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SUMMARY In sentiment classification, conventional supervised ap-

proaches heavily rely on a large amount of linguistic resources, which are

costly to obtain for under-resourced languages. To overcome this scarce re-

source problem, there exist several methods that exploit graph-based semi-

supervised learning (SSL). However, fundamental issues such as control-

ling label propagation, choosing the initial seeds, selecting edges have bare-

ly been studied. Our evaluation on three real datasets demonstrates that

manipulating the label propagating behavior and choosing labeled seeds

appropriately play a critical role in adopting graph-based SSL approaches

for this task.
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1. Introduction

Over the last decade, document-level sentiment classifica-

tion has attracted much attention from NLP researchers. Po-

tential applications include opinion mining and summariza-

tion [12]. Most of the existing methods [5, 8, 9, 13] locate

sentiment classification as a supervised classification prob-

lem and train a reliable classifier from manually labeled da-

ta. The main disadvantage of those supervised approaches is

that they demand a large amount of training data to achieve

high accuracy.

Unfortunately, for some languages such as Chinese and

Hindi, a sufficient amount of training data is not always

available [22]. The annotation is known to be time consum-

ing and requires substantial human labor by domain expert-

s. Sentiment classification is therefore a quite challenging

problem for such under-resourced languages.

Semi-supervised learning (SSL) algorithms are attrac-

tive approaches to address this problem. SSL methods can

exploit labeled as well as unlabeled data. Unlike labeled

data, unlabeled data are much easier to obtain. Thus, the

demand for expensive labeled data can be highly relieved.

As an important campaign, graph-based SSL methods (sur-

veyed in [24]) have attracted a great deal of attention from

research communities.

In this work, we focus on document-level sentiment

classification under a minimally-supervised setting, where
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we only have a few labeled reviews given a priori. We ex-

plore two representative graph-based SSL algorithms (basic

and state-of-the-art), label propagation (LP) [23] and mod-

ified adsorption (MAD) [18], to understand the behavior of

graph-based SSL algorithms in this task setting. We em-

pirically investigate the impact of controlling label propaga-

tion, choosing initial seeds, and pruning edges in exploiting

graph-based SSL algorithms.

Experiments were carried out on three real datasets tak-

en from different domains (hotel, notebook, and book) in

Chinese.∗ We obtained the following findings through our

thorough experiments.

• MAD outperformed LP in terms of the flexibility need-

ed to alleviate the problem of (sentiment) polarity shift

caused by high-degree vertices in a graph.

• Choosing initially-labeled seeds on the basis of their

PageRank values or the number of neighbors can im-

prove the performance in hotel and notebook domains.

• Pruning edges does not achieve a similar level of per-

formance like in the choice of seeds.

The rest of this paper is organized as follows. In Sec-

t. 2, related work is introduced. In Sect. 3, we explain the

mechanisms of the SSL algorithms explored in our study. In

Sect. 4, we evaluate those algorithms and investigate exist-

ing issues. In Sect. 5, we conclude this study and outline

our future direction.

2. Work Related to SSL in Sentiment Classification

Modified adsorption (MAD), which is a graph-based SSL

algorithm, is adopted in [17] to perform sentiment classifi-

cation on Tweets. The authors leveraged characteristics of

Twitter such as hashtags, emoticons, and follower-followee

relationships to build a graph for MAD. Additionally, they

studied the impact of labeled data as seeds on classification

performance. However, their approach is not appropriate

in an under-resourced scenario since the labeled data come

from outside resources such as OpinionFinder.∗∗

In [16], the authors designed a novel graph-based SSL

algorithm to solve document-level sentiment classification.

Their approach is based on a bi-partite graph composed of

words and documents, which means the proposed method

can assign sentiment polarity to both words and documents

∗http://www.searchforum.org.cn/tansongbo/corpus-senti.htm
∗∗http://www.cs.pitt.edu/mpqa/subj lexicon.html
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jointly. Their main focus is to encode prior lexical knowl-

edge into the SSL paradigm with the help of regularized

least squares.

