
Comprehensive Analytics of Large Data Query

Processing on Relational Database with SSDs

Keisuke Suzuki1, Yuto Hayamizu1, Daisaku Yokoyama1,
Miyuki Nakano2, and Masaru Kitsuregawa1,3

1 University of Tokyo
{keisuke,haya,yokoyama,kitsure}@tkl.iis.u-tokyo.ac.jp

2 Shibaura Institute of technology
miyuki@sic.shibaura-it.ac.jp

3 National Institute of Informatics

Abstract. Solid-state drives (SSDs) are widely used in large data pro-
cessing applications due to their higher random access throughput than
HDDs and capability of parallel I/O processing. The I/O bottlenecks
that HDDs on database systems face can be resolved by using SSDs be-
cause of these advantages. However, access latency on cache hierarchy
may become a new bottleneck in SSD-based databases. In this study, we
quantitatively analyzed the behavior of SSD-based databases by taking
hashjoin operation. We found that cache misses in SSD-based databases
can be decreased by reducing the hashtable size to fit into the cache. This
is because the I/O cost is not increased by the high throughput of the
SSDs, even though the hashjoin partition files are fragmented. We also
observed that cache misses are not increased by taking a multi-hashjoin
query. This is because the total size of multiple hashtables can fit into the
cache size in SSD-based databases, which is in contrast to HDD-based
databases, where hashtables require almost all of the available memory.
Overall, our analytics clarify that the performance of multiple queries in
SSD-based databases can be improved by considering data access local-
ity of the hashjoin operation and determining the appropriate hashtable
size to fit into the cache.

Keywords: RDBMS, SSD, Hashjoin, OLAP.

1 Introduction

Flash solid-state disks (SSDs) are likely to improve the I/O bottleneck of data
intensive applications due to their lower latency and higher throughput than con-
ventional hard disk drives (HDDs). They are widely used in heavy I/O workload
environments as their capacity is constantly growing and the price is dropping.

SSDs offer the same block interface as HDDs, so it is easy to integrate SSDs
into a storage system that enables users to access both kinds of devices trans-
parently. We expect that the throughput of SSDs is enough to resolve the I/O
bottleneck of HDDs and even maintain their bandwidth. However, another per-
formance bottleneck may occur by fully exploiting their I/O performance in

H. Wang and M.A. Sharaf (Eds.): ADC 2014, LNCS 8506, pp. 135–146, 2014.
c© Springer International Publishing Switzerland 2014

136 K. Suzuki et al.

SSD–integrated systems. Thus, in this paper, we investigate the performance of
an SSD–integrated system and show that it is insufficient to simply treat SSDs
as a faster disk-they are also a key element offering a new paradigm for data
intensive application performance models.

The I/O costs of conventional HDD-based database systems are often larger
by an order of magnitude than memory access costs and CPU calculation costs.
Therefore, I/O bandwidth limits the total performance of queries. In contrast,
SSDs fill the gap between I/O costs and memory access and calculation costs,
especially in the case of random I/Os. If the utilization of SSDs results in re-
moving the I/O bottleneck, memory access and calculation costs may become a
new bottleneck. That means we have to consider better utilization of computing
resources such as cache and memory. We comprehensively analyzed the perfor-
mance of SSD-based databases by taking a hashjoin operation that is often used
in large data query processing. We then obtained the following information.

– The overall performance of a hashjoin is seriously affected by cache miss
penalties. These misses can be reduced by setting a small hashtable size
to fit the hashtables into the cache, but this cannot be done on HDD-
based databases because using a small memory space causes fragmentation of
hashtable partitions and decreases the I/O throughput. In contrast, SSDs im-
prove the I/O throughput even though there are many fragmented hashtable
partitions since they have no mechanical seek time and achieve a better per-
formance than HDDs.

– By processing a query of multiple hashjoins, such as queries of decision sup-
port systems, cache misses are likely to increase more than with a single
join query since multiple hashtables may exist at the same time and share
a cache. SSD-based databases can avoid such increases by reducing the in-
dividual hashtable size enough to fit some hashtables into the cache. Thus,
we have to consider data access locality of hashjoins.

The primary contributions of this paper are as follows:

– We confirm that we can shrink the size of hashtable size to obtain a good
total performance of query execution in SSD-based databases.

