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Abstract. This paper investigates the partial periodic behavior of the
frequent patterns in a transactional database, and introduces a new class
of user-interest-based patterns known as chronic-frequent patterns. Infor-
mally, a frequent pattern is said to be chronic if it has sufficient number
of cyclic repetitions in a database. The proposed patterns can provide
useful information to the users in many real-life applications. An example
is finding chronic diseases in a medical database. The chronic-frequent
patterns satisfy the anti-monotonic property. This property makes the
pattern mining practicable in real-world applications. The existing pat-
tern growth techniques that are meant to discover frequent patterns
cannot be used for finding the chronic-frequent patterns. The reason
is that the tree structure employed by these techniques’ capture only the
frequency and disregards the periodic behavior of the patterns. We in-
troduce another pattern-growth algorithm which employs an alternative
tree structure, called Chronic-Frequent pattern tree (CFP-tree), to cap-
ture both frequency and periodic behavior of the patterns. Experimental
results show that the proposed patterns can provide useful information
and our algorithm is efficient.

Keywords: Data mining, knowledge discovery in databases, frequent
patterns and periodic patterns.

1 Introduction

A time series is a collection of events obtained from sequential measurements
overtime. Periodic patterns are an important class of regularities that exist in
a time series. Periodic pattern mining involves discovering all those patterns
that have exhibited either complete or partial cyclic repetitions in a time series.
Periodic pattern mining has several real-world applications including prediction,
forecasting and detection of unusual activity. A classic application is market-
basket analysis. It analyzes how regularly items are being purchased by the
customers. For example, if the customers are purchasing ‘Bread’ and ‘Jam’
together at every hour of a day, then the set {Bread, Jam} represents a periodic
pattern.
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The problem of finding periodic patterns has been widely studied in [1–6].
The basic model used in all of these studies, however, remains the same and is
as follows:

1. Split the given time series into distinct subsets (or periodic-segments) of a
fixed length.

2. Discover all periodic patterns that satisfy the user-defined minimum support
(minSup). The minSup controls the minimum number of periodic-segments
in which a pattern must appear.

Example 1. Given the time series TS = a{bc}baebace and the user-defined
period as 3, TS is divided into three periodic-segments: TS1 = a{bc}b, TS2 = aeb
and TS3 = ace. Let {a ⋆ b} be a pattern, where ‘⋆’ denotes a wild character that
can represent any single set of events. This pattern appears in the periods of TS1

and TS2. Therefore, its support count is 2. If the user-defined minSup count is
2, then {a ⋆ b} represents a periodic pattern. In the above time series, we have
applied braces only for the events having more than one item for brevity. An
event represents a set of items (or an itemset) having some occurrence order.

The popular adoption and successful industrial application of this basic model
suffers from the following issues.

– The basic model considers time series as a symbolic sequence. As a result,
the model fails to consider the actual temporal information of the events
within a sequence.

– This model suffers from the sparsity problem. That is, most of the discovered
patterns contain many wild characters with a very few number of events. For
example, a ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ bc ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆a ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆b. This problem
makes the discovered patterns impracticable in applications.

– The periodic patterns satisfy the anti-monotonic property [7]. That is, all
non-empty subsets of a periodic pattern are also periodic patterns. However,
this property is insufficient to make the pattern mining practical or com-
putationally inexpensive in the case of time series. The reason is number of
frequent i-patterns shrink slowly (when i > 1) as i increases in a time series.
The slow speed of decrease in the number of frequent i-patterns is due to the
strong correlation between frequencies of patterns and their sub-patterns [2].

To confront these issues, researchers have introduced periodic-frequent pattern
mining which involves discovering all those frequent patterns that have exhibited
complete cyclic repetitions in a temporally ordered transactional database [8–
11]. As the real-world is generally imperfect, we have observed that the existing
periodic-frequent pattern mining algorithms cannot discover those interesting
frequent patterns that have exhibited partial cyclic repetitions in a database.

