,2, . . . , n), x = (x1, x2, . . . , xn)

T is a column vector with n entries,
and fji(x) is the traffic cost function from peer νj to νi .

The working mechanism of the InA is as follows: Before moving out from the
Hp, the InA broadcasts replicas to each group mate that has a direct link to its Hp.
Once an InA or one of its replica arrives at a peer, the InA updates the local resource
information by the data information of its Hp, collects local traffic information x =
(x1, x2, . . . , xn)

T , marks the peer “updated,” and the link from which it enters the
peer as “upstream” link. The InA randomly selects one of the links (if any) other
than the upstream link and moves to the peer directly connected to the link. Before
moving to the selected peer, the InA spawns one InA for each of the links except the
upstream link and the link taken by itself, and injects the newly spawned InAs into
those peers directly connected to these links. If two InAs from the same Hp arrive at
one single peer, then the second InA terminates itself. This process continues until
the InA arrives at a peer being “updated” or finds the peer it updated has no other link
except the upstream link. Then the InA moves along the upstream links back to the
Hp, updates the traffic information on the peers along its path, reports the updating
results to the Hp, and terminates itself. If an InA reaches a peer updated by other
InA from the same Hp before it updates any peer, it terminates itself immediately.
The self-terminating mechanism keeps the information up to date, and prevents peers
that form cycles from having to deal repeatedly with InAs from the same Hp. In this
way, the InAs spawn themselves and flood the peer group as fast as possible, and the
flooding is controlled by checking the status of the peers. When an Hp receives the
report of an InA, it updates its routing table and stores the updating information in
its resource database. To determine whether all group mates have been updated, the
Hp checks the status of each group mate in its database to see if there is any group
mate that has not been updated by an InA. If no, the complete updating process is
finished. To do this, the Hp need not check all the group mates. A counter can be
maintained to count the number of peers in the database that has not been updated
by an InA. The Hp only needs to update the counter each time when it receives new
reports. Thus, each peer in the peer group maintains current resource information and
routing information of the peer group/groups.

5 Hybrid search methods on hierarchical system structure

Based on the techniques developed in the previous sections, we proceed to discuss
the following.
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Section 5.1 presents a hierarchical system structure that solves the problem by
reducing the size of the system. Then Sect. 5.2 proposes a hybrid search approach
with considerably less response time and computation overhead.

5.1 Hierarchical system structure

P2P systems are overlay networks built on top of the Internet where nodes in the over-
lay are connected by virtual or logical links in the underlying network and maintain
information abut a set of other nodes in the P2P layer. They are dynamic in nature in
that nodes/peers in a P2P system join or leave frequently. These peers form a virtual
overlay network on top of the Internet. Each link in a P2P overlay corresponds to a
sequence of physical links in the underlying network.

Most existing search techniques are forwarding-based. Starting with the request-
ing peers, a query is forwarded (or routed) peer to peer until the peer which has the
desired data (or a pointer to the desired data) is reached. To forward query messages,
each peer must keep information about some other peers called neighbors. The in-
formation of these neighbors constitutes the routing table of a peer. With the current
size of P2P systems and the rate at which it is growing, the information updating of
a P2P system becomes more and more difficult. There is a need for designing new
algorithms for search in P2P systems.

In this paper, we focus on the search method in wide distributed large scale P2P
systems where hierarchical organization is adopted. Let G = {V,E} be a graph cor-
responding to a fixed system, where V = {ν1, ν2, . . .} is the set of vertices (hosts) and
E is the set of edges. We assume that the topology of a system is a connected graph
in order to ensure that communication is able to be made between any two hosts.
The system in our model is organized into peer groups. Each peer group consists of
a certain number of peers with each peer inside the peer group equally behaving as
a representation peer connected to other peers in the P2P system. The logical sys-
tem infrastructure is defined by the collection of peer groups which are connected by
an arbitrary topology. Inside this infrastructure, all the peer groups are at the same
hierarchical level and “flat” routing is performed among them. In this way, the com-
putational complexity of the routing problem is much reduced, while the complexity
of the design and management of the routing protocol is much increased.

A peer group may consist of multiple peers or only one single peer. Peers in the
same peer group are “group mates” to each other. For a specified peer νi , nb(i) is the
set of group mates in the peer group of νi and |nb(i)| is the number of group mates in
nb(i). The size of a peer group is decided by the connectivity of the group topology.
Meanwhile, one single peer may belong to several peer groups so that it may have
different group mates comparing with any of its group mates. Note that a peer in a
peer group is also a node in the P2P system. If there is a direct link between two
peers that belong to different peer groups, we call these two peers are “neighboring
peers.” Let NB(i) denote the set of neighboring peers of νi and |NB(i)| is the number
of peers in NB(i).
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5.2 Hierarchical search approach

The desired features of search algorithms in P2P systems include high-quality query
results, minimal routing state maintained per peer, high routing efficiency, load bal-
ance, resilience to peer failures, and support of complex queries.