Transductive SVM (TSVM) [7], which is a semi-

supervised variant of SVM, is used in [4] to conduct the

document-level sentiment classification task with the same

under-resourced setting as in this study. Basically, their

method is divided into three steps. First, they performed

spectral clustering to identify unambiguous reviews. Sec-

ond, they took advantage of active learning to label only the

ambiguous reviews. Finally, they made use of the result-

ing labeled reviews and the remaining unlabeled reviews to

train a TSVM classifier. Although they used an SSL-based

approach to tackle the scarce resource problem in sentiment

classification, they assume manual intervention in the active

learning step.

In summary, these studies demand auxiliary resources

or substantial human effort. To the best of our knowledge,

this paper is the first study that explores graph-based SS-

L algorithms for sentiment classification in a real resource-

scarce setting.

3. Graph-Based Semi-Supervised Learning

We explore semi-supervised sentiment classification, where

a classifier is trained on both labeled data {(xi, yi)}
nl

i=1
and

unlabeled data {(x j)}
nl+nu

j=nl+1
. In our work, xi is represented

by a feature vector, while yi is the sentiment polarity of the

review, i.e., positive or negative. We assume there is no neu-

tral category in this study, so in essence, our task is a binary

classification problem.

Even if labeled data is costly to obtain in under-

resource languages, we can usually compute a similarity be-

tween reviews to form a graph, where a vertex corresponds

to a review and edges connect similar vertices. We thus can

make use of graph-based SSL algorithms to perform sen-

timent classification. The choice of similarity measure is

an open issue in using graph-based SSL algorithms, and we

will later explore this in Sect. 4.3.2.

In this section, we explain two graph-based SSL algo-

rithms, label propagation (LP) [23] and modified adsorption

(MAD) [18], which we used in our work.

3.1 Formal Problem Setting

Graph-based SSL algorithms are formally given as an undi-

rected graph, G = (V, E,W), where v ∈ V represents an

example to be labeled, which corresponds to a review in our

case, an edge e = (a, b) ∈ E represents that the labels of

the two vertices, a and b, are similar, and the weight Wab

represents the strength of the similarity. Since a vertex cor-

responds to an example, we have nl+nu = |V |. We use Vl and

Vu to denote the set of vertices corresponding to the labeled

and unlabeled examples, respectively.

The algorithm is also provided with initial label matrix

Y, where the row Yv denotes the initial probability distribu-

tion over labels of the vertex v. For a vertex, v ∈ Vl, we have

Yvy = 1 and Yvy′ = 0 (y′ , y). For an unlabeled vertex,

v ∈ Vu, Yv is set as a zero vector.

The goal of a graph-based SSL algorithm is to induce a

probability distribution over labels of the vertices Ŷ, where

Ŷv represents the estimated probability distribution over la-

bels of the vertex v.

3.2 Label Propagation

The first graph-based SSL algorithm we explore is LP. LP

has a lot of advantages including a well-defined objective

function and convergence property, and it has been success-

fully used in several NLP tasks [1, 10].

Mathematically, LP aims at minimizing the following

objective function with respect to the labels that each vertex

would own [14, 23].

1

2

∑

v,v′∈V

Wvv′ (Ŷv − Ŷv′ )
2

subject to Ŷv = Yv(v ∈ Vl) (1)

Eq. 1, which is sometimes referred to as energy or smooth-

ness, is the common objective function in the graph-based

SSL method. Intuitively, LP can be interpreted as assigning

the same labels to vertices that are connected by edges with

large weights while fixing the labels of the vertices corre-

sponding to labeled data.

It is not difficult to verify that the solution of Eq. 1 sat-

isfies the following stationary conditions.

Ŷv = Yv (v ∈ Vl)

Ŷv =
1

dv

∑

v′

Wv′vŶv′ (v ∈ Vu)

where dv′ =
∑

v

Wvv′ (2)

Eq. 2 can be further transformed into matrix form Ŷv = TŶv,

where T = D−1W and D = diag(dv). Then, we can seek the

Ŷv(v ∈ Vu) that satisfies Eq. 2 in an iterative manner.