With this motivation, this paper investigates the partial periodic behavior
of the frequent patterns in a transactional database, and introduce a class of
user-interest-based patterns known as chronic-frequent patterns. Informally,
a frequent pattern is said to be chronic-frequent if it has sufficient number of
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cyclic repetitions in a database. A novel measure, called periodic-recurrence, has
been introduced in this paper. This measure assess the periodic interestingness of
a frequent pattern with respect to the number of cyclic repetitions in the entire
database. The patterns discovered with this measure satisfy the anti-monotonic
property. That is, all non-empty subsets of a chronic-frequent pattern are also
chronic-frequent. This property makes the chronic-frequent pattern mining prac-
ticable in real-life applications. The existing pattern-growth techniques that are
meant to discover frequent patterns in a transactional database [12] cannot be
used for finding the chronic-frequent patterns. It is because the tree structure
used by these techniques’ capture only the frequency and disregard the peri-
odic behavior of the patterns. In this paper, we have introduced another tree
structure, called Chronic-Frequent Pattern Tree (CFP-tree), to capture both fre-
quency and periodic behavior of the patterns. A pattern-growth algorithm, called
Chronic-Frequent pattern-growth (CFP-growth), has been proposed to discover
the patterns from CFP-tree. Experimental results show that CFP-growth is run-
time efficient and scalable as well.

The rest of the paper is organized as follows. Section 2 describes the related
work on periodic pattern mining. Section 3 introduces our model of chronic-
frequent patterns. Section 4 describes the working of CFP-growth algorithm.
The experimental evaluation of CFP-growth has been presented in Section 5.
Finally, Section 6 concludes the paper with future research directions.

2 Related Work

Finding periodic patterns has been widely investigated in various domains as
temporal patterns [13] and cyclic association rules [14]. These approaches dis-
cover all those patterns which are exhibiting complete cyclic repetitions in a time
series data. Since the real-world is imperfect, Han et al. [1] have introduced a
model to find periodic patterns which are exhibiting either complete or partial
cyclic repetitions in a time series. Later, they have proposed the max-subpattern
hit set property to reduce the computational cost of finding the periodic patterns
[2]. Berberidis et al. [4] and Cao et al. [5] have tried to address an open problem
of specifying the period using autocorrelation and other methods. Yang et al. [3]
have used information gain to discover periodic patterns involving both fre-
quent and rare items. All of these approaches consider time series as a symbolic
sequence, and therefore, do not consider the actual temporal information of the
events within a series.

Tanbeer et al. [8] have represented each event in time series as a pair con-
stituting of an itemset and its timestamp. Next, they have modeled time series
as a temporally ordered transactional database, and investigated the full peri-
odic behavior of the frequent patterns to discover a class of user-interest-based
patterns known as periodic-frequent patterns. The approach of representing time
series as a transactional database has the following advantages:
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– Symbolic sequences do not consider the temporal information of the events
within a time series. On contrary, the same information is considered in
temporally ordered transactional databases.

– The anti-monotonic property can not effectively reduce the search space in
symbolic sequences [2]. However, the same property reduces the search space
effectively in transactional databases.

– Fast algorithms, such as pattern-growth technique, can be employed to dis-
cover the patterns efficiently.

Recently, Chen et al. [15] have shown that by representing a symbolic sequence
as a transactional database, one can employ a pattern-growth technique to out-
perform the max-subpattern hit set algorithm [2]. Thus, many researchers are
extending Tanbeer’s work to address the rare item problem [9, 10] and top−k
[11] periodic pattern mining. All of the above approaches try to discover those
frequent patterns that are exhibiting complete cyclic repetitions in the entire
database. On the contrary, our model focuses on finding the frequent patterns
that are exhibiting either complete or partial cyclic repetitions in a
database.

In [16, 17], we have introduced a measure known as periodic-ratio to assess
the partial periodic behavior of a frequent pattern. Unfortunately, finding the
patterns with this measure is a computationally expensive process because the
discovered patterns do not satisfy the anti-monotonic property. In this paper,
we have introduced an alternative interestingness measure which not only assess
the partial periodic behavior of a frequent pattern, but also ensures that the
discovered patterns satisfy the anti-monotonic property.

Overall, the proposed model of finding chronic-frequent patterns in a trans-
actional database is novel and distinct from the existing models.

