
A Randomized Game-Tree Search Algorithm

for Shogi Based on Bayesian Approach

Daisaku Yokoyama1 and Masaru Kitsuregawa2,1

1 Institute of Industrial Science, The University of Tokyo
{yokoyama,kitsure}@tkl.iis.u-tokyo.ac.jp

2 National Institute of Informatics

Abstract. We propose a new randomized game-tree search algorithm
based on Bayesian Approach. It consists of two main concepts; (1) us-
ing multiple game-tree search with a randomized evaluation function as
simulations, (2) treating evaluated values as probability distribution and
propagating it through the game-tree using the Bayesian Approach con-
cept. Proposed method is focusing on applying to tactical games such as
Shogi, in which MCTS is not currently effective. We apply the method
for Shogi using a top-level computer player application which is con-
structed with many domain-specific search techniques. Through large
amount of self-play evaluations, we conclude our method can achieve
good win ratio against an ordinary game-tree search based player when
enough computing resource is available. We also precisely examine per-
formance behaviors of the method, and depict designing directions.

Keywords: Randomized Search, Monte-Carlo Tree Search, Game-tree
Search, Bayesian Approach.

1 Introduction

Randomized search algorithms have great ability to explore complicated search
problems [4]. It effectively utilize parallel computing method which is inevitable
with current computing environment. Game tree search problems have com-
plicated constraints for computing and is not fully utilize such kind of paral-
lelism. Monte-Carlo Tree Search algorithm (MCTS) [2] has been developed and
is getting widely used with good performance, especially in Go playing [3]. This
great advance, however, does not help to achieve good performance in Shogi,
Japanese chess-like game. Computer Shogi is intensively investigated for a long
time, and many search techniques are developed; selective deepening with posi-
tion features[14], efficient depth-first And-Or-Tree search algorithm with proof-
and disproof- numbers (DFPN) [8], and evaluation function learning algorithm
using order of sibling nodes [6]. Utilizing these techniques with other chess-like
game-tree search techniques such as futility pruning [7], computer Shogi player
achieves comparable strength with the best human players in recent years [5].
MCTS cannot achieve such performance despite of many researches in Shogi
[12]. The main reason is: (1) difficult to create effective playouts to simulate

D.-N. Pham and S.-B. Park (Eds.): PRICAI 2014, LNAI 8862, pp. 937–944, 2014.
c© Springer International Publishing Switzerland 2014

938 D. Yokoyama and M. Kitsuregawa

reasonable plays, (2) difficult to follow one long narrow path of “correct” play.
Especially (2) has been considered as a common weakness for MCTS [16]. Shogi
is one of the good example problem domain. Shogi has many legal moves to
play, but only few move sequences are acceptable to win. Current MCTS cannot
converge the search result quickly under such situations.

We propose a new randomized game-tree search algorithm based on Bayesian
Approach to deal with such difficulties which current MCTS have. It changes
two main concepts in MCTS algorithm; (1) Using multiple game-tree search
with randomized noise appended on evaluation value as simulations. This em-
ploys current sophisticated algorithms of game-tree search and accurate evalu-
ation functions to search a narrow correct path to win. (2) Treating evaluated
value as probability distribution and propagating it through a game-tree using
the Bayesian Approach concept. Multiple randomized game-tree searches bring
several tree values. We treat these values as the evaluation value with error distri-
bution, and propagate that probability distribution through min-max tree with
Bayesian concept. This employs all information of randomized simulation results
with min-max tree search manner. Through intensive evaluation of self-fight us-
ing a state-of-the-art computer Shogi player, we confirm our proposed method
can achieve significantly stronger performance than the original player under 30-
50 times bigger computing resources. Our implementation stays in preliminary
stage and have large room of parallelization or other improvements, thus the
proposed method is promising.

Our contribution in this paper is; (1) propose a new randomized tree search
algorithm for problems which have small number of narrow path to correct an-
swer, (2) evaluate its effectiveness through large-scale self-fight experiments of
real game player with many state-of-the-art techniques.