Algorithm 1 depicts LP in detail. In the initiation sec-

tion (line 1 in Algorithm 1), it first initializes the label matrix

Ŷ. After the initialization, a new matrix, T, is built through

transforming the weight matrix W (line 2). Then, LP enter-

s the learning phase (from line 3 to line 6) and propagates

Algorithm 1: Label Propagation

input: Similarity graph: G = {V, E,W}

Initial label matrix: Y

1 Initialize label matrix Ŷ by using seed examples

2 T = D−1W

3 while Ŷ is not convergent do

4 Ŷ = TŶ

5 Ŷv = Yv(v ∈ Vl) # Clamp the seed examples in Y to their

original values

6 end

Output: Ŷ
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labels through the graph (line 4). In essence, it is an iter-

ative matrix computation. At the end of each iteration, the

seeds are re-adjusted to the original value (line 5). When the

matrix Ŷ converges, the propagation terminates.

Note that LP will suffer from densely connected com-

ponents in the similarity graph, especially when the weights

of edges are not reliable [21]. We guess that high-degree

vertices are the origin of that problem and explore the way

adsorption tackles the problem in the following subsection.

3.3 Adsorption

In this section, we explain the adsorption algorithm as it pro-

vides the basis of MAD, which is used in our experiment.

Note that adsorption itself is not used in our experiment.

Conventional graph-based SSL algorithms such as LP

suffer from topic drift caused by high degree vertices [2].

Adsorption handles this problem by controlling the label

propagation process one the basis of three actions. First, it a-

bandons the propagation process at vertex v with probability

pabnd
v . Second, it simply returns the initial label distribution

Yv at vertex v with probability p
in j
v . Note that p

in j
v = 0 for

v ∈ Vu. Finally, it continues to propagate label information

with probability pcont
v . The resulting label distribution Ŷ is

given as

Ŷv = p
in j
v × Yv + pcont

v ×
∑

v′:(v′,v)∈E

Pr[v′|v]Ŷv′ + pabnd
v × r

where Pr[v′|v] =
Wv′v

∑

u:(u,v)∈E Wuv

(3)

Algorithm 2 illustrates the adsorption algorithm. We can

clearly see the difference between LP and adsorption from

Algorithm 2. First, the labels of vertices v ∈ Vl are al-

lowed to be re-adjusted, unlike in LP. The main motiva-

tion of this strategy is to deal with noise or initial unreliable

labels. Furthermore, adsorption brings inject (p
in j
v ), contin-

ue (pcont
v ), and abandon probabilities (pabnd

v ) into the label

diffusing process (line 5). Therefore, adsorption could be

adapted to diverse graphs in a more flexible way at the price

of learning complexity. Finally, a dummy vector, r (line 5),

is added so that adsorption can assign an arbitrary label to

the corresponding vertex when the label propagation is a-

bandoned.

Algorithm 2: Adsorption

input: Similarity graph: G = {V, E,W}

Initial label matrix: Y

Probabilities: p
in j
v , pcont

v , pabnd
v for v ∈ V

1 Ŷv = Yv for v ∈ V

2 while Ŷv is not convergent do

3 Dv =

∑

u WuvŶv
∑

u Wuv

for v ∈ V

4 for v ∈ V do

5 Ŷv = p
in j
v × Yv + pcont

v × Dv + pabnd
v × r

6 end

7 end

Output: Ŷv

The values of probability vectors denoted by p
in j
v , pcont

v ,

and pabnd
v play a crucial role. While we manually adjust-

ed those hyper-parameters to investigate the sensitivity, we

here introduce an automatic approach proposed in [18] for

interested readers.

Each vertex v has three probability values: p
in j
v , pcont

v ,

and pabnd
v . The value of inject probability p

in j
v (for the la-

beled vertex) is dependent on the label entropy. Since high

entropy means more uncertainty, MAD prefers to use the

pre-defined labels when the entropy is high. The setting of

the continue probability pcont
v for the vertex v is based on the

number of neighbors it has. The intuition behind this set-

ting is that the fewer the neighbors of the vertex v, the more

label information they contain on the vertex v. Therefore,

the vertex v should be encouraged to learn the label from its

connections and vice versa. Specifically, the whole process

can be formulated compactly in [18].

We first define the entropy of the transition probability.

