Trace System of iSCSI Storage Accessver. 773

Saneyasu Yamaguchi Masato Oguchi Masaru Kitsuregawa
Institute of Industrial Science, Department of Institute of Industrial Science,
The University of Tokyo Information Sciences, The University of Tokyo

4-6-1 Komaba Meguro-ku,
Tokyo 153-8505, Japan
sane@tkl.iis.u-tokyo.ac.jp

Ochanomizu University
2-1-1 Otsuka Bunkyo-ku,
Tokyo 112-8610, Japan

4-6-1 Komaba Meguro-ku,
Tokyo 153-8505, Japan
kitsure@tkl.iis.u-tokyo.ac.jp

oguchi @computer.org

Abstract

Inthis paper, an 1P-SAN accesstrace method i s proposed
and its implementation is presented. IP-SAN and iSCSl are
expected to remedy problems of Fibre Channel (FC)-based
SAN. Because servers and storage cooperatively work with
communications through TCP/IP layer in IP-SAN system,
an integrated analysis of both sidesis considered to be sig-
nificant for achieving better performance.

Our proposed system can precisely point out the cause
of performance degradation when IP-SAN is used for a re-
mote storage access. In the experiment of parallel iSCS ac-
cess in a long-delayed network, the total performance is
limited by a parameter in an implementation of the SCH
layer in the iSCS protocol stack. Based on the result ob-
tained with our 1P-SAN access trace system, the parame-
ter in the layer is modified. As a result, four times perfor-
mance improvement is achieved compared with the default
value case. Thus it is effective to monitor all the layersin
the iISCS protocol stack and execute an integrated analy-
sis, using our system.

1. Introduction

Recently, storage management cost is one of the most
important issues of computer systems [12, 13]. Since pe-
riodical backup is required for management of storage, if
the storage is distributed among many servers, its manage-
ment cost is extremely high. Storage Area Network (SAN),
a high speed network for storage, is introduced to resolve
this issue. Each server is connected to consolidated stor-
age through SAN. Management cost can be significantly
decreased by the consolidation of storage, thus SAN has al-
ready become an important tool in the business field. How-
ever, current generation SAN based on FC [6, 7] has some
demerits; for example, (1) the number of FC engineers is

small, (2) installation cost of FC-SAN is high, (3) FC has
distance limitation, (4) theinteroperability of FC is not nec-
essarily high.

The next generation SAN based on IP (IP-SAN) is ex-
pected to remedy these defects. IP-SAN employs commod-
ity technologies for a network infrastructure, including Eth-
ernet and TCP/IP. One of the promising standard datatrans-
fer protocol of IP-SAN is iSCSI [2, 18], which was ap-
proved by IETF [1] in February 2003 [4]. IP-SAN has fol-
lowing advantages over FC-SAN [8, 16, 17]: (1) the num-
ber of IPengineersislarge, (2) initial cost of IP-SAN islow,
(3) IP has no distancelimitation, (4) Ethernet and | P have no
interoperability problem. However, the problem of low per-
formance and high CPU utilization is pointed out as demer-
itsof IP-SAN [16, 17, 20]. Thusimproving its performance
and keeping CPU utilization at low rate [11, 16] are criti-
cal issuesfor IP-SAN.

We evaluate the performance issue of iSCSI in this pa
per. As an instance of evaluation, an iSCS| access in a
long-delayed network is investigated. This is because per-
formance decline caused by network latency is pointed out
in IP-SAN [13, 15], while iSCSI achieves amost compara-
ble performance with that of FC-SAN in a LAN environ-
ment [8, 10]. In addition, athough a SCSI access over a
long-delayed network is an important case, which can be
realized since iSCSI| has no distance limit, an iSCSI access
over along-delayed network is not discussed enough.

