
DEIM Forum 2015 E7-3

An Improvement on Hadoop Scheduling by Utilising Analysed CPU Resource
Demands

Kun LIU†, Daisaku YOKOYAMA††, Masashi TOYODA††, and Masaru KITSUREGAWA†††,††

† Graduate School of Information Science and Technology, the University of Tokyo
Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

†† Institute of Industrial Science, the University of Tokyo
4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan

††† National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

E-mail: †{liukun_oliver,yokoyama,toyoda,kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract In Hadoop, tasks of I/O-intensive workloads require much less CPU resources than CPU-intensive tasks,
yet current CPU scheduling assumes that each task equally saturates one physical core. Such policy could lead to
under-utilisation of CPU resources. We alleviate this problem by proposing the Finer Grained CPU Scheduler that
takes into account the actual CPU resource demands of tasks. Demand information is acquired by analysing sample
tasks, and then utilised in the scheduling. To evaluate our approach, we design a practical scheduling system,
implement it in existing Hadoop framework, and conduct a series of experiments running mixed workloads. The
results demonstrate that compared to the state-of-the-art YARN approach, our method improves the throughput of
CPU-intensive workloads by approximately 20%, and does not compromise the performance of I/O intensive jobs.
Key words Hadoop, CPU scheduling, resource demands

1. Introduction

Hadoop MapReduce has become the de facto standard for
large scale data analytics. Since the advent of Hadoop, con-
stant effort has been made to improve its efficiency of cluster
resource utilisation. A notable breakthrough is YARN [1]
(Yet Another Resource Negotiator, the next generation of
Hadoop compute platform developed by Yahoo!), which rev-
olutionised the way of memory allocation: instead of stati-
cally limiting the number of parallel MAP/REDUCE tasks
per node, it sets the per-node memory capacity and sched-
ules each task a configurable amount, i.e., YARN schedules
“memory resources” rather than “static task slots”. However,
different from this relatively flexible and efficient memory
management, current CPU scheduling is very coarse.

In Hadoop YARN, the Resource class models memory
and CPU virtual cores (vcore). For each datanode the vcore
capacity is configured equal to its number of physical cores
[2]; each task requests exactly one vcore. This policy is
loosely akin to the static task slots in classic Hadoop, the
difference being: while classic Hadoop views every task as
completely equal, YARN views them equally CPU-wise. In
practice, however, there are both CPU- and I/O- intensive
workloads [5]. For a task spending most of the time doing

Core 1 Core 2 Core 3 Core 4

...

CPU-intensive

I/O-intensive

Under-utilised CPU cores

Core 5 Core 6

Figure 1: CPU under-utilisation in current Hadoop

0

10

20

30

40

50

60

70

80

90

100

1 11 21 31 41 51 61 71 81

C
P

U
 U

s
a

g
e

 (
%

)

Elapsed Time (s)

Figure 2: CPU load on the datanode

I/O operations, assuming it also saturates one physical core
is by no means reasonable. As illustrated in Figure 1, for
each physical core assigned to an I/O intensive task, a large
proportion of the processing power is left unutilised, which
is a huge waste of valuable CPU resources.

To verify such under-utilisation in practice, we performed
a simple test on a datanode. The experimental environment
is shown in Table 2. On the node which had 8 physical CPU
cores, we executed a T eraGen job that contained 8 tasks.
T eraGen is a highly I/O-intensive workload that generates
random data for the Terabyte sort benchmark, therefore we
expected a proportion of CPU resources to be wasted. As
shown in Figure 2, the average CPU load of the datanode
throughout the test was barely 60%, which implied that ap-
proximately half of the CPU processing power on the node
was left unutilised.

To tackle such problem, we propose a Finer Grained CPU
Scheduler (FGCS). The basic idea of our approach is to
schedule CPU resources according to the actual needs of
tasks. The primary contributions in this paper are:
（ 1） Designing a new CPU resource model that effec-

tively improves CPU utilisation by considering the node ca-
pabilities and task demands
（ 2） Designing and implementing the features to auto-

matically estimate the CPU resource demands of tasks, and
utilise such information in task scheduling.

The rest of the paper is organised as follows. Section 2
describes the FGCS in details. Then we summarise the ex-
periments to evaluate our approach in Section 3. Next, we
introduce a few related researches in Section 4. Finally we
conclude the paper in Section 5.