3 Proposed Model

Let I = {i1, i2, · · · , in} be the set of items. Let X ⊆ I be a pattern. A
pattern containing k number of items is called a k-pattern. A transaction,
tr = (tid, Y ), is a tuple, where tid represents the transaction-identifier (or a
timestamp) and Y is a pattern. A transactional database TDB over I is a set
of transactions T = {t1, t2, · · · , tm}, m = |TDB|, where |TDB| represents the
size of TDB in total number of transactions. For a transaction tr = (tid, Y ),
such that X ⊆ Y , it is said that X occurs in tr and such transaction-identifier
is denoted as tidX . Let TIDX = {tidXj , · · · , tidXk }, j, k ∈ [1,m] and j ≤ k,
be the set of all transaction-identifiers at which X has appeared in TDB. The
size of TIDX is defined as the support of X, and denoted as S(X). That is,
S(X) = |TIDX |. The pattern X is said to be frequent if S(X) ≥ minSup,
where minSup is the user-defined minimum support threshold.

Example 2. Consider the transactional database shown in Table 1. It contains
10 transactions. The tid of each transaction represents its sequential occur-
rence order with respect to a particular timestamp. The set of items, I =
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{a, b, c, d, e, f, g, h}. The set of items, ‘a’ and ‘b’, i.e., ‘{a, b}’ is known as an item-
set (or a pattern). This pattern contains two items. Therefore, it is a 2-pattern.
For brevity, we refer this pattern as ‘ab’. The pattern ‘ab’ appears in the transac-
tions having tids 1, 3, 5, 8 and 10. Therefore, TIDab = {1, 3, 5, 8, 10}. The sup-
port of ‘ab’ is the size of TIDab. Therefore, S(ab) = |TIDab| = |{1, 3, 5, 8, 10}| =
5. If the user-defined minSup = 4, then ‘ab’ is a frequent pattern as S(ab) ≥
minSup.

Table 1. Transactional database.

TID Items TID Items TID Items TID Items TID Items
1 a, b, h 3 a, b, g 5 a, b, c, d 7 c, d, h 9 c, d, g
2 e, f 4 e, f, h 6 e, f, g 8 a, b, c, d 10 a, b, c, d

Definition 1. (A period of pattern X.) Let tidXp and tidXq , p, q ∈ [1,m] and
p < q, be the two consecutive transaction-ids where X has appeared in TDB.
The number of transactions (or the time difference) between tidXp and tidXq can

be defined as a period of X, say pXi . That is, pXi = tidXq − tidXp .

Example 3. Continuing with Example 2, the pattern ‘ab’ has consecutively ap-
peared in the tids of 1 and 3. Therefore, a period of ‘ab,’ i.e., pab1 = 2 (= 3− 1).
Similarly, the other periods of ‘ab’ are as follows: pab2 = 2 (= 5− 3), pab3 = 3 (=
8− 5) and pab4 = 2 (= 10− 8).

Definition 2. (An interesting period of pattern X.) Let PX = {pX1 , pX2 , · · · , pXk },
k = S(X) − 1, be the complete set of all periods of X in TDB. A pXj ∈ PX is

said to be interesting iff pXj ≤ maxPrd, where maxPrd refers to the user-defined
maximum period threshold. This definition captures the periodic occurrences of
a pattern in the database.

Example 4. The complete set of periods for ‘ab’, i.e., P ab = {2, 2, 3, 2}. If the
user-defined maxPrd = 2, then pab1 is an interesting period because pab1 ≤
maxPrd. Similarly, pab2 and pab4 are interesting periods, however, pab3 is not an
interesting period as pab3 ̸≤ maxPrd.

Definition 3. (The periodic-recurrence of pattern X.) Let IPX ⊆ PX be the
set of periods such that ∀pXj ∈ IPX , pXj ≤ maxPrd. The size of IPX gives the

periodic-recurrence of X, say PR(X). That is, PR(X) = |IPX |.

Example 5. The complete set of all interesting periods of ‘ab’, i.e., IP ab =
{pab1 , pab2 , pab4 }. Therefore, the periodic-recurrence of ‘ab’, i.e., PR(ab) = |IP ab| =
3.

The above definition measures the number of periodic occurrences of a pattern
X in TDB. Now, we define chronic-frequent patterns using the support and
periodic-recurrence measures.
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Definition 4. (The chronic-frequent pattern X.) The frequent pattern X is said
to be chronic-frequent if its periodic-recurrence is no less than the user-
defined minimum periodic-recurrence threshold (minPR). That is, X is a chronic-
frequent pattern if S(X) ≥ minSup and PR(X) ≥ minPR.

Example 6. If the user-defined minPR = 3, then the frequent pattern ‘ab’ is a
chronic-frequent pattern as PR(ab) ≥ minPR.