Studies for CPU utilization during communications are
found in the literature [9, 11, 16, 17, 19]. We do not discuss
hardware supported TCP processing in this paper, because
[8, 16, 17] concluded that although such hardware is effec-
tive for reducing CPU utilization, it does not achieve bet-
ter performance than that of the software-based approach.
We also evaluated the hardware supported TCP processing
by ourselves and obtained a similar result: In our exper-
iments, TCP/IP communication throughput and CPU uti-
lization with software TCP/IP implementation were 70.4

[MB/sec] and 27.5 %, respectively. Throughput and CPU
utilization with TCP/IP offload engine (TOE) were 63.1
[MB/sec] and 10.4%, respectively.

An iSCSI storage access is composed of many proto-
cols, that is “SCSl over iSCSI over TCP/IP over Ether-
net”. The protocol stack of iSCSI is complicated and the
storage access is executed through all these layers, so that
any layers can be a performance bottleneck of end-to-end
performance communication. Consequently, all these lay-
ers should be observed for improving iSCS| storage access
performance. In addition, integrated analysis of the behav-
ior of both server computers and storage appliances is im-
portant because iSCSI is composed of the protocol stack in
both sides. In IP-SAN system, although server computers
and storage appliances work cooperatively viaiSCS| proto-
col, since they have their own OSs, they are monitored sep-
arately in general. However, it is difficult to understand the
whole system’s behavior by monitoring only one side, thus
integrated analysisis required.

In this paper, we propose an “IP-SAN trace system”,
which can monitor al the layersin IP-SAN protocol stack
and show the integrated analysis of the whole IP-SAN sys-
tem. Next, we apply the proposed system to parallel iSCSI
accesses in a long-delayed network, and demonstrate the
system can point out the cause of performance decline.
In our experiment, significant iSCSI performance improve-
ment is achieved using the system.

The rest of this paper is organized as follows. Section 2
provides abrief explanation of iSCSI. We propose“ |P-SAN
Trace System” in Section 3, and present an actual adapta-
tion of the system in Section 4. Section 5 introduces related
works. In Section 6, we conclude this paper.

2. iSCSl

In this section, an overview of iSCSI and IP-SAN is
shown.

iSCSI [2, 18] is a block level data transfer protocol for
IP-SAN. It was approved by IETF [1] in February 2003.
In an iSCSI storage access, the SCSI protocol is encapsu-
lated into the TCP/IP protocol and transferred over TCP/IP
network for accessing remote SCSI storage. The protocol
stack of an iSCSI storage access is “ SCS| over iSCS| over
TCP/IP over Ethernet”, which is shown in Figure 1 (“Mon-
itor” in the figure will be introduced in Section 3).

1/0O requests issued by application programs in server
computers are transferred through either files system or
block device or character device at first, then through the
SCSl layer, theiSCSI layer, the TCP/IP layer, and the Ether-
net layer in a server computer. The requests are transmitted
to storage appliances via Ethernet, and transferred through
the Ethernet layer, the TCP/IP layer, the iSCSI layer and
the SCSI layer, and finally received by the storage device.

SCSI Access

|

SCSI SCSI

iSCSI W iSCSI
Monitor ij>

TCP/IP TCP/IP

WY
Monitor Cﬁ>

Ethernet Ethernet

InitiMet

Figure 1. iSCSI Protocol Stack and Analysis
System

Responses for the I/O requests are transferred to the appli-
cations through the same path inversely. Any of these lay-
ers may be the cause of end-to-end performance decline.
For example, iSCSI protocol defines “MaxRecvDataSeg-
mentLength”, “MaxBurstLength” and “FirstBurstLength”,
the TCP/IP layer restricts output performances according to
its flow controlling algorithm [23], and the number of Eth-
ernet layer's packets descriptor is limited [23]. They can be
significant issues of performance decline.