For efficiently addressing these features, we propose a model that applies hier-
archical search approach. To collect and disseminate routing information in differ-
ent territories, there are three kinds of agents employed in our model, namely inner
agents, outer agents, and search agents. For each kind of agents, there is a special
search algorithm that takes advantage of the specialty of their activity territory.

This algorithm uses mobile agents to update data and traffic information among
peer groups. Each peer periodically generates an outer agent (OuA) and sends the
OuA to neighboring peers outside its peer group/groups. The peer is known as the
“source peer (Sp)” for the OuA and all future replicas of the OuA. The OuA has
the newest data information of its Sp and collects the newest traffic information
between the Sp and the neighboring peers, including the bandwidth of a link, the
transmission delay of a link, etc. Similar to that in a controlled flooding algorithm,
there are n items relatively each of which is a random variable xi (i = 1,2, . . . , n),
x = (x1, x2, . . . , xn)

T is a column vector with n entries, and fji(x) is the traffic cost
function from peer νj to νi . Before moving out from the Sp, the OuA broadcasts repli-
cas to each neighboring peer that has a direct link to its Sp. The OuA or any of its
replicas collects local traffic information x = (x1, x2, . . . , xn)

T of the link it passes,
updates the local data information by the data information of its Sp, and returns back
to the Sp with the data information of the neighboring peer. The Sp updates local data
information and traffic information by the information collected by the OuAs. Thus,
a peer in one peer group has the data information of its group mates, its neighboring
peers, and group mates of its neighboring peers.

6 Experimental studies

The goal of our experimental studies was to gain a better understanding of the work-
ing mechanisms and performance of our algorithm. We used the open simulator
OMNet++ [14] as our simulation platform which contains several models for un-
structured peer-to-peer protocols. Peers are organized in an overlay network. Each
peer has a set of group mates and a set of neighboring peers. Links are directed and
traffic can flow in both directions on the links. We consider a peer-to-peer network
made of 10,000 peers, which corresponds to a middle-size P2P network. The number
of links of each peer is between 3 to 20. The links between neighboring peers are
chosen randomly, and links between group mates adapt dynamically, which indicates
the join/leave of a peer. The link bandwidth is 6 Mbits/sec and the propagation delay
is from 2 to 5 millisecond. The size of data packet is 512 bytes and the size of an
agent is 48 bytes. Traffic is defined in terms of open sessions. A session is defined
between two nodes and it remains active until a certain amount of data are trans-
ferred at a given rate. Each session is characterized completely by session size, the
generation rate of sessions (GRS), and the sending rate of the agents (SRA). In the
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Fig. 1 The relationship
between the number of hops and
the size of peer groups

simulation, session size is set to be 2 Mbits. Originally, 1,500 peers are randomly
chosen to construct peer groups. These chosen peers cannot be group mates to each
other. If an unchosen peer could be reached in 3 hops by a chosen peer, it will join
the chosen peer’s group. Each peer has 3 tables to record its own data, group mates
data, and neighboring peers data, respectively. One hundred keywords and 100,000
distinct files are created and each of files are assigned exactly one keyword following
uniform distribution. Each peer is assigned uniformly at random a storage to hold 10
to 1000 files. After peer groups have been established, inner agents and outer agents
are sent out to collect and disseminate data information. We implemented our al-
gorithm (OA) together with OSPF [1] and algorithm in [15] (shorted by “Ant”) to
evaluate and compare the efficiency of these three algorithms.

In each search round of our simulation, 1,000 randomly selected peers issue re-
quests. To generate a request/search agent, a peer first selects one keyword and selects
a file by that keyword that it does not hold. The peer then issues a request for that file.
Each request is assigned a hop limitation (HL). When a peer receives a request, it
decreases the HL value and propagates the request further. The number of hops that
a request need to reach the first peer that has the requested file is a measure of the
response time. It is helpful for choosing suitable HL values to achieve a good success
rate without overloading the network. We compute the average number of hops over
all successful requests issued during each round. Figure 1 shows the relationship be-
tween the number of hops and the size of peer groups. From the figure, we can see
that with the size of peer groups increase, the needed number of hops decreases. We
can also see that when the size of peer group reaches a certain scope, the needed
number of hops decreases slow when the size of peer groups increases.