2. Approach

The problem of current CPU scheduling in Hadoop is the
assumption that every task would saturate one physical core,
despite the fact that many tasks, especially I/O intensive
ones, require much less CPU resources. To enable a Finer
Grained scheduling that could fully utilise yet not over-stress

the CPU resources, we need to model the processing power
demands of the tasks, or more specifically, the proportion
of the processing power of one physical core that each task
roughly consumes. In addition, the actual CPU resource
demands are unknown before the tasks are executed. In
our scheduling method, we parametrise the CPU resource
demand of each task by its “CPU intensity”, and adopt an
analysing based approach to obtain the demand information.

For clarification, in this paper, a workload refers to the defi-
nition of a job, or more specifically, the definition of the Map-
per and Reducer classes. In programming language terms,
a workload could be viewed as a class, and a job could be
viewed as a specific object of the class. Two jobs belong to
the same workload iff they have the exact same Mapper and
Reducer class definitions.

2. 1 CPU resource model
In order to quantify the CPU resources as “proportions of

one core”, we define the capacity of each core as 100, repre-
senting 100% of its processing power. Given n, the number of
physical cores of each node, the total CPU resource capacity
per node is

Capacity = n × 100 (1)

With Equation 1, the default CPU resource request for a
task could be straightforwardly set to 100, independent of
the number of cores per node. This becomes especially con-
venient when: (a) the per-task CPU resource demand of a
job is unknown, e.g., when the workload has not yet been
analysed; (b) some tasks are so short that we do not bother
to analyse them. In either case, we could request 100 CPU re-
source for each task, assuming it saturates one physical core
as YARN currently does, in order to avoid too many parallel
tasks over-stressing the CPU resources of some nodes.

For a particular task t, its CPU resource demand, i.e., the
percentage of one core it roughly saturates, could be esti-
mated by the “CPU intensity” of t. We define CPU intensity
as follows due to its inverse relationship with I/O intensity:

dt = CP U time

CP U time + I/O time
× 100 (2)

the intuition is, the more CPU-intensive t is, the higher the
value of dt, e.g., if t is doing CPU computations only through-
out its entire course, dt is estimated as 100 meaning t satu-
rates one physical CPU core.

In practice, tasks have a-priori unknown CPU resource de-
mands. We therefore analyse each workload by executing a
sample job that contains a small number of tasks, and calcu-
lating the average demand. This is practical since in Hadoop,
the same workload tends to be repeatedly executed, accord-
ing to Ren Kai et al. [10]. The overhead of the small sample
job could thus be amortised over time.

For a particular task t, we could get its total CPU time
in various ways, e.g., via “/proc/[pid]/stat” where pid is the
process id of the task JVM. Getting the exact “I/O time”
directly is difficult, but it is possible to keep track of the
amount of I/O operations. We strive not to underestimate
the CPU resource demands, since otherwise we could end
up assigning more CPU workloads than we ought to, poten-
tially over-stressing some nodes. Due to this consideration
we calculate the I/O time as if t always had optimal I/O
performance, i.e., the full disk bandwidth of the node task t

is reading from or writing to. Since Hadoop usually runs on
non-overlapping FileSystem（注1） and HDFS, the I/O time in
Equation 2 becomes

I/O time = F ileSystem bytes

Disk I/O rate
+ HDF S bytes

HDF S I/O rate
(3)

The disk and HDFS rate could be obtained by conducting a
series of I/O tests.

Once the sample job has been executed, we could estimate
the per MAP/REDUCE task CPU resource demand of the
workload as

dMAP = dMAPi (*)

dREDUCE = dREDUCEi (**)

2. 2 Demand analysing functionality
To make use of the CPU resource model defined in Section

2.1 we need to obtain
（ 1） The total CPU time of each task
（ 2） The total number of bytes read/written, including

both FileSystem and HDFS, by each task
so that the CPU demand of each task could be calculated
using Equation 2 and Equation 3. Then when a job finishes,
its per MAP/REDUCE CPU demand could be calculated
using Equation * and Equation **. When a submitted job is
“known”, i.e., the per MAP/REDUCE CPU demand of the
workload has been calculated once, our system could take
advantage of the demand information to enable the Finer
Grained scheduling; otherwise the job could request the de-
fault per task CPU resource 100, as explained in Section 2.1.