As we mentioned, an iSCSI storage access is executed
through all these layers. However, because these layers are
designed not for iSCS| storage accesses but for general pur-
poses, some functions of these layers may degrade iSCS
performance. Consequently, detailed analyses of all layers
are required for improving iSCSI performance. For exam-
ple, we have already found that TCP's Nagle's algorithm
and delayed ack algorithm severely decrease iSCSI perfor-
mance [22]. A large block are divided into multiple small
blocks by OS and they are synchronized in the SCSI layer,
which severely decrease iSCS| performances [14, 21]. And
the combination of TCP's flow controlling algorithm and
SCSI synchronization heavily declinesiSCS| performances
[23].

3. IP-SAN Trace System

In this section, we present detailed explanation of the
proposed “IP-SAN Trace System”.

We have implemented a monitoring system, shown in
Figure 1, which monitors all the layersin IP-SAN. We have
also constructed an integrated trace system which compre-
hensively analyzes logs recorded in both server computes
and storage appliances. For our experiments, open source
codes of an OS implementation and an iSCSI driver are

Init_syscall t

it_ra s i i -
Init_raw_dev + T + + + 1

Touioy S0

J0jeT) UL

JOATA(q

1S0St

Init__run_task_queue t\ 1\ \i % % i‘
oSS s 0 T AR T EETER RO

Tep_initiator

EECISEN

Tep_target

Targ_iSCSI_rx_thread

Targ_iSCSI_handle_cmnd

Targ_SCSI_handle_cmd
Targ_SCSI_file

5

JoBae]

Ack
Packet -------
Initiator Thread ----+---

Initiator iSCSI(tx)@

Target iSCSI Thread--x
Target SCSI Thread-—-x--
Initiator iSCSI(rx)-—---

Figure 2. iSCSI Access Trace

used. We have inserted monitoring codes into these imple-
mentations for recording IP-SAN system’s behavior. Linux
(kernel version 2.4.18) is adopted as an OS implementation
andiSCSI referenceimplementation (version 1.5.02) [3] de-
veloped by University of New Hampshire's InterOperabil -
ity Lab [5] (we call thisimplementation “UNH") is used as
an iSCSlI driver.

Figure 2 shows an example of a visualized iSCS| trace
obtained by the proposed trace system. In the figure, Y-
Axis stands for the state transition of iSCSI storage access.
Each label beside Y-Axis indicates each layer in the iSCSI
protocol stack. Meaning of these labels (Init syscall,
Init_raw_dev and so on) are; 1) system calls issued by
applications, 2) the raw device layer, 3) the SCSI layer, 4)
the iSCSI layer, 5) the TCP/IP layer, 6) Packet transmis-
sion by the Ethernet layer, 7) the TCP/IP layer, 8) the iSCSI
layer, 9) the SCSI layer, 10) HDD device access from the
top to the bottom respectively. The labels from 1) to 5) be-
long to processes in server computers (iSCSI initiator) and
the labels from 7) to 10) belong to processes in storage ap-
pliance (iSCSI target). In this case, we have used raw device
mode instead of file system modein theiSCSI initiator. The
iSCSI target works with “File Mode” of UNH implementa-
tion?, thus the trace in the lowest layer is not that of HDD
device access but that of file access in the target OS's file
system. X-Axis stands for the time of each trace.

The figure helps to understand 1P-SAN’s behavior, for
example, which processin iSCS| protocol stack dominantly
consumestime, in which layer processes are waiting for 1/0
responses, and ablock of theissued I/0 reguests are divided
into small blocks by some layers. In the case of this fig-
ure, an application issues system calls read () with 2MB

1 UNH implementation can export a local file to initiator as a storage
image.

p
Init_syscald ry T — T =

Tnit_raw_dqv H {
It t
e H
'

|

!