– We confirm that the potential of improving the performance of multiple
query execution by setting the appropriate memory size.

The remainder of this paper is organized as follows. Related work is presented
in Section 2. Section 3 explains the behavior and expected processing cost of
the hashjoin operation that is used in our analysis. Section 4 shows the basic
access performance of HDDs and SSDs. In Section 5, we discuss our experimental
analysis of the utilization of SSDs on large data query processing. We conclude
with some final insights in Section 6.

2 Related Work

Recently, there has been much research in the area of SSD-integrated database
systems. These can be roughly divided into three categories of SSD usage: buffer
pool extension, indexing, and HDD-SSD mixed hybrid storage management.

Comprehensive Analytics of Database with SSDs 137

Concerning buffer pool extension, Bhattacharjee et al. proposed a temperature-
aware caching (TAC) schema [1,2] that monitors and obtains the statistics of the
access patterns of data and then decides which data to keep in the cache on the
basis of their access frequency. The FaCE system [3], proposed by Kang et al.,
uses the multiversion FIFO cache replacement algorithm to reduce the random
write. The buffer pool extension is one of promising fields of SSD usage. How-
ever, as mentioned in [4], the buffer pool extensions are not beneficial for ad hoc
large data processing queries which we focus on in this paper.

Hybrid storage management resembles the idea of caching in that it basically
places frequently accessed data on SSDs and less accessed data on HDDs. Kolt-
sidas et al. [5] detect workloads for the pages and distribute read-intensive pages
on SSDs and write-intensive pages on HDDs, which overcomes the random write
weakness of SSDs. The hStorage-DB [6] semantically analyzes the I/O work-
load of queries from execution plans. This approach enables data placing prior
to query execution, and for that reason, cache filling up time and monitoring
overheads are not needed. Hybrid HDD-SDD usage schemes are important for
SSDs with less capacity and higher price than HDDs. Our intention is first to
elaborate upon the query processing for SSD-only databases.

As for indexing, the FD-tree [7] optimizes writing performance by aggregat-
ing write requests, while the PIO B-tree [3] exploits the internal parallelism of
SSDs. Indices are typically used on a scan whose data selectivity is low, while
a sequential scan and hashtable are likely to be used on a high-selectivity scan.
Tsirogiannis et al. [8] utilize the column-based table store to exploit the ran-
dom access performance of SSDs and propose a column store database oriented
hashjoin algorithm.

The studies above focus only on the I/O characteristics of SSDs. In this work,
we analyze not only I/O behaviors but also the entire performance improvement
of database systems and other component bottlenecks.

3 Join Operation with Hashtable

With large data processing tasks such as DSS queries, a hashtable is typically
used on several database operations such as aggregation, projection, and join.
We use a hashjoin operation to evaluate performance improvement by SSDs since
hashjoin is one of the heaviest workload operations within databases. We clarify
that the high I/O throughput of SSDs affects the entire performance of hashjoin
operation from the aspect of memory access latency.

3.1 Grace Hashjoin [9] and Hybrid Hashjoin [10]

When a hashtable cannot fit into the main memory due to its size, Grace join
divides the target data into partitions to fit each partition into memory and
stores them on a disk.

The process of Grace hashjoin is divided in two phases: build and probe.
For the sake of explanation, assume the join operation of relations R, S, and

138 K. Suzuki et al.

hashtables are created on S. First, in the build phase, both target relations are
partitioned by the same hash function and partitions are written to disk. Next, in
the probe phase, two partitions Ri and Si (1 ≤ i ≤ n, n = S/memorysize), which
have the same hash value, are selected to join. Si is loaded and its hashtable
created on memory and then the tuples of Ri are matched with the tuples of Si

by referring to the hashtable. This operation is repeated for each partition.
Grace hashjoin consumes memory space for only the write buffer of each par-

tition at the build phase. Hybrid hashjoin utilizes the rest of the memory space
to hold the hashtable of the first partition S1. The memory residing partition
(S1) and the counterpart partition R1, which have the same hash value as S1, are
processed without being stored to disk. This is how hybrid hashjoin can reduce
the I/O cost of an operation with S1 and R1.

3.2 Processing Cost of Hashjoin

An HDD-based DBMS often uses Grace hashjoin or hybrid hashjoin on large data
query processing because a vast amount of I/Os seriously decreases processing
throughput. The rest of this paper deals with hybrid hashjoin algorithms.