Two parameters are used in our comparison, throughput and search time. The
throughput is defined as the number of requests/search agents forwarded per sec-
ond, which shows the delivering ability of the algorithms. The search time is defined
as the time interval from the creation of a request/search agent to its arrival at the
destination. It indicates the quality of paths selecting.

Originally, there is a normal load of GRS = 2.7 second and SRA = 0.3 second.
From 500 seconds to 1,000 seconds, all peers issued requests of a selected file with
SRA = 0.05 second. Figure 2 and Fig. 3 show the comparison results of the average
throughput and the average search time between OSPF, Ant, and OA.

It can be seen that both OA and Ant are able to cope with the transient overload.
OSPF shows the poorest performance. It can also be seen that the average search
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Fig. 2 The average throughput
when all peers issued requests of
a selected file from 500 second
to 1000 second

Fig. 3 The average search time
when all peers issued requests of
a selected file from 500 second
to 1000 second

time for OA is less than 0.1 second as compared to 0.5 second for Ant. Again, OSPF
shows the poorest performance.

We also compared the success rate, i.e., the ratio of number of real results to the
number of total results, among these three algorithms which states the proportion of
agents arrived at destinations correctly. Table 1 shows the results of the success rate.
From the simulation results, we can see that OA achieves a similar performance to
Ant, which is much better than OSPF.

To check the fault-tolerant ability of OA, we use the Japanese Internet Backbone
(NTTNET) as the simulation framework (see Fig. 4). It is a 57 node, 162 bidirectional
links network.

Figure 5 and Fig. 6 show the results of the comparison between OA and Ant in
which node 21 crashed at 300 second, node 40 crashed at 500 second, and both of
them were repaired at 800 second. Here, GRS = 4.7 second and SRA = 0.05. The
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Table 1 The comparison of
success rate Parameters Success rate (%)

GRS(Sec) SRA(Sec) OSPF Ant OA

4.5 0.5 83.21 96.85 99.99

2.5 0.5 82.46 97.31 99.99

1.5 0.5 80.13 97.24 99.99

2.5 0.05 83.94 95.94 99.68

Fig. 4 The Japanese Backbone (NTTNET)

purpose of this experiment was to analyze the fault tolerant behavior of OA. The GRS
and SRA is selected to ensure that no agents are terminated because of the congestion.
Based on our experimental results, OA is able to deliver 97% of agents as compared
to 89% by Ant. From the figure, we can see that OA has a superior throughput and
lesser search time. But once node 40 crashes, the search time of OA increases because
of higher load at node 43. From Fig. 4, it is obvious that the only path to the upper
part of the network is via node 43 once node 40 crashed. Since OA is able to deliver
more agents, the queue length at node 43 increased and this led to relatively longer
search time as compared to Ant. On the contrary, although node 21 is critical, but in
case of its crash still multiple paths exist to the middle and upper part of the topology.

OA does not need any global information such as the structure of the topology
and cost of links among peers. It cannot only balance the local traffic flow, but also
enhance fault tolerance. Compared to Ant, this performance enhancement is achieved
with a little more traffic burden incurred by the inner agents inside peer groups, but
this overhead is only a small segment to the total traffic in the network.
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Fig. 5 The average throughput
node 21 is down at 300 and node
40 is down at 500 and both
repaired at 800

Fig. 6 The average search time
when node 21 is down at 300
and node 40 is down at 500 and
both repaired at 800

7 Conclusion

In this paper, we proposed a mobile agent-based execution model for use to search
in peer-to-peer networks in which the traffic congestion is considered. Our model di-
vided a P2P system into peer groups. Peers in a peer group act equally so that the total
system performance will not be affected when a peer fails or leaves. Thus, the fault-
tolerant ability is greatly enhanced. There are three kinds of agents employed in our
models: inner agents, outer agents, and search agents. Inner agents respond to infor-
mation updating inside a peer group by using the controlled flooding algorithm, outer
agents respond to information updating among peer groups by the one-step flooding
algorithm, and search agents respond to locate queried data in the system by using
of the directed k-walker random walk algorithm. The traffic load is greatly decreased
compared to the flooding algorithms and the possibility that a peer be neglected is
greatly decreased compared to the random walk algorithm. A traffic cost function is
defined for each link based on known traffic information of the network and a proba-
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bility distribution is given by the local-optimal neighboring search strategy for search
agents selecting a neighboring node and move to. We proved that this probability
distribution is the only unbiased distribution that only makes inference on the known
traffic information but also balances the traffic load. Extensive experiments verified
our analytical results and showed that our model results in significant performance
improvements compared to existing models.
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