I

Init__run_task_queje H

Init_sd_init_command H
|

Init_iSCSI_thredd

Init_iSCSI_rxfix
Tep_initiatol

Tep_target

Targ_iSCSI_rx_thread

Targ_iSCSI_handle_cmnd

Targ_SCSI_handle_cnd t
| Tl / 1 I 1

Targ_SCSI_filg/t *
0 0.01 . 02 0.03 0.04 . 05 0. 06
ime[sec]
Ack Target iSCSI Thread * Initiator iSCSI(tx) O
Packet------ Target SCSI Thread --%-

Initiator Thread----+--- Initiator iSCSI(rx) -----

Figure 3. Visualized Trace of Parallel iSCSI
Access (default): A

block size. The raw device layer divides it into 4 blocks
of 512K B, then issues 512KB /O requests one by one to
the lower layer (the SCSI layer), findly it returns 1/O re-
sponses to the upper layer (the system call layer) after com-
pleting 4 requests. After the SCSI layer receives 512KB 1/O
requests, it divides the requests into multiple 32KB SCSI
read commands and transfers them to the lower layer (the
iSCSl layer).iSCS| tx_thread isactivated when requests
are sent fromthe SCSI layer, and theiSCS! layer transferred
the requests to the TCP/IP layer. The TCP layer sends data
segments to the Ethernet layer, and the Ethernet layer sends
them to the storage appliance (target computer).

Figure 3 shows an example of a visualized traces in the
case of parallel iISCSI accesses (the area surrounded with
the broken line will be mentioned in Section 4.3.2). Coop-
eration of theinitiator and the target can be understood eas-
ily with thisfigure.

The proposed system monitors the IP-SAN’s behavior
by modifying the source codes, thus the system can observe
the behavior of the kernel and the iSCSI driver at source
code level. For example, this system records which way is
selected in abranch like Figure 4. These figure will be men-
tioned in Section 4.3 again.

As shown above, the whole IP-SAN’s behavior can be
easily understood with the trace system.

4. Trace of Parallel iSCSI Accesses in Long-
Delayed Networ k

In this section, we present how the proposed “IP-SAN
access trace system” isactually applied to IP-SAN. In addi-

[drivers/scsi/scsi_lib.cl]
851 void scsi_request_fn(request_queue_t * q)
852 {
872 while (1 == 1) {
895 r-if ((SHpnt->can_queue > 0 ————
&& (atomic read(&SHpnt->host busy) >= SHpnt->can queue))
896 ! || (SHpnt->host_blocked)
897 ! || (SHpnt->host_self_blocked)) {
911 ::’_ break;
9121 } else {
914 ! atomic_inc(&SHpnt->host_busy);
916 ! }
1015 | if (SCpnt->request.cmd !'= SPECIAL
1046 | if (!STpnt->init_command(SCpnt)) {<—

/r Issuing
SCSI command

1064 | }

1065 E . » host_busy>=can_queue
1102, } — host_busy< can_queue
1103 %

Figure 4. Trance of Linux SCSI Layer:
"drivers/scsi/scsi_ib.c”

tion, we show that the system can point out the cause of per-
formance decline. The proposed system is applied to a short
block of paralel iSCSI accesses in along-delayed network
environment. It points out which layers restrict the number
of parallel processing.

4.1. Experimental Setup

We have constructed a long-delayed IP-SAN environ-
ment. A network delay emulator is inserted between an
iSCSI initiator (server computer) and an iSCSI target (stor-
age appliance). The network delay emulator is constructed
with FreeBSD Dummynet. The initiator and the target es-
tablish TCP connection over the delay emulator and an
iSCSI connection is established over this TCP connection.

The UNH iSCSI implementation (refer to Section 3)
is employed as iSCSI initiator and target implementation.
Since the iSCSI target works with “File Mode”, the follow-
ing experiments do not include actual HDD device accesses.
Oneway delay timeis 16 ms.

Theinitiator, the Dummynet, and the target are built with
PCs. Linux OS isinstalled to both initiator and target PCs.
The detailed specifications of the initiator and the target PC
are as follows: CPU Pentium4 2.80GHz, Main Memory
1GB, OS Linux 2.4.18-3, NIC Gigabit Ethernet Card Intel
PRO/1000 XT Server Adapter. The detailed specifications
of Dummynet PC are as follows: CPU Pentium4 1.5GHz,
Main Memory 128MB, OS FreeBSD 4.5-RELEASE, NIC
Intel PRO/1000 XT Server Adapterx 2.