The I/O pattern of hashjoin depends on the size of working memory (work-
ing memory means available memory space for each hashjoin operation.). This
is because the partition size and the number of partitions are decided to fit a
respective hashtable for partitions of S into working memory. Therefore, when
the working memory space is small, many small partitions are created, which
results in the generation of many fragmented partition files. Many random I/Os
are invoked to access these fragmented partition files. The fragmentation causes
serious I/O throughput degradation on HDDs since random I/Os are 100 - 1000
times slower than sequential I/Os. For this reason, much memory space is typi-
cally assigned for hashjoin on HDDs to avoid fragmentation. Concerning SSDs,
however, the random I/Os are not slower by an order of magnitude, and there-
fore the fragmentation has less impact on the I/O throughput. This condition
enables less memory space to be used.

A hashtable generated at the probe phase is repeatedly accessed by matching
a tuple of relation R. This means that data access locality is expected and has
to be considered. The size of working memory is also related to the number of
cache misses of the probe phase. When a hashtable for partition Si fits into a
cache, cache misses do not occur after loading partitions. The hashtable size
is limited by working memory size, so a hashtable can be fit into a cache and
utilization becomes high when the working memory size is smaller than the
cache size. SSDs help keep the memory size small without much I/O throughput
degradation. Thus, SSDs are expected not only to improve the I/O bottleneck
but also to help reduce the number of cache misses on a hashjoin.

4 Basic Performance of HDDs and SSDs

The architecture of SSDs is fundamentally different from that of HDDs. Rotating
disks and moving heads to address data are the bottleneck of random accesses

Comprehensive Analytics of Database with SSDs 139

Table 1. Experimental platform setup

CPU Xeon X7560 (L3 Cache: 24 MB) @ 2.27 GHz x 4
DRAM 64 GB

Storage (SSD) ioDrive Duo x4 (8 Logical units, Software RAID0)
Storage (HDD) SEAGATE ST3146807FC x12 (Software RAID0)

Kernel linux-2.6.32-220
File system ext4

on HDDs, while SSDs are pure electronic devices so they have no seek time.
Another important characteristic is that current SSDs are composed of multiple
flash chips, which means they are able to process some I/Os simultaneously. We
took some I/Omicro-benchmark programs and measured the basic I/O behaviors
of SSDs and HDDs in actual use. We then analyzed the basic performances and
clarified the differences between SSDs and HDDs.

4.1 Experimental Setup

Table 1 shows the platform setup of our experiment. The interface of the SSDs
is PCI Express and that of the HDDs is Fibre Channel. I/O scheduler is set to
noop for both storages. The SSDs are tied up by software RAID0 with chunk
size = 64 kB and use ext4 file system. The HDDs are set up in the same way.

4.2 Throughput of Sequential and Random Access

To confirm that the random access of the SSDs was superior to the HDDs, we
ran micro-benchmark programs of sequential and random read I/Os.

Th
ro

ug
hp

ut
 [M

B/
s]

I/O size [B]

ssd seq read
ssd rand read
hdd seq read

hdd rand read

 0.1

 1

 10

 100

 1000

 10000

1k 10k 100k 1M 10M

Fig. 1. I/O throughput for sequential and random accesses on SSD and HDD

Figure 1 shows the I/O throughput of SSD and HDD by varying the size of
individual I/Os. The throughput of the sequential read (seq read) of SSD is 3.1
times faster than that of HDD and the throughput of the random read (rand
read) is 8.6 - 23.7 times faster. The difference of I/O throughput on random

140 K. Suzuki et al.

read becomes larger at smaller I/O size settings. The throughput of sequential
read does not depend on I/O sizes because of the read ahead function, while in
contrast, the throughput of random read is proportional to I/O sizes.

4.3 Throughput of Mixture Workload

The I/O workload of actual applications consists of both read and write func-
tions. The internal parallelism and high random access throughput of SSDs take
advantage of such workloads. To demonstrate this, we used a benchmark pro-
gram of a mixture of I/Os. The workload consisted of read 75% and write 25%.
The ratio of read/write was similar to our experimental hashjoin operation men-
tioned in Section 5. The benchmark executes operations as follows. (1) Open two
files: one for read operations and the other for write operations. (2) Issue I/O
operations in a specified I/O size. First three read I/Os are issued, then one write
I/O is issued, and then the process is repeated. The read operations sequentially
scan a file and write operations add data to the other empty file.