In Hadoop, task scheduling is mostly automatic and trans-
parent, e.g., with MapReduce the user only needs to define
the job by the MAP and REDUCE functions, and rarely
concerns about the details on the task level. This simplic-
ity is a crucial advantage of Hadoop, as indicated by Lee
et al. [8]. Moreover, the same task could have very dif-
ferent CPU resource demands in different environments due
to diverse hardware performance, e.g., a CPU-intensive task
could have lower CPU intensity if executed on datanodes
with relatively more powerful CPU and slower disk. Con-
sequently, workloads have to be re-analysed every time the

（注1）：FileSystem refers to the local file system.

User

Submit jobCheck logs

Set per task

CPU demand

Start tasks

......

startCpuTime, startBytes

Other setups

Task execution

Other cleanups

Calculate task CPU intensity

Calculate per task

CPU demand of job

Write to logs

Commit job output

Job succeeds

Other job setups

Figure 3: Simplified workflow of a MapReduce job with CPU
demand analysing features built in

cluster hardware changes. For simplicity and portability, we
build the CPU demand analysis into Hadoop framework so
that no extra effort (other than testing I/O rates when disk
hardware changes, which is rather infrequent) is required by
the Hadoop user. The rule of thumb is that the user does
not need to write extra code for his MapReduce jobs.

In the following subsections, we briefly review the workflow
of a Hadoop MapReduce job. As we walk through each step,
we present our objective and roughly explain relevant imple-
mentations. Figure 3 shows a simplified workflow with the
analysing features built in. To distinguish from the Hadoop
framework, we use a reddish colour for our implementations.

2. 2. 1 Job submission
When a job is submitted, FGCS wants to make use of

the analysed resource demands if possible. Specifically, if

the job is “known”, i.e., the same workload has already been
analysed, it could set the per MAP/REDUCE CPU resource
demand accordingly during the job initialisation; otherwise,
it could request the default per-task CPU resource 100 as
explained in Section 2.1.

In Hadoop, all job submissions need to go through the
submit() method for job initialisations. At the beginning of
submit(), FGCS checks the analysis logs in HDFS for previ-
ously analysed CPU resource demands of the same workload.
In our system, two jobs are treated as the same workload iff
they have the same name. Job name is also the identifier for
searching CPU demand logs.

2. 2. 2 Task execution
For a particular task t, FGCS needs to obtain its total

CPU time and total number of bytes read/written in order
to calculate its CPU demand dt. To do so FGCS gets the two
values once before the task execution starts, one more time
after the task finishes, and calculates the differences. Once
the CPU demand has been calculated, the value needs to be
stored in a robust and efficient way so that for each job, all
the tasks that belong to it could be correctly put together to
calculate the average.

In Hadoop, every Mapper/Reducer class inherits a base
Mapper/Reducer. Our CPU demand calculations are im-
plemented in these base classes, so that the features would be
inherited to every MAP/REDUCE task. For clarity, we re-
fer to the base classes as MapperBase and ReducerBase
respectively for the remainder of this paper.

When t starts, the method setup() is invoked for task
initialisations. At the beginning of setup(), t has virtually
performed nothing. This is the point when FGCS fetches
the CPU time of the task JVM and the number of bytes
as the starting values. When t finishes, it calls the method
cleanup() before exit. The very end of cleanup() is the
point to fetch those two values again. Then we could calcu-
late dt using Equation 2 and Equation 3. In our system, I/O
rates needed in Equation 3 are provided as properties in the
Hadoop built-in configuration file “mapred-site.xml”.

The value of dt is kept in our self-defined task counters
grouped in “CPUSTAT”. Depending on the task type, we
increment MAP_COUNT/REDUCE_COUNT by 1, and
MAP_DEMAND/REDUCE_DEMAND by dt.