We have executed the following benchmark in this ex-
perimental environment. The benchmark software iterates
issuing system call read () to raw device which is es-
tablished with an iSCSI connection. The block size of the
read requests is 512 Bytes. SCSI Logica Block Addresses

250 /:/_b—u—q

200 E/

150 —o—can__queue=2 (default)
—{can__queue=30

100

50 E/

0 2 4 6 8 10

Number of Processes ||

Total Transaction [Trans/sec|

Figure 5. Experimental Result: Total perfor-
mance of parallel I/O, 16ms

(LBAS) to be read is specified sequentially. The addresses
do not have an impact on experimental performance be-
cause of target side file system cache (which will be men-
tioned later in this section). We executed multiple processes
simultaneously and measured total performance of all pro-
cesses. Each benchmark process iterates 2048 times system
cal read ().

In this environment, the issued system calls are adways
transmitted to the SCSI layer in the target side without any
cache hit in the initiator side, because the benchmark pro-
cesses issue system calls to the raw device. These experi-
ments are executed when target storage image in file (the
iSCSI target is executed with “File Mode") is stored in file
system’s cache on the target (worm cache). Consequently,
all read requests issued from the initiator reach the SCSI
layer in the target side and hit file system cache in the tar-
get side, thus it does not include HDD device access. We
have employed the file mode iSCSI target in order to iso-
late the efficiency of the behavior of IP-SAN system from
the behavior of the HDD device.

Experiments in Section 4.2 and Section 4.4 are exe-
cuted without the monitoring system, thus the performances
shown in Figure 5 are not effected by the monitoring sys-
tem.

4.2. Experimental Results

The experimenta results with default setup,
which does not have any tuning, are shown as
“can_queue=2 (default)” in Figure 5 X-Axis in
the figure stands for the number of processes executed si-
multaneously. Y-Axis stands for the number of total trans-
actions of all processes per second. The number of trans-
actions means the number of 512 Bytes system calls
read().

In the case of a single process, the transaction perfor-
manceis 31.0 [Trans/sec]. This nearly equasto therecipro-
cal number of Round Trip Time (RTT), 32 [ms/transaction]
in this experiment. The result is reasonable in this case.
In the case of two concurrent processes, the total transac-
tion performance is 62.0 [Trang/sec]. Nearly doubled per-
formance improvement is achieved using two processes.
This is aso reasonable because short block accesses in a
long-delayed network do not consume many computer re-
sources, for instance the resources of network, CPU, and
memory.

In the cases of more than three concurrent processes, the
performance improvement is not obtained compared with
that of two processes case. These results imply that alayer
iniSCSI protocol stack restricts the number of 1/0 requests
processed concurrently to two, which is a critical cause to
hinder the improvement of total performance.

4.3. Trace Analysisof Parallel iSCSI Access

In this subsection, we present trace analyses of paral-
lel accesses and demonstrate that the proposed system can
point out the cause of performance decline.

4.3.1. Traceof 1/O requests Figure 3 is obtained by ana-
lyzing traced logs of the experiment in Section 4.1 and Sec-
tion 4.2. The number of processesisthree. Thetracelines of
“Initiator Thread” are drawn discontinuously in the figure.
This is because context switches are issued by OS's pro-
cess scheduler, and the processes suspended and resumed
on these lines. Plots at 0.010 [sec] and 0.040 [sec] aso in-
dicate context switches by the process scheduler. Although
the scheduler allocates CPU resources to the processes at
these points, the processes are waiting for 1/0 response at
that time, thus they immediately invoke context switches
and release CPU resources. According to the figure, only
two 1/O requests are sent from the initiator to the target
within RTT (32ms). This indicates the number of 1/0O re-
quests processed concurrently is restricted in the initiator
side.

4.3.2. Analysisof the Trace across Multiple Layers An
analysis of the trace to determine a cause of the restriction
for parallel processing is shown in this subsection. Thetrace
isanalyzed across multiple layers of iSCSI at first.