Th
ro

ug
hp

ut
 [M

B/
s]

I/O size [B]

ssd mw read
ssd mw write
hdd mw read

hdd mw write
ssd readonly
hdd readonly

 10

 100

 1000

 10000

1k 10k 100k 1M 10M

Fig. 2. I/O throughput for mixture workload of read and write accesses on SSD and
HDD

Figure 2 shows the throughputs of the mixture workload (mw) for SSD and
HDD. The results of readonly workloads (mentioned in Section 4.2) are plotted
for comparison. Read/write throughputs of the mixture workload on SSD are
both 4.2 times higher than on HDD. The difference of the read throughput of
the mixture workload between SSDs and HDDs is larger than that of readonly
workload. The read throughput of the mixture workload on SSD is the same as
that of the readonly workload. In contrast, on HDD, the read throughput on the
mixture workload is 0.74 times smaller than that of the readonly workload. This
result indicates that SSDs are capable of parallel I/O processing and suitable
for mixture I/O workloads.

5 Experimental Analysis of Hashjoin Operation

We performed experiments with hashjoin queries and analyzed the I/O through-
put improvement and access costs on the cache hierarchy of large data query
processing on an SSD-based database.

Comprehensive Analytics of Database with SSDs 141

5.1 Database Setup and Workload

We used PostgreSQL [11] for RDBMS and set shared buffer size to 8 GB. We
created the same databases on SSD and HDD by using data of TPC-H [12]
benchmark at a scale factor of 100. Hashjoin processing performance depends
on the number of partition files and hashtable size. The more the number of
partition files is increased, the smaller the hashtable size becomes. In the case
of HDD-based databases, it is preferable to decrease the number of partition
files. This is because the fragmentation of files causes serious I/O performance
degradation. There is a trade-off related to working memory size, so we handle
it as a parameter to control the workload of hashjoin and observe the processing
performance for each value. Work mem is a PostgreSQL parameter that describes
the in-memory buffer size per database operation, that is, the working mem-
ory size in a hashjoin. Since PostgreSQL uses hybrid hashjoin, when work mem

is larger than the entire hashtable size, no partitions are written to disk. We
experimented on two queries in SSD and HDD environments: (1) a single join
query, with the join part and lineitem tables on partkey, and (2) a realistic
workload query, with TPC-H query 8, which contains the join of 8 tables.

We measured the query execution time by changing the work mem size between
64 kB and 2 GB. To observe the breakdown of CPU utilization, mpstat(1) is
used, and L3 cache references and cache misses are measured by a Linux profiler
perf[13].

5.2 Single Join Query

To demonstrate that SSDs improve the throughput of query executions, we ex-
perimented with join operation on part and lineitem tables. Each tuple of a
lineitem table is joined with one tuple of a part table which has the same partkey
in this query. The table sizes of the part and the lineitem are 20 GB and 86 GB,
respectively. The hashtable is created on the part table, and its total size is about
800 MB.

0

200

400

600

800

1000

1200

1400

64k 256k 1M 4M 16M 64M 256M 1G 4G

Ti
m
e[

s]

work_mem [byte]

idle
soft
irq

iowait
sys
usr

L3 cache size

(a) SSD

0

200

400

600

800

1000

1200

1400

64k 256k 1M 4M 16M 64M 256M 1G 4G

Ti
m
e[

s]

work_mem [byte]

idle
soft
irq

iowait
sys
usr

L3 cache size

(b) HDD

Fig. 3. Single join query execution time

142 K. Suzuki et al.

Figure 3 shows the hashjoin execution time and its breakdown (usr, system,
iowait, irq, soft irq, and idle) for the respective work mem values in the SSD or
HDD environment. In the figure, usr indicates CPU operational cost and the
total of sys and iowait indicates I/O operational cost.

When work mem is smaller than L3 cache size (64 kB - 16 MB), SSD and HDD
show different trends. The smaller work mem is, the more I/O cost is stacked up
on HDD, because the I/O throughput is saturated owing to the fragmentation. In
contrast, the SSD results show that I/O costs are lower than HDDs and approx-
imately not changed in every point, which indicates remaining I/O bandwidth.