Extra effort is made to make sure that the CPU intensity
values are reliable
（ 1） If the task attempt fails we do not increment any

counters, i.e., it is not involved in calculating the average
per MAP/REDUCE CPU usage of the job it belongs to
（ 2） Ensuring that Combiners would not incorrectly in-

crement the CPUSTAT counters. Combiner is a widely
adopted optimisation which performs “local” reduce-type

Workload MAP REDUCE
P i 100 Default

Bbp 100 100
T eraGen 49 N/A

ET L 47 N/A

Table 1: Per MAP/REDUCE task CPU resource demand of
each workload

functions within the MAP tasks to decrease the amount
of data passed to and eventually processed by REDUCE
tasks. On one had, combiners are essentially Reducers: ev-
ery Combiner class eventually inherits ReducerBase, and
it is not unusual for a job to use its Reducer class as the
Combiner. On the other hand, they are executed within
MAP tasks. In other words, combiners are part of MAP
tasks but they would increment REDUCE_COUNT and
REDUCE_DEMAND if left unchecked. As such, we insert
statements in ReducerBase so that those two counters are
only incremented by real REDUCE tasks.

2. 2. 3 Job completion
When all tasks finish, the per MAP/REDUCE CPU de-

mand of the workload needs to be calculated and logged so
that the information could be utilised for future scheduling.
For reliability of the results, only jobs that succeeded are
calculated.

In Hadoop, upon successful job completion the com-
mitJob() method is called once for committing the output
[9]. Within commitJob(), we should have the correctly ag-
gregated CPUSTAT counters（注2）for the needed calculations.

At the end of commitJob() FGCS checks the analysis
logs in HDFS. If a log with the same name already exists,
indicating that the workload has already been analysed, the
newly analysed results are discarded; otherwise, they are
written into HDFS. If reanalysis for certain jobs are desired,
the corresponding logs need to be explicitly cleared (using
our script) so that new values could be written. This resem-
bles many real-world MapReduce applications - the job does
not overwrite existing paths/files.

2. 3 Analysing workloads
With the functionalities described above, we analysed the

CPU resource demands of the workloads used for experi-
ments. Each workload was analysed with a 16-task sample
job. Table 1 summarises the analysed CPU demands. For
MAP-only workloads, the REDUCE column is blank.

When running sample jobs, we always set the per-task

（注2）：In Hadoop, task counters are maintained by each task. When
the job finishes, for each counter the results are aggregated over all
the tasks. Since commitJob() is only invoked if the job succeeds, we
are guaranteed to have the correctly aggregated counters.

Hardware
CPU Xeon E5530, 2.40 GHz, 8 cores
Memory 24 GB
Disk 500 GB
Network 10 Gbps

Software
Hadoop 2.6.0
Framework YARN
Java Oracle 1.7.0_21

Table 2: Experimental environment (per datanode)

CPU resource demand to the default value 100 since they
were “unknown” at this point. In addition, some tasks are
extremely short-lived, e.g., P i contains a single REDUCE
task that finishes in scant few seconds. For this kind of
tasks, it is difficult to guarantee the accuracy of resource
demand calculations as the overhead of task executing be-
comes non-negligible. Thus we ignored the analysed results
and changed them to “default”. As explained in Section 2.1
this default setting is a safe option to avoid overstressing the
CPU resources.

3. Evaluation

To evaluate the FGCS, we conducted experiments on an 8-
node cluster. The experimental environment is summarised
in Table 2. Each of our datanode has 8 physical CPU cores,
which according to current scheduling policy would the num-
ber of parallel tasks per node to 8, but by our standard would
define the per-node CPU resource capacity as 8*100.

In practice, the Hadoop daemons on each datanode con-
sume CPU resources, although the amount is usually in-
significant. When HDFS is performing a lot of I/O opera-
tions, however, the relevant DataNode processes could have
very high CPU usage. Due to this consideration, on each
datanode we reserved one physical core for Hadoop daemons
and the operating system, leaving a 7*100 CPU capacity for
MapReduce tasks. This strategy resembled memory alloca-
tion in Hadoop: it is good practice to reserve a proportion of
memory for the system on each node and leave the rest for
actual MapReduce tasks.