Figure 6 is obtained by magnifying the area surrounded
with the dotted line in Figure 3. Figure 7 shows magnified
view of the area surrounded with the dotted linein Figure 6.

In thesefigures, three processes running concurrently are
drawn, labeled as“I/O(A)”, “1/O(B)”, and “1/O(C)". Traced
lines are shown discontinuously like Figure 3. The linester-
minate when context switch occurs and processes resume.
Figure 6 showsthat I/O(A), (B), and (C) issue a system call

Init_syscall

Tnitiator 3G
Initiator 1SC

T T

1

i

V] |
7 1

Init_raw_rw_raw_dev p 7 o E
i

| 1

1 i

i |

| 1

i i

| 1

H 1 1

Init__ run_task_queue |

STOP:!
Tnit_sd_init_command H i E
to Net k H 1

¢ ~etwor to Network \

Init_iSCSI_thread T \

Y | |
Init_iSCSI_rxtx L I I I | [!
0 0. 004 0. 008 0.0121 0.016)

Time[sec]

Figure 6. Visualized Trace of Parallel iSCSI
Access (default): B

Init_syscall

ator| 15CS

Init_raw_dev

Init___run_task_queue |

Tnit_sd_init_command F

Init_iSCSI_thread

Init_iSCSI_rxtx 1 L I 1 I I
0.0147 0.0148 0. 0149 0.015 0.0151

Time[sec]

Figure 7. Visualized Trace of Parallel iSCSI
Access (default): C

at 0.000 [sec], 0.015 [sec] and 0.015[sec] respectively. Ac-
cording to thefigure, three system calls can beissued within
one RTT, receiving no response from the target.

Thetraceof “1/O(A)” showsthat the request by “I/O(A)”
is transferred through the raw device layer, the SCSI layer,
and the iSCSI layer, then the iSCSI layer issues arequest to
the TCP/IP layer. Figure 7 showsthat “1/0O(C)” issuesasys
tem call at 0.01485 [sec], and the request is transferred up
to the iSCSI layer and sent to the network.

On the other hand, in the case of “1/0O(B)”, the issued re-

guest is not sent to the iSCSI layer. A system call isissued
by “1/O(B)” at 0.01494 [sec], and the raw device layer also
issuesthe I/0 request to the lower layer (the SCSI layer) af -
ter the issue of the system call. However, the SCSI layer
returns without issuing a SCSI command even though the
layer has received the request. This result indicates that the
maximum number of SCSI commands issued simultane-
oudly is restricted to two in the SCSI layer, which is con-
sidered to be the cause of the upper limit of total perfor-
mance.

4.3.3. Analysis of the Trace inside a Layer The trace
is analyzed more precisely, focusing on a particular layer,
which is determined in the previous analysis. The proposed
system can trace the behavior inside an IP-SAN system in
source code level.

The branch point of the first two requests
(I/0(A) and (C)) and the third request (1/O(B)) is in
“drivers/scsi/scsi_lib.c” in the implementa
tion of Linux SCSI layer, as shown in Figure 4. Thispartin
Linux SCSI implementation compares “host busy” 2, the
number of active commands and* can _queue” 2, the max-
imum number of SCSI commands the lower layer (iSCSI
driver implementation in our case) can receive simulta-
neously. The default value of “can_queue” in the UNH
iSCSI implementation is 2.

At the beginning, “host Jusy” is 0. In the cases of
the first two /O requests (I/0O(A) and (C)), “host busy”
are 0 and 1 respectively, thus the route labeled as
“host_busy<can_queue” inthefigureistraced. Inthis
route, incrementing “host busy” at line 914 and issu-
ing a SCSI command at line 104 6 arerecorded. In the case
of the third I/O request (I/0(B)), “host busy” was 2, thus
the route labeled as “host busy>=can_queue” in the
figure is traced. In this route, a SCSI command is not is-
sued as shown in the figure.