H(v) = −
∑

u:(u,v)∈E

Pr[u|v] log Pr[u|v]

Pr[u|v] =
Wuv
∑

u Wuv

(4)

By using the entropy, we define two values, gv and hv, on the

basis of which pcont
v and p

in j
v are defined.

f (x) =
logβ

log(β + ex)
(5)

The function f (x) defined in Eq. 5 and is a monotonically

decreasing function.

gv = f (Hv) (6)

hv = (1 − gv)
√

Hv (7)

Obviously, gv and hv are respectively proportional and in-

versely proportional to the entropy defined in Eq. 5. By us-

ing gv and hv, the probability pcont
v and p

in j
v is defined as

pcont
v =

gv

max(gv + hv, 1)
(8)

p
in j
v =

hv

max(gv + hv, 1)
(9)

pabnd
v = 1 − p

in j
v − pcont

v (10)

3.4 Modified Adsorption (MAD)

Despite the advantage adsorption owns, as pointed out in

[18], there is no objective function in adsorption. Modi-

fied adsorption (MAD) alters the original adsorption algo-

rithm so that it can own an objective function, and then we

can gain the global optimal solution through optimization

methodologies. In the following, we depict the formaliza-

tion of the final objective function in MAD.†

There are three factors that are considered in MAD: the

†Interested readers may refer to the detailed derivation in [18].
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labels predicted and the priori for the seeds should be consis-

tent (Eq. 11), similar vertices bear the same labels (Eq. 12),

and regularization should be performed (Eq. 13).

The purpose of Eq. 11 is to keep the consistency be-

tween the predicative results (Ŷl) and the corresponding la-

beled instances Yl.
∑

v

p
in j
v

∑

l

(Yvl − Ŷvl)
2 =
∑

l

(Yl − Ŷl)
TS(Yl − Ŷl) (11)

where matrix S is diagonal (S = diag(p
in j
v ))

Next, the similarity matrix is transformed with W
′

vu =

pcond
v × Wvu. Thus, vertex u is not similar to vertex v, which

has a large-degree (the value of pcond
v is low).

∑

v,u

W
′

vµ

∣

∣

∣

∣

∣

∣Ŷv − Ŷu

∣

∣

∣

∣

∣

∣

2

2
=
∑

l

∑

v,u

W
′

vu(Ŷvl − Ŷul)

=
∑

l

ŶT
l LYl (12)

where, L = D + D − T − W
′

and D, D are n × n diagonal

matrices with Dvv =
∑

u W
′

uv, Dvv =
∑

u W
′

vu. The purpose of

Eq. 12 is to distribute labels smoothly across the graph.

Eq. 13 takes the responsibility of regularization.
∑

vl

(Ŷvl − Rvl)
2 =
∑

l

∣

∣

∣

∣

∣

∣Ŷl − Rl

∣

∣

∣

∣

∣

∣

2

2
(13)

The elements of the last column in matrix R are set to the

corresponding pabnd
v × r, while the elements of the other

columns are 0.

The objective function is constructed by combining the

above three equations:

C(Ŷ) =
∑

l

[µ1(Yl − Ŷl)
T S(Yl − Ŷl)

+ µ2ŶT
l LYl + µ3

∣

∣

∣

∣

∣

∣Ŷl − Rl

∣

∣

∣

∣

∣

∣

2

2
] (14)

Algorithm 3 depicts the MAD algorithm. Three hyper-

parameters, µ1, µ2, and µ3 (line 2), are used to emphasize

the importance of related constraints. An efficient way to

compute the optimal minima was proposed [18].

4. Evaluation and Discussion

We start by introducing datasets followed by an explanation

Algorithm 3: Modified Adsorption

input: Similarity graph: G = {V, E,W}

Initial label matrix: Y

Probabilities: p
in j
v , pcont

v , pabnd
v for v ∈ V

1 Ŷv = Yv for v ∈ V

2 Mvv = µ1 × p
in j
v + µ2 ×

∑

u,v(pcont
v Wvu + pcont

u Wuv) + µ3

3 while Ŷv is not convergent do

4 Dv =
∑

u(pcont
v Wvu + pcont

u Wuv)Ŷu

5 for v ∈ V do

6 Ŷv =
1

Mvv
(µ1 × p

in j
v × Yv + µ2 × Dv + µ3 × pabnd

v × r)

7 end

8 end

Output: Ŷv

of pre-processing them for evaluation. We then demonstrate

the results of our evaluation, which include a performance

comparison of SVM, LP, and MAD and the impact of simi-

larity measure, tuning hyper-parameters, pruning unreliable

edges, and selecting seeds.