The support and a period of a pattern can be normalized to the scale
of [0%, 100%] by expressing them in the percentage of |TDB|. Similarly, the
periodic-recurrence of pattern X can also be normalized to the same scale by
expressing it in percentage of |TDB| − 1, where |TDB| − 1 represents the maxi-
mum number of periods a pattern can have in a database (see Property 3). The
patterns discovered with this normalization method satisfy the anti-monotonic
property. The correctness of our argument is based on the Properties 1, 2 and 3
and shown in Lemma 1.

Property 1. The total number of periods for a pattern X, i.e., |PX | = S(X)−1.

Property 2. (Apriori property [7]) If X ⊂ Y , then TIDX ⊇ TIDY .

Property 3. The maximum support a patternX can have in a database is |TDB|.
From Property 1, it turns out that the maximum number of periods a pattern
X can have in a database is |TDB| − 1.

Lemma 1. Let X and Y be the patterns such that X ⊂ Y . If S(X) < minSup
and PR(X) < minPR, then S(Y ) < minSup and PR(Y ) < minPR.

Proof. IfX ⊂ Y , then TIDX ⊇ TIDY (see Property 2). Thus, PX ⊇ PY , IPX ⊇
IPY , S(X) ≥ S(Y ) and PR(X) ≥ PR(Y )

(
= |IPX |

|TDB|−1 ≥ |IPY |
|TDB|−1

)
. There-

fore, if S(X) < minSup and PR(X) < minPR, then S(Y ) < minSup and
PR(Y ) < minPR. Hence proved.

Definition 5. (Problem definition.) Given a transactional database (TDB)
and the user-defined minimum support (minSup), maximum period (maxPrd)
and minimum periodic-recurrence (minPR) thresholds, discover the complete
set of chronic-frequent patterns having support and periodic-recurrence no less
than the minSup and minPR, respectively.

In the next section, we discuss our algorithm to discover the complete set of
chronic-frequent patterns from a transactional database.

4 The CFP-growth Algorithm

The CFP-growth algorithm involves two steps: (i) compressing the database
into a tree-structure, called CFP-tree and (ii) recursive mining of CFP-tree to
discover the patterns. Before describing these two steps, we explain the structure
of CFP-tree.
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4.1 Structure of CFP-tree

The CFP-tree includes a prefix-tree and a chronic-frequent item (or 1-pattern)
list, called CFP-list. The CFP-list consists of four fields – item name (I), total
support (f), periodic-recurrence (pr) and a pointer pointing to the first node in
the prefix-tree carrying the item.

The prefix-tree in CFP-tree resembles the prefix-tree in FP-tree. However,
to capture both frequency and chronic behaviour of the patterns, the nodes in
CFP-tree explicitly maintains the occurrence information for each transaction by
keeping an occurrence transaction-id list, called tid-list. To achieve memory
efficiency, only the last node of every transaction maintains the tid-
list. Hence, there are two types of nodes maintained in a CFP-tree: ordinary
node and tail-node. The former is the type of nodes similar to that used in FP-
tree, whereas the latter is the node that represents the last item of any sorted
transaction. The structure of tail-node is I[tid1, tid2, · · · , tidm], where I is the
node’s item name and tidi, i ∈ [1,m], (m be the total number of transactions
from the root up to the node) is a transaction-id where item I is the last item.
The conceptual structure of CFP-tree is shown in Figure 1. Like in FP-tree, each
node in a CFP-tree maintains parent, child and node traversal pointers. However,
irrespective of the node type, no node in a CFP-tree maintains support value in
it.

{}

tidi, tidj, ...

Fig. 1. The conceptual structure of prefix-tree in CFP-tree. The dotted ellipse rep-
resents the ordinary node, while the other ellipse represents the tail-node of sorted
transactions with tids.

To facilitate high degree of compactness, items in a CFP-tree are arranged
in support-descending item order. It has been proved in [18] that such tree can
provide a highly compact tree structure, and an efficient mining phase using
pattern-growth technique.