These analyses of the SCSI layer, which are determined
in the proposed analysis system, point out that the upper
limit of the total performance of parallel 1/O requests is
decided by the iSCSI implementation’s default value of

“can_queue”.

4.4. Resolving the Pointed Out Issue and Perfor-
mance I mprovement

We measure the total performance of concurrent
iSCSlI accesses with “can_queue” = 30 and ob-
tained “can_queue=30" in Figure 5. The total perfor-

2 ‘“hostbusy” is explaned as “commands actualy ac-
tive on low-level” in Linux SCSI implementation
“drivers/scsi/hosts.h”.

3 ‘“can_queue” is explained as “max no. of simultaneously active
SCSI commands driver can accept” in the UNH iSCSI implementa-
tion“initiator/iscsi_initiator.c”.

mance of al processes increases linearly from single
process to eight processes. Four times performance im-
provement is achieved when the number of processes
is greater than 8 by removing the cause of the perfor-
mance decline pointed out by the proposed analysis sys-
tem.

Aswe have shown, the integrated analysis of both server
computers and storage appliances, monitoring al layers
from application’s system calls to HDD device access in
theiSCSI protocoal stack, is an effective method for improv-
ing iISCSI performance. We have demonstrated it by apply-
ing the system to an actual I1P-SAN system so that the pro-
posed system can properly point out the cause of perfor-
mance limit, and the performance is significantly improved
by resolving the pointed out issue.

5. Reated Work

Some studies present performance evaluation of IP-SAN
using iSCSI [8, 10, 13, 15, 16, 17].

Ng et al. [13] is a pioneering work. They early pre-
sented detailed performance evaluations and discussions of
SCSI over IP. They showed experimenta results of both
microbenchmarks and macrobenchmarks, and showed re-
sults in various network delays and congestion environ-
ment. Their analysis of identifying bottlenecksincludes dis-
cussions of file system, OS, TCP/IP and SCSI. They sug-
gested that caching in the initiator side is effective in in-
creasing SCSI over | P performance.

Sarkar et al. [17] prevented iSCSI performance evalu-
ation. The study especially paid attention to CPU utiliza-
tion of iSCSI storage access. It is very important work be-
cause high CPU utilization is one the most essential is-
sue of IP-SAN. They experimented with performances of
iISCSI storage accesses with various block sizesin a LAN
environment. The work demonstrated that TCP/IP process-
ing consumed much CPU resources. They showed the CPU
utilization reached 100 % at the peak throughput, 64 KB
block size. Sarkar et al. also published the study for effect
of a current generation of TOE and a current generation of
iSCSI HBA in [16]. It is aso important work because us-
ing a TOE and an iSCSI HBA attract attention for resolv-
ing the iSCSI's CPU utilization issue. In order to compare
iSCSI performances with a software approach, an approach
using a representative TOE and an approach using a repre-
sentative HBA approach, they executed micro-benchmarks
and macro-benchmarks with various block size, with var-
ious 1/0O and with various CPU frequencies. They showed
hardware approaches (TOE and HBA) were effectivein de-
creasing CPU utilization but hardware approaches were not
effective in improving iSCSI performances.

Fujita et al. [20] presented an analysis of iSCSI targets.
The work gave not only performance evaluations but also

discussions including the iSCSI target implementation and
kernel implementation. This discussion is also mention be-
haviorsinside IP-SAN system.

6. Conclusion

In this paper, we proposed an integrated IP-SAN trace
method, implemented a system based on the idea, and
demonstrated that the system could precisely point out the
cause of performance decline. It was confirmed that i SCSI
performance could be significantly increased by resolving
the pointed out issue. In the case of our experiments, four
times performance improvement has been obtained. Thus
we found that monitoring all the layers in the iSCSI pro-
tocol stack and executing an integrated analysis including
both server computers and storage appliances are effective
for improving iSCS| performance.