4.1 Setting

The datasets we used in the following experiments were

from ChnSentiCorp (de-duplicate version).† They consist

of reviews from three different domains: notebook, hotel,

and book (around 4000 reviews in each domain). Each re-

view is manually labeled with sentiment polarity (positive or

negative), and each of the three sets of reviews is balanced

in terms of sentiment polarity.

In each domain, we randomly selected 300 reviews as

test data. The test data were balanced in terms of sentiment

polarity (150 positive and 150 negative reviews) so that the

random baseline achieved a classification accuracy of 0.5.

We also selected labeled data at random. The number of

reviews in the training data (balanced in terms of sentiment

polarity) was varied from 20 to 300 to investigate the effect

of the amount of supervision. The remaining reviews were

used as unlabeled data for semi-supervised learning.

Because the accuracy of the classifiers could depend on

the choice of labeled reviews, especially when we choose

a small number reviews to label (here 20, minimum), we

ran the experiments ten times by randomly choosing reviews

to be labeled. We report the average of the classification

accuracy as the final result.

To explore the advantage of graph-based SSL algo-

rithms over supervised counterparts, we used SVM [20],

which is a widely-used supervised classification algorithm,

as a baseline.

We used SVMlight†† as the implementation of SVM in

our experiments, while we adopted Junto††† as the imple-

mentation of LP and MAD.

4.2 Pre-processing

In this section, we introduce the features used to represent

each review. In this study, each review is represented as a

bag-of-features, and they are used to measure the similarity

in building a graph for graph-based SSL algorithms while it

is also an input to SVM. In [15], we investigated the topic of

sentiment features exhaustively and concluded that specific

phrases extracted by manually-tailored POS patterns are the

best option because they capture the proper context related

to the sentiment expressed. In this work, we follow [15]

to choose phrases with specified POS patterns as sentiment

features (prior to extracting the specific phrases, Stanford

Word Segmenter†††† and Log-linear Part-Of-Speech Tagger

†http://www.searchforum.org.cn/tansongbo/corpus-senti.htm
††http://svmlight.joachims.org/
†††https://github.com/parthatalukdar/junto
††††http://nlp.stanford.edu/software/segmenter.shtml
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Fig. 1 Performance comparison
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Fig. 4 Vertex degree distribution

Table 1 POS patterns and example sentiment features that match them

POS pattern Sentiment features

AD VA 真的不错(really not bad)太困难 (too difficult)

AD VV 很生气 (very angry)不犹豫 (do not hesitate)

AD JJ 太慢 (too slow)那么简单 (so simple)

NN JJ 环境一流 (environment excellent)设施旧(facilities old)

NN VA 态度不错 (attitude OK)语言简洁 (language concise )

Table 2 Reviews and their sentiment phrases

Reviews Sentimental features extracted

服务天都不错，吃的很好。 态度不错很好

(Service attitude is OK.

The food is delicious.) (Attitude is OK, delicious)

房间很小，很冷，不满意！ 很小很冷不满意

(The room is very small and cold.

Unsatisfied!) (Very small, very cold, unsatisfied)

for Chinese††††† are used to pre-process each review).

Table 1 lists the five POS patterns [15] used to extract

phrases along with corresponding ones extracted by them,

and Table 2 lists positive and negative reviews in the hotel

domain of the dataset along with corresponding feature rep-

resentations.

†††††http://nlp.stanford.edu/software/tagger.shtml
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4.3 Results

The followings are the objectives of our evaluation.

• Compare the performance of LP and MAD with SVM

in the document-level sentiment classification task

when limited training data are available (Sect. 4.3.1).

• Show the influence of the similarity measure and

hyper-parameters (Sects. 4.3.2 and 4.3.3).

• Investigate the impact of selecting seeds and pruning

edges (Sects. 4.3.4 and 4.3.5).
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4.3.1 Impact of the Number of Seeds

In this section, we used the Jaccard similarity coefficient [6]

to compute the similarity between two reviews. A compari-

son of classification performance is shown in Fig. 1, where

the vertical axis indicates the classification accuracy, and

the horizontal axis indicates the number of labeled reviews.

Here, we set the hyper-parameters in MAD as the default

values. The impact of these hyper-parameters is shown in

Sect. 4.3.3.