3. 1 Benchmarks
The per-task CPU resource demands of the benchmark

workloads are summarised in Table 1. Except for ET L, all
workloads came from the official benchmark of Hadoop [11]
（ 1） Pi The program estimated the value of π using the

Quasi-Monte Carlo method
（ 2） Bbp This job computed x exact digits of π using

the Bailey-Borwein-Plouffe formula. x was configurable, and
the calculations were evenly distributed to all MAP tasks
（ 3） TeraGen In this job, each MAP task was specified

Balanced CPU-heavy IO-heavy
CPU-intensive job(s) 1 2 1

tasks / CPU-intensive job 70 50 50
IO-intensive job(s) 1 1 2

tasks / IO-intensive job 31 20 20

Table 3: Job settings for 3 groups of tests

to write 2 GB of random data to HDFS
（ 4） ETL We constructed this highly I/O intensive

workload. Each MAP task read an HDFS block of plain text,
converted it to XML, and wrote the result back to HDFS.
This resembled many real-world Expand-Transform Load ap-
plications used for preprocessing in Big Data

Of these workloads, P i and Bbp belonged to CPU-intensive
category, while T eraGen and ET L were highly I/O inten-
sive.

We conducted 3 groups of tests, which resembled 3 real-
world workload patterns
（ 1） Balanced Pattern 1 CPU-intensive job ran along

with 1 I/O-intensive job. There were 4 combinations of jobs
（ 2） CPU-heavy Pattern Each test contained 3 jobs:

P i, Bbp, and one of the I/O-intensive workloads. There were
2 different tests
（ 3） I/O-heavy Pattern Each test contained 3 jobs:

T eraGen, ET L, and one of the CPU-intensive workloads.
There were 2 different tests

The detailed job settings are summarised in Table 3. We
tuned the number of tasks so that in each test, jobs would
not have too different execution times (it would be unfair to
assess a very large job and a tiny one, since the latter would
have little impact on the overall performance).

3. 2 Metrics
Firstly, for each CPU-intensive job, we assessed its average

MAP time, i.e., the average execution time amongst all its
MAP tasks（注3）. CPU-intensive workloads heavily rely on the
CPU resources, therefore if the cluster CPU resources were
over-stressed, the performance of CPU-intensive tasks would
be compromised.

Secondly, for every job, we assessed its job execution time,
we expected that
（ 1） For each CPU-intensive job, the execution time

would be reduced, since FGCS in general enables more paral-
lel CPU-intensive tasks without compromising the individual
task performance (one of our principles is not to over-stress
the CPU resources)
（ 2） For each I/O-intensive job, the execution time would

not change significantly. In our environment, even a sin-

（注3）：All our workloads had very small REDUCE tasks, or none,
therefore it was meaningless to assess the REDUCE tasks.

Test Workload YARN FGCS Change (%)
P i + T eraGen P i 78,186 78,066 0.15↓

P i + ET L P i 78,563 78,039 0.67↓
Bbp + T eraGen Bbp 90,937 90,981 0.05↑

Bbp + ET L Bbp 90,489 90,875 0.43↑

Table 4: AvgMapTime (in ms, lower is better) of each CPU-
intensive job under balanced pattern

0

100000

200000

300000

400000

500000

600000

700000

Pi / Bbp

TeraGen / ETL

Workload

YARN

Finer Grained

Approach

Figure 4: Job execution time (ms, lower is better) under
balanced pattern

Test Workload YARN FGCS Change (%)
P i + T eraGen + ET L P i 95,941 95,761 0.19↓

Bbp + T eraGen + ET L Bbp 86,114 87,932 2.11↑

Table 5: AvgMapTime (in ms, lower is better) of each CPU-
intensive job under I/O-heavy pattern

gle I/O-intensive task would nearly saturate the disk band-
width on the relevant datanode, therefore more parallel I/O-
intensive tasks would be unlikely to significantly improve the
disk resource utilisation

3. 3 Results
We chose Fair Scheduler as the memory scheduling policy

so that in each test, both jobs could progress simultaneously.
For each combination of workloads, we first executed the jobs
under current YARN CPU policy, then switched to our Finer
Grained approach.

3. 3. 1 Results under Balanced Pattern
Firstly, as shown in Table 4, compared to YARN, FGCS

did not degrade the task performance of the CPU-intensive
workload in any test. The differences between two ap-
proaches were tiny, well under 1%, thus negligible. This
implied that FGCS did not over-stress the CPU resources.