One can assume that the structure of prefix-tree in CFP-tree may not be
memory efficient as it explicitly maintains tids of each transaction. However, it
has been argued in the literature [8] that such a tree can achieve memory effi-
ciency by keeping transaction information only at the tail-nodes and avoiding the
support count field at each node. Furthermore, CFP-tree avoids the complicated
combinatorial explosion problem of candidate generation as in Apriori-like algo-
rithms [7]. In the literature, keeping the information pertaining to transactional-
identifiers in a tree can also been found in efficient frequent pattern mining [19,
20].
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I f pr idl
a 1 0 1
b 1 0 1
h 1 0 1

I f pr idl
a 1 0 1
b 1 0 1
h 1 0 1
e 1 0 2
f 1 0 2

I f pr idl
a 2 1 3
b 2 1 3
h 1 0 1
e 1 0 2
f 1 0 2
g 1 0 3

I f pr idl
a 5 3 10
b 5 3 10
h 2 0 4
e 4 3 7
f 4 3 7
g 3 0 9
c 5 4 10
d 5 4 10

I f pr
a 5 3
b 5 3
c 5 4
d 5 4
e 4 3
f 4 3

(a) (b) (c) (d) (e) (f)

for each transaction tcur in TDB do
for each item i in tcur do

if tcur is i’s first occurrence then
Set f=1, pr=0 and idl=tcur

else

endif

if tcur-idl <= maxPrd then
Set ++pr.

Set ++f and idl=tcur.
endif

endfor
endfor
Prune the items in the CFP-list that 
have f<minsup or pr <minPR.

Fig. 2. Construction of CFP-list. (a) Procedure (b) After scanning first transaction
(c) After scanning second transaction (d) After scanning third transaction (e) After
scanning every transaction and (f) Sorted list of chronic-frequent items.

4.2 Construction of the CFP-Tree

Since chronic-frequent patterns satisfy the anti-monotonic property, chronic-
frequent items (or 1-patterns) play a key role in efficient mining of these patterns.
Using the CFP-list, we perform a scan on the database to discover these items.
Let tcur denote the tid of current transaction. Let idl be a temporary array that
explicitly records the tids of last occurring transactions of all items in the CFP-
list. Figure 2(a) shows the procedure followed to discover the chronic-frequent
items. We illustrate this procedure using the database shown in Table 1.

The scan on the first transaction ‘1 : a, b, h’, with tcur = 1, inserts the items
‘a’, ‘b’ and ‘h’ into the CFP-list with f = 1, pr = 0 and idl = 1 (see Figure
2(b)). The scan on the second transaction ‘2 : e, f ’, with tcur = 2, inserts the
items ‘e’ and ‘f ’ into the CFP-list with f = 1, pr = 0 and idl = 2 (see Figure
2(c)). The scan on the third transaction ‘3 : a, b, g’, with tcur = 3, adds the
item ‘g’ into the CFP-list with f = 1, pr = 0 and idl = 3. Simultaneously, the
‘f ’, ‘pr’ and ‘idl’ values of ‘a’ and ‘b’ are updated to 2, 1 and 3, respectively.
Figure 2(d) shows the CFP-list constructed after scanning the third transaction.
Similar approach is followed for the remaining transactions and CFP-list is up-
dated accordingly. Figure 2(e) shows the CFP-list constructed after scanning all
transactions in the database. The items having support less than the minSup
or periodic-recurrence less than the minPR are pruned from the CFP-list. The
remaining items are sorted in descending order of their frequencies. Figure 2(f)
shows the sorted list of chronic-frequent items in CFP-list. Let CF denote this
sorted list of items.

Using the FP-tree construction technique, only the items in the CF will take
part in the construction of CFP-tree. The tree construction starts by inserting
the first transaction, ‘1 : a, b, h’, according to CFP-list order, as shown in Figure
3(a). The tail-node ‘b : 1’ carries the tid of the transaction. Please note that
the item ‘h’ was not considered in the construction of CFP-tree as it is not a
chronic-frequent item. Similar process is repeated for other transactions in the
database. Figure 3(b), (c) and (d) respectively show the CFP-tree constructed
after scanning second transaction, third transaction and entire database. For
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the simplicity of figures, we do not show the node traversal pointers in trees,
however, they are maintained in a fashion like FP-tree does.

{}

a

b:1

{}

a

b:1

e

f:2

{}

a

b:1,3

e

f:2

{}

a

b:1,3

e

f:2,4,6

c

d:5,8,10

d:9

e

f:7

c

(a) (b) (c) (d)

I f pr
a 5 3
b 5 3
c 5 4
d 5 4
e 4 3
f 4 3

Fig. 3. Construction of CFP-tree. (a) After scanning first transaction (b) After scan-
ning second transaction (c) After scanning third transaction and (d) After scanning
entire database.