We describe related work in Section 2 and explain our proposed method of
randomized game-tree search in Section 3. In Section 4, we evaluate the effective-
ness of the proposed method on the basis of self-fight results and discuss about
the direction of further improvements. Section 5 summarizes the key points and
mentions future work.

2 Related Work

MCTS is especially effective when the game is hard to evaluate its board posi-
tion using conventional evaluation function manner, like Go. However, several
researches try to apply MCTS to games which already have reliable evaluate
functions such as Amazons, Arimaa or Lines of Action, and get comparable
strength to the conventional methods [11][10][16]. These research uses the eval-
uation function to interrupt the playout sequence and to decide the simulation
result (win or lose) earlier. These researches cannot employ other conventional
tree-search techniques such as futility-pruning [7], transposition table, and so
on. Our proposed method uses conventional game-tree search algorithm as the
simulation, therefore all of these techniques can be applied.

MCTS have another weakness when treating checkmate condition.Many games
have checkmate condition in endgames. MCTS only propagate win ratio and

A Randomized Game-Tree Search Algorithm for Shogi 939

cannot treat such kind of decided results, therefore it cannot employ reliable in-
formation in endgames. Winands et al. proposed Monte-Carlo Tree Search Solver
[15], an improvement by adding another value to propagate such reliable informa-
tion in min-max tree manner. Our method can employ endgame positions infor-
mation in more simple way.

There are several researches tried to apply MCTS algorithm with playout
simulation for Shogi [12][13]. They try to employ several improvements such as
killer-heuristics, however they cannot achieve comparable strength to conven-
tional tree search.

3 Proposed Method

Proposed method changes two main concepts in MCTS algorithm; (1) using
randomized game-tree search as simulations, (2) propagating probability distri-
bution of evaluated value using the Bayesian Approach concept. This section
explains the detail.

3.1 Randomized Tree Search as Simulation

Original MCTS algorithm uses a randomly chosen move sequence as a simulation,
and its result is treated as binary value, win or lose. Our method uses randomized
conventional min-max tree search as a simulation, and its evaluated value is
collected to express how the board position is desirable to win. Randomized
values are added to the value of evaluation function at every leaf node. Multiple
evaluated values are collected at one board position, and they are treated as a
probability distribution of that node.

Randomized values are calculated based on two keys, P and N . P is a number
that reflects a board position which is the target for evaluation function in the
min-max tree search of the simulation. It is calculated by the Zoblist Hashing
[17]. N is the number of simulations done at the simulations root node (that is
a leaf node of the min-max tree). N is same within one simulation tree search,
thus if two board positions in one simulation are identical, the added values
for the evaluation functions of the two positions are same. This helps the eval-
uation values to keep consistent within one min-max tree search, therefore we
can employ all conventional tree search techniques such as transposition table.
Introducing N helps to keep consistent among the evaluated values of leaf nodes
which have same number of simulations. However we does not convince that N
really contributes to make a strong computer player.

3.2 Value Propagation Based on Bayesian Approach

We apply the Bayesian Approach to propagate simulation value distribution
derived from multiple randomized tree search. To ease the calculation of prob-
ability distribution of each node, our method assume the value distribution of
evaluation function as the discrete distribution, and express it as several pins.

940 D. Yokoyama and M. Kitsuregawa

0.1

0.8

+
0.5

Probability distribution:
Described by pins at
simulated values

1.0

(c) Checkmate condition:
Probability is converged

(a) Simulation at the
first time

(b) Simulations at the
second time or later

Fig. 1. Probability distributions of evaluated values constructed from simulations

Figure 1 shows the distributions of simulated values. When the first simula-
tion search of a certain leaf node has finished with the evaluated value v1, our
algorithm assume the value distribution of the leaf node with three-pins, which
has pseudo small probabilities at v1 ± δ (Figure 1 - (a)). If another simulation
has been done with evaluated value v2, the pseudo probabilities at v1±δ is elim-
inated and the probability distribution consists only from the simulation search
values, v1 and v2 (Figure 1 - (b)). In this experiments, the evaluated value of
the first simulation does not include randomized error, which means the v1 is
identical to the original evaluation function value. After the second simulation,
randomized values are added to the evaluation function values. When a check-
mate condition is found in a certain simulation search, the value distribution
of the node is converged as a single pin to indicate the determined condition
(Figure 1 - (c)).