Figure 4 shows the job execution times. For I/O-intensive
workloads, there were no significant changes. However, the
execution time of every CPU-intensive job was significantly
reduced, by 18% up to 23%. This improvement was un-
derstandable, since FGCS allowed more CPU-intensive tasks
with unaffected individual task performance.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

TeraGen&ETL + Pi TeraGen&ETL + Bbp

Pi / Bbp

TeraGen + ETL

Workload

Approach

YARN

Finer Grained

Figure 5: Job execution time (ms, lower is better) under
I/O-heavy pattern

Test Workload YARN FGCS Change (%)

P i + Bbp + T eraGen
P i 78294 78224 0.09↓

Bbp 87,525 87,585 0.07↑

P i + Bbp + ET L
P i 77,822 78,179 0.46↑

Bbp 86,890 87,399 0.59↑

Table 6: AvgMapTime (in ms, lower is better) of each CPU-
intensive job under CPU-heavy pattern

0

100000

200000

300000

400000

500000

600000

700000

 Pi&Bbp + TeraGen Pi&BBp + ETL

Pi + Bbp

TeraGen / ETL

Workload

Approach

YARN

Finer Grained

Figure 6: Job execution time (ms, lower is better) under
CPU-heavy pattern

3. 3. 2 Results under I/O-heavy Pattern
As shown in Table 5, Bbp suffered a slight degradation in

task performance, but we observed a slight performance im-
provement in T eraGen and ET L, which well compensated
the degradation. Therefore, the overall task performance did
not drop in the Bbp + T eraGen + ET L test.

The results of job execution time were rather consistent
with the balanced workload pattern: as shown in Figure 5,
there were no big changes in the I/O-intensive jobs, and the
performance of the CPU-intensive job was improved by 17%
up to 22%.

3. 3. 3 Results under CPU-heavy Pattern
Firstly, there were no performance degradation in individ-

ual tasks, as shown in Table 6.
Figure 6 shows the job execution times. Different from

the balanced and I/O-heavy pattern, where CPU-intensive
jobs were largely improved, in CPU-heavy pattern, FGCS

had almost identical performance compared to YARN. The
reason was that under such pattern, most of the tasks were
CPU-intensive, i.e., the proportion of wasted CPU resources
were not significant. As a result, there was not much room
for improvement on the CPU utilisation.

4. Related work

Others have realised the need to take into consideration
the node capabilities such as processing power in scheduling.
From Hadoop version 2.3.0 where vcore was implemented for
the first time, it has been documented in Hadoop API docs
that “a complementary axis for CPU requests that represents
processing power will likely be added in the future to enable
finer-grained resource configuration”.

Motivated by the emergence of clusters with heterogeneous
hardware, Gupta, Shekhar, et al. [4] proposed the Through-
putScheduler, which adopts a learning based approach to
analyse the CPU and disk requirements of jobs, then sched-
ules tasks based on the optimal matching of node capabili-
ties and task needs, i.e., it attempts to assign CPU-intensive
workloads to nodes with relatively more powerful CPU and
disk-intensive workloads elsewhere. It effectively improves
task performance in heterogeneous environment where task
placements have significant impact.

Similarly, the CASH (Context Aware Scheduler for
Hadoop), proposed by Kumar et al. [3], addresses the
scheduling problem in a heterogeneous environment in three
steps. Firstly, it classifies jobs into CPU-bound and I/O-
bound category（注4）. Then it classifies the nodes into “CPU
buckets” and “I/O buckets”, i.e., nodes with relatively more
powerful CPUs/disks. Finally, it attempts to match CPU-
/IO- intensive tasks to CPU/IO buckets.

While those approaches do consider the resource require-
ments of tasks, their basic logic “CPU-intensive tasks to
faster CPUs, I/O-intensive tasks to faster disks” does not
apply in a homogeneous cluster, which is still the common
case. We consider the task requirements from a different
point of view, i.e., the CPU resource requirements as op-
posed to the capacity. By scheduling CPU based on such
requirements, our FGCS effectively improves the CPU utili-
sation - it alleviates CPU waste and avoids over-stressing the
CPU resources.

Different from those approaches, FGCS does not change
the task placement strategy. Our consideration is that cur-
rent strategy is already complicated with many factors con-
sidered such as data locality [6] (assigning MAP tasks to

（注4）：More specifically, for each job, its MAP tasks and REDUCE
tasks are separately classified, e.g., a job could be CPU-intensive in
its MAP phase and I/O-intensive in its REDUCE phase.

nodes where the data to be processed is stored) . Data lo-
cality is so crucial that Facebook decided to adopt a Delay
Scheduling [7] algorithm: if a job that should be scheduled
next according to resource fairness, but it cannot launch a
local task, it waits for a small amount of time, letting other
jobs launch tasks first. Our approach does not conflict with
those factors and works well with existing schedulers such as
Fair Scheduler.