When work mem is larger than an L3 cache size (larger than 32 MB), the CPU
cost is growing in both environments and the I/O cost is no longer a bottleneck.
This is due to the increased number of cache misses because the hashtable size
is too big for the L3 cache size.

0

2e+09

4e+09

6e+09

8e+09

1e+10

1.2e+10

1.4e+10

64k 256k 1M 4M 16M 64M256M 1G 4G
0
10
20
30
40
50
60
70
80
90
100

Co
un

t

Ca
che

mi
ss

rat
e[

%]

work_mem [byte]

cache-references
cache-misses

cache-miss-rates

L3 cache size

Fig. 4. Number of cache references/misses and cache miss rates for each work mem sizes
on SSD

Figure 4 shows the number of L3 cache references, misses, and miss rates for
each work mem on the SSD measurement. For example, execution with work mem

= 1 GB has 7 × 109 larger cache misses than 4 MB, and the DRAM access la-
tency is about 100 nanoseconds in our experimental environment. Consequently,
execution with work mem = 1 GB gets a 7× 109 × 100(ns) = 700(s) larger cache
miss penalty, which is consistent with the difference of CPU cost between 4 MB
and 1 GB in Figure 3a.

When work mem is larger than the entire hashtable size (larger than about 800
MB), only one partition is created and then execution time becomes the same.
The reason for the steeply increasing cache misses from work mem = 512 MB
to 1 GB is that the average bucket length of a hashtable is larger on work mem

= 1 GB. This is the implementation dependent problem for the hashjoin of
PostgreSQL. The average bucket length for each work mem is 2.2 on 64 kB, 3.8
on 128 kB, 5.7 on 256kB − 512MB, and 10.5 on larger than 1 GB, and the
number of lineitem tuples is 6 × 108. Then, the difference of the total number
of bucket scans between 512 MB and 1 GB is (10.5− 5.7)× 6 × 108 ≈ 3 × 109,
which fits the difference of the number of cache misses in Figure 4.

Comprehensive Analytics of Database with SSDs 143

Fig. 5. The query execution plan of TPC-H query 8

5.3 TPC-H Query

We measured the TPC-H query to demonstrate that the bottleneck of query
processing changes the same way as a single join in actual DSS queries. We used
query 8, which contains the join of 8 tables. Some calculation parts of the query
are removed, since we are interested in only the I/O performance behavior of the
query. The execution plan is as shown in Figure 5. For each hashjoin operation,
a hashtable is created on the bottom side node in Figure 5. At the point where
I/O is the heaviest (enclosed by a red circle in Figure 5), the total hashtable size
is about 400 MB.

 0

 200

 400

 600

 800

 1000

 1200

 1400

64k 256k 1M 4M 16M 64M 256M 1G 4G

Ti
m

e
[s

]

work_mem [byte]

idle
soft
irq

iowait
sys
usr

(a) SSD

 0

 200

 400

 600

 800

 1000

 1200

 1400

64k 256k 1M 4M 16M 64M 256M 1G 4G

Ti
m

e
[s

]

work_mem [byte]

idle
soft
irq

iowait
sys
usr

(b) HDD

Fig. 6. TPC-H query 8 execution time

Figure 6 shows the results of query measurement on SSD and HDD. The
difference of I/O cost between SSD and HDD is more conspicuous than single
join query.

Figure 7 shows the I/O throughput timeline during the execution of query 8
on SSD and HDD, which are observed under work mem = 128 kB. In the phase
of the lineitem table scan (about 90 - 550 seconds in Figure 7a, 100 - 700 seconds
in Figure 7b), the read I/O throughput is sometimes decreased by the write I/O,
which writes hashtable partitions to storage during HDD execution. This is not
observed during SSD execution, since SSDs can process multiple I/Os in parallel,
as mentioned in Section 4.3. In the phase of hashjoin probing after the lineitem

144 K. Suzuki et al.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700

I/O
 th

ro
ug

hp
ut

 [M
B/

s]

Elapsed time [s]

Read
Write

(a) SSD

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 200 400 600 800 1000 1200

I/O
 th

ro
ug

hp
ut

 [M
B/

s]

Elapsed time [s]

Read
Write

(b) HDD

Fig. 7. The timeline of I/O throughput during query 8 execution (work mem = 128 kB)

scan (about 550 - 680 seconds in Figure 7a, 700 - 1050 seconds in Figure 7b),
the processing time on SSD is about 2.7 times faster than HDD. Since partition
files are fragmented when work mem is small, the I/O throughput of HDD is low,
which inhibits the processing performance.