The CFP-tree explicitly maintains tids of each transaction at the nodes. As
a result, one can argue that the structure of a CFP-tree may not be memory
efficient. We argue that the CFP-tree achieves the memory efficiency by keeping
such transaction information only at the tail-nodes and avoiding the support
count field at the each node. It was also shown in the literature [8] such trees
are memory efficient. Moreover, keeping the tid information in tree can also be
found in the literature for efficient mining of frequent patterns [19].

4.3 Mining CFP-tree

Even though both CFP-tree and FP-tree arrange items in support-descending
order, we can not directly apply the FP-growth mining on a CFP-tree. The rea-
son is that, CFP-tree does not maintain the support count at each node, and
it handles the tid-lists at tail-nodes. Therefore, we devise an alternative pat-
tern growth-based bottom-up mining technique that can handle the additional
features of CFP-tree.

The basic operations in mining CFP-tree involves (i) counting length-1 chronic-
frequent items, (ii) constructing the prefix-tree for each chronic-frequent pat-
terns, and (iii) constructing the conditional tree from each prefix-tree. The CFP-
list provides the length-1 chronic-frequent items. Before discussing the prefix-tree
construction process we explore the following important property and lemma of
a CFP-tree.

Property 4. A tail-node in a CFP-tree maintains the occurrence information
for all the nodes in the path (from that tail-node to the root) at least in the
transactions in its tid-list.

Lemma 2. Let Z = {a1, a2, · · · , an} be a path in a CFP-tree where node an is
the tail-node carring the tid-list of the path. If the tid-list is pushed-up to the
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node an−1, then an−1 maintains the occurrence information of the path Z ′ =
{a1, a2, · · · , an−1} for the same set of transactions in the tid-list without any
loss.

Proof. Based on the Property 4, an maintains the occurrence information of the
path Z ′ at least in the transactions in its tid-list. Therefore, the same tid-list at
node an−1 exactly maintains the same transaction information for Z ′ without
any lose.

Choosing the last item ‘i’ in the CFP-list, we construct its prefix-tree, say
PTi, with the prefix sub-paths of nodes labeled ‘i’ in the CFP-tree. Since ‘i’ is
the bottom-most item in the CFP-list, each node labeled ‘i’ in the CFP-tree
must be a tail-node. While constructing the PTi, based on Property 4, we map
the tid-list of every node of ‘i’ to all items in the respective path explicitly in a
temporary array. It facilitates the calculation of support and periodic-recurrence
for each item in the CFP-list of PTi. Moreover, to enable the construction of
the prefix-tree for the next item in the CFP-list, based on Lemma 2, the tid-lists
are pushed-up to respective parent nodes in the original CFP-tree and in PTi

as well. All nodes of i in the CFP-tree and i’s entry in the CFP-list are deleted
thereafter. Figure 4 (a) shows the prefix-tree of ‘f ’, i.e., PTf . Figure 4(c) shows
the status of the CFP-tree of Figure 3(d) after removing the bottom-most item
‘f ’.

The conditional tree CTi for PTi is constructed by removing all non-chronic-
frequent items from the PTi. If the deleted node is a tail-node, its tid-list is
pushed-up to its parent node. Figure 4(b) shows the conditional tree for ‘f ’,
CTf constructed from the PTf of Figure 4(a). The contents of the temporary
array for the bottom item ‘j’ in the CFP-list of CTi represent the TIDij (i.e.,
the set of all tids where item i and j occur together in the database). Therefore,
it is rather simple calculation to compute S(ij) and PR(ij) from TIDij . If
S(ij) ≥ minSup and PR(ij) ≥ minPR, then the pattern ‘ij’ is generated
as a chronic-frequent pattern. The same process of creating prefix-tree and its
corresponding conditional tree is repeated for further extensions of ‘ij’. The
whole process of mining for each item is repeated until CFP-list̸= ∅.