5. Conclusion

Current CPU scheduling in Hadoop assumes that each
task saturates one physical core, which is not the case for
I/O intensive tasks. Consequently, a proportion of the clus-
ter CPU resources are left unutilised. We proposed a Finer
Grained CPU resource model that takes into account the
actual CPU resource demands of tasks so that the wasted
proportion could be effectively utilised. In particular, more
CPU-intensive tasks could be executed in parallel without
overstressing the CPU resources. As a result, Finer Grained
approach significantly improves the throughput of CPU-
intensive workloads and does not compromise the perfor-
mance of I/O intensive ones.

To preserve the simplicity of Hadoop and for better
portability, we designed and implemented the features into
Hadoop framework to make use of the new CPU resource
model. The only extra effort that our system requires com-
pared to current Hadoop is testing the disk I/O rates once
when the cluster hardware changes.

Future work could be extending the Finer Grained CPU
policy to disk scheduling. Currently there are two challenges
in implementing this: (1) the lack of a robust way to model
the cluster disk resources; (2) the existence of HDFS making
disk resources “non-local”, i.e., a task on a node N could
be reading from or writing to disks on other nodes. How-
ever, with major modifications on the resource model and
deep delving into HDFS, emulating our approach to enable
a Finer Grained disk scheduling is possible in the future.

References
[1] Vavilapalli, Vinod Kumar, Arun C. Murthy, Chris Douglas,

Sharad Agarwal, Mahadev Konar, Robert Evans, Thomas
Graves et al. “Apache hadoop yarn: Yet another resource
negotiator,” In Proceedings of the 4th annual Symposium
on Cloud Computing, p. 5. ACM, 2013.

[2] Apache Foundation, Hadoop, http://hadoop.apache.org.
[3] Kumar, K. Arun, Vamshi Krishna Konishetty, Kaladhar

Voruganti, and G. V. Rao. “CASH: context aware sched-
uler for Hadoop,” In Proceedings of the International Con-
ference on Advances in Computing, Communications and
Informatics, pp. 52-61. ACM, 2012.

[4] Gupta, Shekhar, Christian Fritz, Bob Price, Roger Hoover,

Johan De Kleer, and Cees Witteveen. “ThroughputSched-
uler: Learning to Schedule on Heterogeneous Hadoop Clus-
ters,” In ICAC, pp. 159-165. 2013.

[5] Hortonworks - typical Workloads Patterns For Hadoop,
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.
1.2/bk_cluster-planning-guide/content/typical-workloads.
html

[6] Guo, Zhenhua, Geoffrey Fox, and Mo Zhou. “Investiga-
tion of data locality in MapReduce,” In Proceedings of the
2012 12th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing (ccgrid 2012), pp. 419-426.
IEEE Computer Society, 2012.

[7] Zaharia, Matei, Dhruba Borthakur, Joydeep Sen Sarma,
Khaled Elmeleegy, Scott Shenker, and Ion Stoica. “Delay
scheduling: a simple technique for achieving locality and
fairness in cluster scheduling,” In Proceedings of the 5th
European conference on Computer systems, pp. 265-278.
ACM, 2010.

[8] Lee, Kyong-Ha, Yoon-Joon Lee, Hyunsik Choi, Yon Dohn
Chung, and Bongki Moon. “Parallel data processing with
MapReduce: a survey,” AcM sIGMoD Record 40, no. 4
(2012): 11-20.

[9] Tom White. “Hadoop: The definitive guide,” O’Reilly Me-
dia, Inc., 2012.

[10] Ren, Kai, YongChul Kwon, Magdalena Balazinska, and Bill
Howe. “Hadoop’s adolescence: an analysis of Hadoop usage
in scientific workloads,” Proceedings of the VLDB Endow-
ment 6, no. 10 (2013): 853-864.

[11] Hadoop benchmarks, https://github.com/apache/hadoop/
tree/trunk/hadoop-mapreduce-project/hadoop-mapreduce-examples/
src/main/java/org/apache/hadoop/examples.