3.3 Extension Control of Game-Tree

The algorithm of the proposed method basically execute following sequence con-
tinuously; (1) select the most important leaf node (refine p) to examine in the
Monte-Carlo tree, (2) if the number of simulations at the node is less than the
threshold (Simnum), execute a simulation search from the node, (3) otherwise
extend the node and grows the Monte-Carlo tree.

Parameter Playdepth is a threshold that defines basic strength of the player.
Our proposed method will return the PV (Principal Variation) which length is
longer than or equal to the Playdepth+PV th, where PV th denotes the additional
length of PV. Proposed method have probability distribution at every nodes in
the min-max tree, thus we assume that each players best play is defined according
to the expected value of the distribution of child node.

A Randomized Game-Tree Search Algorithm for Shogi 941

We implement three strategies to control the node extension in Monte-Carlo
tree; Breadth First, UCB, and QSS.

– Breadth First extends the Monte-Carlo tree in breadth first manner. It limits
the number of children at each node as 3, to achieve the practical execution
time.

– UCB [9] is used to balance two policies, exploitation and exploration. We
choose the target node to extend by recursively selecting the child node which
maximize the UCB. We limit the number of children gradually reduced when
the depth becomes large.

– QSS is a strategy adopted in original Bayesian Approach [1]. We select the
extension target which maximize the QSSL, which considered as the most
influential node to change the value distribution of the root node. If the
top 10% of leaf nodes are already reached to the depth Playdepth, then we
extend the leaf of current PV, to reduce the computational cost.
In selecting the extension target node, we also use the Uall, which is origi-
nally proposed in [1] to decide the termination condition. Uall denotes the
difference between expected values of the root and of the best child of the
root. When the Uall does not change for a long time, we assume that the
current extension strategy does not works efficiently, and we select the leaf
of PV to extend.

There are several ad-hook policies to control branching factor, extension tar-
get, or termination condition, as explained before. These methods aim to reduce
execution time and achieve a practical computer player. However, we did not
intensively examined about these methods.

We examine the effectiveness of these strategies in Section 4.

4 Evaluation

4.1 Experimental Environments

We implement the proposed method using a state-of-the-art computer Shogi
player Gekisashi1, and evaluate its character and effectiveness of the method.
The original player program employs many domain specific techniques, and is
one of the strongest player in the world.

We make many fight between original player and proposed method to eval-
uate the strength. We prepare a test set consists of 500 initial board positions
randomly selected from the 31th move position of human play records. We make
two self-fight games from an initial positon, by changing initial side of the target
programs. Thus we calculate a win ratio from 1000 fights at every evaluation
condition. Original player is configured to search to depth 12. Playdepth in pro-
posed methods are also configured to 12. Each 1000 fights requires about 500
to 2,000 CPU hours. 95% confidence intervals are depicted at all results in the
following figures.

1 http://www.logos.ic.i.u-tokyo.ac.jp/~gekisashi

942 D. Yokoyama and M. Kitsuregawa

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 10 20 30 40 50 60 70 80 90 100 110 120

w
in

 r
at

io

consumed time ratio

PVth = 0

PVth = 12 PVth = 12

PVth = 8

of sim: 1
of sim: 3
of sim: 5
of sim: 7

Fig. 2. Performance comparison of win ratio and consumed time under typical settings

We intensively examined the basic behaviors of our algorithm, such as the
effects of simulation size, the distribution of random numbers, or pseudo distri-
bution of initial simulation. We confirmed the algorithm can achieve comparable
strength even when it uses small simulation search tree. We omit the results in
this paper due to the space limitation. In the following experiments, we basi-
cally use simdepth = 800 , σ = 200 and δ = 100, where σ indicats the standard
deviation of pseudo random values, and δ defines the distribution of the first
simulation of a certain node.