{}

a

b:1,3

e:2,4,6

c

d:5,8,10

d:9

e:7

c

(c)

I f pr
a 5 3
b 5 3
c 5 4
d 5 4
e 4 3

{}

e:2,4,6

d

e:7

c

(a)

I f pr
c 1 0
d 1 0
e 4 3
f 4 3

{}

e:2,4,6,7
I f pr
c 1 0
d 1 0
e 4 3
f 4 3

(b)

Fig. 4. Prefix-tree and conditional tree construction with CFP-tree. (a) Prefix-tree for
‘f ’ (b) Conditional tree for ‘f ’ and (c) CFP-tree after removing item ‘f ’.
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5 Experimental Results

Since there is no existing approach to discover chronic-frequent patterns, we
only investigate the performance of CFP-growth algorithm. In addition, we also
discuss the usefulness of proposed patterns using a real-world database.

The CFP-growth algorithm was written in Java and run on Ubuntu on a 2.66
GHz machine having 4GB of memory. The databases used for our experiments
are as follows:

– T10I4D100K and T10I4D1000K databases. These two databases are
synthetic transactional databases generated using the procedure given in
[7]. The T10I4D100K dataset contains 100,000 transactions and 941 distinct
items. The T10I4D1000K contains 983,155 transactions with 30,387 items.

– Shop-14 database. A Czech company has provided clickstream data of
seven internet shops in ECML/PKDD 2005 Discovery challenge [21]. In this
paper, we have considered the click stream data of product categories vis-
ited by the users in “Shop 14” (www.shop4.cz), and created a transactional
database with each transaction representing the set of web pages visited
by the people at a particular minute interval. The transactional database
contains 59,240 transactions (i.e., 41 days of page visits) and 138 product
categories (or items).

– BMS-WebView-1 database. This is a real-world database containing
59,602 transactions with 497 items [22].

– Kosarak database. This is a very large real-world database containing
990,002 transactions with 41,270 distinct items.

The Kosarak and BMS-WebView-1 databases have been downloaded from the
Frequent Itemset MIning (FIMI) repository (http://fimi.ua.ac.be/data/).

5.1 Generation of Chronic-Frequent Patterns

Table 2 shows the different minSup, maxPrd and minPR values used for find-
ing chronic-frequent patterns in T10I4D100K, Shop-14 and BMS-WebView-1
datasets. It can be observed that we have we have set low minSup and minPR
values to discover the patterns involving both frequent and relatively infrequent
(or rare) items.

Table 2. The user-defined minSup, maxPrds and minPR values in different datasets.
The Greek letters α, β and γ represent the minSup, maxPrd and minPR thresholds,
respectively.

Datasets minSup (α) maxPrd (β) minPR (γ)
α1 α2 α3 β1 β2 β3 γ1 γ2 γ3

T10I4D100K 0.1% 0.3% 0.5% 1% 5% 10% 0.1% 0.2% 0.3%

Shop-14 0.1% 0.3% 0.5% 1% 5% 10% 0.1% 0.2% 0.3%

BMS-WebView-1 0.1% 0.3% 0.5% 1% 5% 10% 0.1% 0.2% 0.3%
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Table 3. The number of chronic-frequent patterns generated at different minSup,
maxPrd and minPR threshold values.

γ1 γ2 γ3
Dataset α β1 β2 β3 β1 β2 β3 β1 β2 β3

α1 20077 26384 26511 10115 12643 12644 3768 4432 4432
T10I4D100K α2 4476 4476 4476 4476 4476 4476 3768 4432 4432

α3 1069 1069 1069 1069 1069 1069 1069 1069 1069

α1 1215 27320 30382 4268 6377 6537 2428 3000 3058
Shop-14 α2 3089 3089 3089 3089 3089 3089 2428 3000 3058

α3 1244 1244 1244 1244 1244 1244 1244 1244 1244

α1 1410 3227 3680 572 777 796 362 431 432
BMS-WebView-1 α2 435 435 435 435 435 435 362 431 432

α3 201 201 201 201 201 201 201 201 201

Table 4. Runtime requirements of CFP-growth. The runtime is expressed in seconds.