The performance of LP was bad when the number of

labeled seeds was very small (especially, 20-50). A possi-

ble culprit is the noise structure of similarity graphs. Some

commonly-extracted phrases create many undesired edges

that connect positive and negative instances, which causes

a sentiment polarity drift during the process of label propa-

gation. Note that the “mis-connection” phenomenon among

instances is common in building similarity graphs for graph-

based SSL algorithms. How to take effective measures to

tackle this phenomenon is still an open question.

As the improved version of LP, MAD can outperfor-

m LP in most cases, especially when the size of available

labeled seeds is limited. We credit this with the capability

of MAD to tackle noise in the graph with flexibility. After

incorporating hyper-parameters, the role of labeled data is

emphasized properly, and at the same time, the label propa-

gating behavior for especially the high-degree vertices gets

appropriate control. The lesson learnt here is when we can-

not construct desirable graph, taking the strategy to control

label distribution is helpful.

Not surprisingly, we can see that, with the increase of

labeled instances, the performances of all the methods are

improved. For MAD and LP, when more labeled data are

available, unlabeled vertices could get more reliable sources

so that MAD and LP could become more confident to de-

cide the label one specific vertex belongs to. For SVM, the

increase of labeled instances means that more training data

are available, so it can locate a more accurate hyperplane.

Finally, all of those approaches do not perform well

in the book domain. Because book reviews cover various

aspects, including the story, the writing style of the author,

the characters appearing in the book, and even the reputation

of the publisher. It is common for the sentiments of these

aspects to not be consistent. Turney [19] reported similar

findings for movie reviews.

We show the performance deviation in Fig. 2, where we

can clearly find that the accuracy was highly sensitive to the

choice of seeds when the number of seeds was small (here

20). We explored strategies such as pruning unreliable edges

(Sect. 4.3.4) and selecting seeds (Sect. 4.3.5) to relieve the

performance sensitivity.

4.3.2 Impact of Similarity Measure in Building a Graph

The similarity measure is one of the important factors that

affects the accuracy of graph-based SSL algorithms. When

Table 3 Similarity graphs statistics

Domain No. of vertices No. of edges LCS size Max degree

Notebook 3936 209,203 3936 658

Hotel 3814 667,198 3814 1878

Book 3831 267,678 3831 1059
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Fig. 6 Impact of edge selection

the similarity score between two reviews is not zero, we

build an edge between them. A performance comparison

(300 labeled seeds) between the two common similarity

measures, Jaccard similarity coefficient and cosine similari-

ty (with TF-IDF feature weighting), is shown in Fig. 3. We

can observe that Jaccard is a better option. Interested read-

ers may refer to [15] to see a comparison among various

similarity measures.

Table 3 contains the statistics on the similarity graphs

in the three different domains. We can find the largest con-

nected component included all the vertices in the similarity

graph, which allowed not only LP but also MAD to label

all the reviews. Fig. 4 shows the degree distribution of the

vertices. We could observe that the number of neighbors of

vertices in the hotel domain was much larger than those in

the other two domains. When we launch an edge pruning

task (such as in our case in Sect. 4.3.4), we should take the

degree distribution into consideration.

4.3.3 Impact of Tuning Hyper-parameters

In MAD, we are especially interested in the impact of injec-

t probabilities and abandon probabilities because they en-

hance the label diffusing behavior. At present, we therefore

set the value of hyper-parameter µ2 to its default value.

First, as we depicted in Sect. 3.3, the labeled instances

are not adjusted to the original states in MAD. When the

similarity graph includes noisy edges that we usually con-

front, we need to put a high value to µ1 to keep the consis-
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tency between the original labels and labels predicted for la-

beled seeds. We could guess that in a noisy similarity graph,

we must ensure the correctness of labeled data (leaders, bor-

rowing a wording in [18]) so that the classification perfor-

mance (whole world) cannot degenerate (go out of control).

Second, when the number of labeled data is not suf-

ficient, the labels predicted are not reliable. Worse, high-

degree vertices will propagate wrong labels to the neighbors

(see Sect. 4.2). In such a kind of circumstance, the value

of µ3 should be high so that vertices become conservative in

propagating labels to their neighbors.