4.2 Relationship between win Ratio and Consumed Time

Figure 2 shows the relationship between win ratio and consumed time under
several typical settings using QSS extension strategy. Each series shows the result
with different Simnum setting from 1 to 7. Each point indicates the result of
different PV th. Horizontal axis indicates the consumed time ratio normalized
by the time of original player.

The win ratio is getting better when PV th becomes large at all settings.
We conclude the proposed method is promising to construct a strong player.
However, the win ratio seems to be slightly decreased when Simnum becomes
large under the same PV th. This means that randomized search does not work
effectively with QSS extension strategy.

4.3 Effects of Extension Policy

Figure 3 (left) shows the win ratio using three extension strategies. The UCB
strategy requires longer execution time than the QSS with the same PV th set-
tings, thus we depicts both results of PV th = 0 and 4 using UCB strategy. The
Breadth First strategy (denoted as “BF” series) requires far more execution time

A Randomized Game-Tree Search Algorithm for Shogi 943

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 1 2 3 4 5 6 7 8

w
in

 r
at

io

Simnum: number of simulation

QSS (PVth = 4)
UCB (PVth = 4)
UCB (PVth = 0)

BF (PVth = 0)

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 10 20 30 40 50 60 70 80

w
in

 r
at

io

consumed time ratio

QSS (PVth = 4)
UCB (PVth = 4)
UCB (PVth = 0)

BF (PVth = 0)

Fig. 3. Effects of extension policy compared by the number of simulations (left), and
consumed time (right)

than QSS and UCB, therefore we omit to show the results with PV th = 4. The
horizontal axis indicates Simnum.

When the number of simulation becomes large, the win ratio seems getting
better with UCB strategy and PV th = 0. This means that changing strategy
of tree extension seems to be effective to improve the randomized part of the
proposed method. The Breadth First strategy also seems to be effective under
Simnum ≤ 5 condition, however win ratio decreasing is occured at Simnum = 7.

Figure 3 (right) shows the same result which depicts the consumed time ratio
as the horizontal axis. Consumed time is reduced in UCB strategy when Simnum
becomes large. It is common for the computer player that the loser side tend
to consume longer time than the winner side, therefore win ratio improvement
may be one of the reason of that result. UCB strategy realizes good performance
with acceptable consumed time.

5 Conclusion

We propose a new randomized game-tree search algorithm based on Bayesian
Approach, which uses multiple game-tree search with a randomized evaluation
function as simulations and treats evaluated values as probability distribution.
Through large amount of self-play evaluations, we conclude our method can
achieve good win ratio against an ordinary game-tree search based player when
30-50 times larger computing resource is available. Our current implementation
is preliminary and has many rooms to improve performance.

Currently, randomization does not effectively work with QSS-based extension
strategy, though it works well with UCB-based strategy. We try to construct a
better strategy in our future work.

Proposed method have a good characteristic to apply large-scale distributed
computing. We also try to establish a distributed algorithm and evaluate its
effectiveness.

Acknowledgments. This work is partially supported by JSPS KAKENHI
Grant Number 26280130.

944 D. Yokoyama and M. Kitsuregawa

References

1. Baum, E.B., Smith, W.D.: A bayesian approach to relevance in game playing.
Artificial Intelligence 97(1-2), 195–242 (1997)

2. Coulom, R.: Efficient selectivity and backup operators in monte-carlo tree search.
In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M(J.) (eds.) CG 2006.
LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2007)

3. Gelly, S., Wang, Y., Munos, R., Teytaud, O.: Modification of UCT with Patterns
in Monte-Carlo Go. Tech. Rep. RR-6062, INRIA (2006),
http://hal.inria.fr/inria-00117266

4. Hart, J.P., Shogan, A.W.: Semi-greedy heuristics: An empirical study. Operations
Research Letters 6(3), 107–114 (1987)