γ1 γ2 γ3
Dataset α β1 β2 β3 β1 β2 β3 β1 β2 β3

α1 207 263 268 105 126 136 37 44 44
T10I4D100K α2 45 45 45 45 45 45 37 43 43

α3 19 19 19 19 19 19 19 19 19

α1 121 220 303 42 63 65 24 30 32
Shop-14 α2 30 30 30 30 30 30 24 32 33

α3 14 14 14 14 14 14 14 14 14

α1 103 257 287 97 189 234 182 166 156
BMS-WebView-1 α2 78 91 251 58 79 165 38 43 98

α3 71 92 124 55 69 83 20 34 79

Table 3 shows the number of chronic-frequent patterns generated in different
datasets at various minSup, maxPrd and minPR threshold values. The fol-
lowing observations can be drawn from this table. (i) At a fixed maxPrd and
minPR, increase in minSup has decreased the number of chronic-frequent pat-
terns. (ii) At a fixed minSup and minPR, increase in maxPrd has increased
the number of chronic-frequent patterns. It is because the occurrences of a fre-
quent pattern which were earlier (i.e., at low maxPrd threshold) considered as
aperiodic have been considered as periodic with in maxPrd threshold. (iii) At
a fixed minSup and maxPrd, increase in minPR has decreased the number
of chronic-frequent patterns. The reason is that many frequent patterns were
unable to occur periodically for longer time durations in a database.

Table 4 shows the runtime taken by CFP-growth to discover chronic-frequent
patterns in T10I4D100K, Shop-14 and BMS-WebView-1 datasets. The runtime
involves both the construction and mining of CFP-tree. The changes on the
minSup, minPR and maxPrd shows the similar effect on runtime consumption
as that of the generation of chronic-frequent patterns. It can be observed that
the proposed algorithm discovers the complete set of chronic-frequent patterns
at a reasonable runtime even at low minSup and minPR thresholds.
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Table 5 shows some of the chronic-frequent patterns discovered in Shop-14
dataset at minSup = 1%, maxPrd = 5% and minPR = 1%. It can be observed
that none of these patterns were appearing periodically throughout the database,
however, there were periodically appearing in distinct subsets of the database.
Using the approach discussed in [8], we have made an effort to find periodic-
frequent patterns with minSup = 1% and maxPrd = 5%. Unfortunately, no
pattern was discovered at these threshold values. It because all frequent patterns
have failed to reappear at very short intervals throughout the database. Thus,
the proposed model was able to discover useful patterns.

Table 5. The chronic-frequent patterns discovered in Shop-14 dataset.

Chronic-frequent patterns Range of tids containing the pattern

{{TV’s}, {Analog camcorders}} [9,4447], [6591,15843],
[16964,25508][26649,32654]

{{Speakers for home cinemas}, [18, 5970], [7971, 11473],
{Home cinema systems-components}} [18905, 24096]

{{Washer dryers}, {Refrigerators, freezers, [4,4655], [13824, 19589],
show cases}, {built-in ovens, hobs, grills}} [40232, 45721]

{{Built-in dish washers}, [13639,19544], [48495, 53310]
{Refrigerators, freezers, show cases}}
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Fig. 5. Scalability of CFP-growth. (a) T10I4D1000K dataset and (b) Kosarak dataset.

5.2 The Scalability Test

We study the scalability of our CFP-growth algorithm on execution time by
varying the number of transactions in T10I4D1000K and Kosarak datasets.
In the literature, these two datasets were widely used to study the scalability
of algorithms [23, 8]. The experimental setup was as follows. Each dataset was
divided into five portions with 0.2 million transactions in each part. Then we
investigated the performance of CFP-growth after accumulating each portion
with previous parts. For each experiment, we set minSup = 10%, maxPrd = 1%
and minPR = 10%.
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Figure 5 (a) and (b) respectively show the runtime requirements of CFP-
growth on the T10I4D1000K and Kosark datasets with the increase of dataset
size. It is clear from the graphs that as the database size increases, overall tree
construction and mining time increases. However, CFP-growth shows stable per-
formance of about linear increase of runtime with respect to the database size.
Therefore, it can be observed from the scalability test that CFP-growth can mine
the patterns over large databases and distinct items with considerable amount
of runtime.

6 Conclusions and Future Work

In this paper, we have investigated the partial periodic behavior of a frequent
pattern in a transactional database, and proposed a practicable model to dis-
cover a class of user-interest-based patterns known as chronic-frequent patterns.
We have provided a CFP-tree, a highly compact tree structure to capture the
database content, and a pattern-growth technique to mine the complete set of
chronic-frequent patterns. The experimental results demonstrate that our CFP-
growth can be runtime efficient, and highly scalable as well.

As a part of future work, we would like to extend our work to improve the
performance of association rule-based recommender systems. Furthermore, it
is interesting to investigate the chronic behavior of the patterns in time-series
databases, sequential databases, and data streams.
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