Finally, we also found that these controlling behav-

iors are not highly sensitive to the value of related hyper-

parameters. Here, we only show the influence of related

hyper-parameters in the book domain since a similar ten-

dency was observed in the notebook and book domains. Fig-

ure 5 shows the influence of µ1 and µ3 in MAD. We first set

µ3 as the default value and adjusted the value of µ1; then,

we kept µ1 as the default value and shifted the process. We

could only observe a slight difference in performance.

4.3.4 Impact of Pruning Unreliable Edges

The critical assumption behind graph-based SSL algorithms

is that two vertices with a high weight connection tend to

bear the same label. Therefore, pruning unreliable edges is

a straightforward way of improving the performance.

We thus explore the effectiveness of the method of s-

electing proper edges. We explored the following strategy

to prune unreliable edges. First, given one vertex, we rank

its neighboring edges in accordance with the weight, and

then, we keep the top-N edges. As we showed in Fig. 4

in Sect. 4.2, the degree distribution varied in the different

domains. Hence it is obvious that we had more candidates

in the hotel domain than in the other two domains. Tak-

ing this into account, we left top-100 and top-200 edges

for each vertex. The rational is that we wanted to simul-

taneously choose edges and keep good connectivity in the

graph. The number of labeled seeds was set to 20 (10 in each

class), and we again ran experiments ten times while varying

randomly-chosen initial seeds and averaging the obtained

accuracy. We present the impact of pruning unreliable edges

in Fig. 6. Compared with the case where edge selection was

not performed, there was moderate improvement. However,

we could not get a clear and consistent tendency. We also

conducted a statistical significance test (t-test) on the result-

s, and we observed that all the p-values were above 0.2. We

conclude that pruning unreliable edges is not an effective

strategy to improve the performance.

4.3.5 Impact of Selecting Seeds

In a scarce resource setting, we usually do not have any la-

beled seeds, so we need to determine the examples to label.

It is known that the importance of vertices in a given graph

is different, so one intuitive labeling strategy is to choose

vertices with high importance metric as labeled seeds. In
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Fig. 7 Impact of seed selection

this study, we explored three criteria for selecting seeds: the

number of degrees, the PageRank [11] value, and the be-

tweenness centrality [3]. We compared them with the ran-

domly chosen seeds. Note that we also need to balance the

sentiment polarity of seeds selected as we did in Sect. 4.3.1;

otherwise, unbalanced classification would occur. To meet

this requirement, we can scan the vertices (measured by us-

ing the number of degrees, the PageRank value and the be-

tweenness centrality, respectively) and annotate them until

we accumulate a certain number (10 in our case) of labeled

seeds for each class.

Figure 7 shows the influence of seed selection, where

the average value, the minimum, and the maximum of per-

formance with randomly selected seeds are denoted as “R.

avg,” “R. min,” and “R. max,” respectively. We can conclude

that selecting nodes with a high degree and PageRank value

as seeds are the best choices for LP and MAD, respectively.

The results are comparable with the best ones (“R. Max”).

However, the book domain is an exception. Choosing seeds

randomly may be the optimal option when the connection in

the graph does not reflect the class similarity well. Vertices

with high betweenness centrality are critical to connect the

other vertices in the graph, but they are not good choice as

seeds (the sources for labels).

In essence, selecting initially-labeled seeds is an easily

controlled way to improve the performance when we merely

hope to label a small number of data. We can make use of

existing metrics such as PageRank value and the number of

degrees to realize this purpose without modifying the topol-

ogy of graphs, which may cause cascading changes to the

graph-based learning behavior.

5. Conclusion and Future Work

In this paper, we empirically investigated the usefulness of

two graph-based SSL algorithms, LP and MAD, to solve

document-level sentiment classification for under-resourced

languages. In particular, we found that choosing initially-

labeled vertices in accordance with their degree and PageR-

ank score can improve the performance. However, pruning

unreliable edges will make things more difficult to predict.

We believe that other people who are interested in this field

can benefit from our empirical findings.

As future work, first, we will attempt to use a sophis-

ticated approach to induce better sentiment features. We

consider such elaborated features improve the classification
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performance, especially in the book domain. We also plan

to exploit a much larger amount of unlabeled data to fully

take advantage of SSL algorithms. Finally, we are interest-

ed in applying SSL algorithms to sentiment classification in

domains, such as blogs, tweets, and so forth.
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