5. Hoki, K., Kaneko, T., Yokoyama, D., Obata, T., Yamashita, H., Tsuruoka, Y.,
Ito, T.: A system-design outline of the distributed-shogi-system akara 2010. In:
2013 14th ACIS International Conference on Software Engineering, Artificial In-
telligence, Networking and Parallel/Distributed Computing (SNPD), pp. 466–471
(July 2013)

6. Hoki, K., Kaneko, T.: The global landscape of objective functions for the optimiza-
tion of shogi piece values with a game-tree search. In: van den Herik, H.J., Plaat,
A. (eds.) ACG 2011. LNCS, vol. 7168, pp. 184–195. Springer, Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-31866-5_16

7. Hoki, K., Muramatsu, M.: Efficiency of three forward-pruning techniques in shogi:
Futility pruning, null-move pruning, and late move reduction (LMR). Entertain-
ment Computing 3(3), 51–57 (2012),
http://www.sciencedirect.com/science/article/pii/S1875952111000450

8. Kishimoto, A., Winands, M., Müller, M., Saito, J.T.: Game-tree search using proof
numbers: The first twenty years. ICGA Journal 35(3), 131–156 (2012)

9. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006), http://dx.doi.org/10.1007/11871842_29

10. Kozelek, T.: Methods of mcts and the game arimaa. Charles University, Prague,
Faculty of Mathematics and Physics (2009)

11. Lorentz, R.J.: Amazons discover monte-carlo. In: van den Herik, H.J., Xu, X.,
Ma, Z., Winands, M.H.M. (eds.) CG 2008. LNCS, vol. 5131, pp. 13–24. Springer,
Heidelberg (2008)

12. Sato, Y., Takahashi, D.: A shogi program based on monte-carlo tree search. In:
The 13th Game Programming Workshop (2008) (in Japanese)

13. Takeuchi, S., Kaneko, T., Yamaguchi, K.: Evaluation function based monte carlo
tree search in shogi. In: The 15th Game Programming Workshop, pp. 86–89 (2010)
(in Japanese)

14. Tsuruoka, Y., Yokoyama, D., Chikayama, T.: Game-tree search algorithm based
on realization probability. ICGA Journal 25(3), 145–152 (2002)

15. Winands, M.H.M., Björnsson, Y., Saito, J.-T.: Monte-carlo tree search solver. In:
van den Herik, H.J., Xu, X., Ma, Z., Winands, M.H.M. (eds.) CG 2008. LNCS,
vol. 5131, pp. 25–36. Springer, Heidelberg (2008),
http://dx.doi.org/10.1007/978-3-540-87608-3_3

16. Winands, M.H.M., Björnsson, Y.: Evaluation function based monte-carlo LOA. In:
van den Herik, H.J., Spronck, P. (eds.) ACG 2009. LNCS, vol. 6048, pp. 33–44.
Springer, Heidelberg (2010), http://dx.doi.org/10.1007/978-3-642-12993-3_4

17. Zobrist, A.L.: A new hashing method with application for game playing. ICCA
Journal 13(2), 69–73 (1990)

http://hal.inria.fr/inria-00117266
http://dx.doi.org/10.1007/978-3-642-31866-5_16
http://www.sciencedirect.com/science/article/pii/S1875952111000450
http://dx.doi.org/10.1007/11871842_29
http://dx.doi.org/10.1007/978-3-540-87608-3_3
http://dx.doi.org/10.1007/978-3-642-12993-3_4

	A Randomized Game-Tree Search Algorithm for Shogi Based on Bayesian Approach
	1
Introduction
	2
Related Work
	3
Proposed Method
	3.1 Randomized Tree Search as Simulation

	3.2
Value Propagation Based on Bayesian Approach
	3.3
Extension Control of Game-Tree

	4 Evaluation

	4.1
Experimental Environments
	4.2
Relationship between win Ratio and Consumed Time
	4.3
Effects of Extension Policy

	5
Conclusion
	References