The I/O cost starts to increase from work mem = 8 MB in Figure 6, even
though it is smaller than the L3 cache size. In the build phase of hybrid hashjoin,
in order to process the tuple matching of the memory residing hashtable without
temporarily writing them to storage, the join result for those tuples is directly
passed to the next operator in a pipeline style. For this reason, some hashtables
may simultaneously reside in memory when multiple hashjoins are included.
Three hashtables share a cache in this query, so setting work mem as 8 MB fills
up the L3 cache.

6 Discussion

We discussed the performance bottleneck of hashjoin in Section 3.2, that is, I/O
and cache misses. The result of a single hashjoin execution on a HDD (Figure
3b) shows that our assumption was correct: the less work mem used, the higher
the I/O cost. This is a result of the increased number of fragmented files. On
the other hand, when work mem is larger than the L3 cache size, the CPU cost
becomes large because of the increasing number of cache misses. However, the
result of multiple hashjoins on an HDD (Figure 6b) suggests that the number
of cache misses has no relation to the work mem setting at a multiple hashjoin
query. The CPU cost does not grow as in a single join query even if work mem

is much larger than the L3 cache size. For this reason, query execution time
becomes shorter when we set work mem to 512 MB or larger. This is a peculiar
case for the high data distribution locality of lineitem and orders tables, as
follows. The predicate of the third join operation, which is indicated by a red
circle in Figure 5, is orders.orderkey = lineitem.orderkey. There are four
tuples on average that have the same orderkey on the lineitem table. Tuples are
stored in ascendant order of orderkey in the lineitem table, so several tuples
with the same orderkey are concentrated in the table, that is, the data access

Comprehensive Analytics of Database with SSDs 145

locality occurs on a hashtable. Therefore, the same hash bucket is likely to be
accessed successively at the probe phase, and consequently the number of cache
misses becomes small. On the other hand, tuples with the same partkey are not
concentrated, so the number of cache misses becomes large in a single query. If
data locality is low in TPC-H query 8, the CPU cost increases when work mem

is larger than 8 MB, as in the results of a single query execution, and then near
work mem = 4 MB points would be optimal. In such a case, to avoid an increase
of cache misses, it is inevitable to get some overheads of I/O fragmentation on
the HDD-based database. These I/O cost overheads are decreased on the SSD-
based database. The measurements on SSD in Figure 3a indicate that the query
execution time is not affected by I/O fragmentation and rather is likely to be
affected by the cache miss penalties.

Considering these results, when SSDs are used, it is better to keep the working
memory size small enough to fit the hashtable into the cache. However, in the
current HDD-based hashjoin implementation, very large memory is required to
decrease the number of fragmented files. The working memory size can be re-
duced as long as the fragmentation of partitions does not cause I/O bottleneck
in SSD-based databases. In our experiments, there was no I/O bottleneck even
if work mem was 64 kB.

As a result of using less memory space for a hashjoin operation, the portion of
cache and memory space remains free. This remaining cache will help improve
the performance of complex queries and parallel multiple queries. A complex
query such as multiple hashjoin operations are executed in a pipeline manner.
For example, TPC-H query 8 deploys three hashtables at the same time. If all
hashtables can reside together in a cache, the number of cache misses becomes
small. Another case of utilization is the parallel execution of multiple queries.
The cache and other computing resources may not be fully consumed by sequen-
tial query processing. (Here, by other computing resources we mean CPU cores
(most current processors have several cores internally) and I/O bandwidth (I/O
bandwidth of SSDs becomes wider by parallel I/O processing such as mixture
I/O workload for its internal parallelism)). Parallel query execution enables us to
utilize remaining resources and improve the entire query processing performance.

7 Conclusion

In this paper, we experimentally analyzed the performance improvement and
newly observed bottlenecks of large data query processing in SSD-based
databases. Our experiments on hashjoin queries showed that cache miss penalties
seriously affected the query processing performance. We found that it is prefer-
able to set a small hashtable size to fit into the cache on SSD-based databases,
as this reduces the number of cache misses at the probe phase. Hashtable size
should be relatively large on HDD-based databases because I/O cost becomes
large in a small hashtable size on HDDs. This is due to the poor I/O throughput
of HDDs under fragmentation caused by generating many hashtable partition
files when the hashtable is small. In contrast, the I/O cost of SSDs is not in-
creased by the fragmentation. Thus, considering data access locality of hashjoin

146 K. Suzuki et al.

is more important at the query execution in SSD-based databases. Experiments
on a modern SSD-based system showed that hashtable size can be reduced to
64 kB without any increase to I/O cost by the fragmentation. As a result of
reducing hashtable size, the portion of cache and memory space that are not
used by hashtable remains free. Those remaining resources can be utilized to
improve the performance of a multiple hashjoin query such as TPC-H query 8.
Another promising way to utilize the remaining resources is parallel execution
of multiple queries. Exploring data access locality of multiple queries will be the
focus of our future work.

Acknowledgment. This work is partially supported by JSPS KAKENHI Grant
Number 24300034 and 26280130.

References

1. Bhattacharjee, B., Ross, K.A., Lang, C., Mihaila, G.A., Banikazemi, M.: Enhancing
recovery using an SSD buffer pool extension. In: DaMoN 2011, pp. 10–16. ACM
(2011)

2. Canim, M., Mihaila, G.A., Bhattacharjee, B., Ross, K.A., Lang, C.A.: SSD buffer-
pool extensions for database systems. Proc. VLDB Endow. 1435–1446 (2010)

3. Kang, W.H., Lee, S.W., Moon, B.: Flash-based extended cache for higher through-
put and faster recovery. Proc. VLDB Endow. 5(11), 1615–1626 (2012)

4. Do, J., Zhang, D., Patel, J.M., De Witt, D.J., Naughton, J.F., Halverson, A.:
Turbocharging DBMS buffer pool using SSDs. In: SIGMOD 2011, pp. 1113–1124.
ACM (2011)

5. Koltsidas, I., Viglas, S.D.: Flashing up the storage layer. Proc. VLDB Endow. 1(1),
514–525 (2008)

6. Luo, T., Lee, R., Mesnier, M., Chen, F., Zhang, X.: hStorage-DB: Heterogeneity-
aware data management to exploit the full capability of hybrid storage systems.
Proc. VLDB Endow. 5(10), 1076–1087 (2012)

7. Li, Y., He, B., Yang, R.J., Luo, Q., Yi, K.: Tree indexing on solid state drives.
Proc. VLDB Endow. 3(1-2), 1195–1206 (2010)

8. Tsirogiannis, D., Harizopoulos, S., Shah, M.A., Wiener, J.L., Graefe, G.: Query
Processing Techniques for Solid State Drives. In: SIGMOD 2009, pp. 59–72. ACM
(2009)

9. Kitsuregawa, M., Tanaka, H., Moto-Oka, T.: Relational Algebra Machine GRACE.
In: Goto, E., Furukawa, K., Nakajima, R., Nakata, I., Yonezawa, A. (eds.) RIMS
1982. LNCS, vol. 147, pp. 191–214. Springer, Heidelberg (1983)

10. Schneider, D.A., De Witt, D.J.: A performance evaluation of four parallel join
algorithms in a shared-nothing multiprocessor environment. In: SIGMOD 1989,
pp. 110–121. ACM (1989)

11. PostgreSQL, http://www.postgresql.org/
12. Transaction Processing Performance Council, An ad-hoc, decision support bench-

mark, http://www.tpc.org/tpch/
13. Perf, https://perf.wiki.kernel.org/

http://www.postgresql.org/
http://www.tpc.org/tpch/
https://perf.wiki.kernel.org/

	Comprehensive Analytics of Large Data QueryProcessing on Relational Database with SSDs
	1 Introduction
	2 Related Work
	3 Join Operation with Hashtable
	3.1 Grace Hashjoin [9] and Hybrid Hashjoin [10]
	3.2 Processing Cost of Hashjoin

	4 Basic Performance of HDDs and SSDs
	4.1 Experimental Setup
	4.2 Throughput of Sequential and Random Access
	4.3 Throughput of Mixture Workload

	5 Experimental Analysis of Hashjoin Operation
	5.1 Database Setup and Workload
	5.2 Single Join Query
	5.3 TPC-H Query

	6 Discussion
	7 Conclusion
	References