We plan to explore the following matters as a future
work. Inthis paper, we selected raw device as an upper layer
of the SCSI layer. TheiSCSI target driver works with “File
Mode’. We plan to analyze IP-SAN’s behavior using afile
system and actual HDD devices. We also plan to evaluate an
overhead of the proposed analysis system. Since the cause
of performance upper limit which restricts up to eight paral-
lel processesis not mentioned in this paper, we will analyze
and determine the cause.

References

[1] IETFHomePage. http://www.ietf.org/ .

[2] IETFIPS.
http://www.ietf.org/html.charters/ips-
charter.html .

[3] iSCSI reference implementation.
http://www.iol.unh.edu/consortiums/
iscsi/downloads.html .

[4] Storage Networking Industry Assocation.
http://www.snia.org/ .

[5] University of new hampshire interoperability lab.
http://www.iol.unh.edu/ .

[6] “Fibre Channel - Arbitrated Loop,” Standard X3.272-1996,
1996.

[7] “Fibre Channel - Switch Fabric,” Standard NCITS 320-1998,
1998.

[8] S. Aiken, D. Grunwald, and A. Pleszkun. A Performance
Analysis of the iISCSl Protocol. In I[EEE/NASA MSST2003
Twentieth |IEEE/Eleventh NASA Goddard Conference on
Mass Sorage Systems and Technologies, April 2003.

[9] D. D. Clark, V. Jacobson, J. Romkey, and H. Salwen. An
Analysis of TCP Processing Overhead. |EEE Communica-
tions Magazine, 27(6):94—-101, June 1989.

[10] Y. Luand D. H. C. Du. Performance Study of iSCSI-Based
Storage Subsystems. |EEE Communications Magazine, Au-
gust 2003.

[11] J. C. Mogul. Tcp offload is a dumb idea whose time has
come. In 9th Workshop on Hot Topics in Operating Systems
(HotOS1X), May 2003.

[12] F. Neemaand D. Waid. Data Storage Trend. In UNIX Re-
view, 17(7), June 1999.

[13] W.T. Ng, B. H. E. Shriver, E. Gabber, and B. Ozden. Ob-
taining High Performance for Storage Outsourcing. In Proc.
FAST 2002, USENIX Conference on File and Storage Tech-
nologies, pages 145-158, January 2002.

[14] M. Oguchi, S. Yamaguchi, , and M. Kitsuregawa. Perfor-
mance Improvement of Sequential Access to IP-Storage us-
ing IP-SAN analysistools. In In Proceedings of the Interna-
tional Symposium of Santa Caterina on Challengesin theIn-
ternet and Interdisciplinary Research (SSCCI1-2004), No.21,
January 2004.

[15] P Radkov, L. Yin, P. Goyal, P. Sarkar, and P. Shenoy. A per-
formance Comparison of NFS and iSCSI for IP-Networked
Storage. In Proc. FAST 2004, USENIX Conference on File
and Storage Technologies, March 2004.

[16] P Sarkar, S. Uttamchandani, and K. Voruganti. Storage over
IP: When Does Hardware Support help? In Proc. FAST
2003, USENIX Conference on File and Storage Technolo-
gies, March 2003.

[17] P. Sarkar and K. Voruganti. |P Storage: The Challenge
Ahead. In Proc. of Tenth NASA Goddard Conference on
Mass Storage Systems and Technologies, April 2002.

[18] J. Setran et a. Internet Small Computer Systems Inter-
face (iISCSI).
http://www.ietf.org/rfc/rfc3720.txt ,
April 2004.

[19] P Shivam and J. S. Chase. On the Elusive Benefists of Pro-
tocol Offload. In Proceedings of the ACM SSGCOMM work-
shop on Network-1/0O convergence: Experience, Lessons, Im-
plications, pages 179-184, 2003.

[20] F Tomonori and O. Masanori. AnalisysfoiSCS Target Soft-
ware. In SACS S (Symposium on Advanced Computing Sys-
tems and Infrastructures) 2004, April 2004. (in Japanese).

[21] S. Yamaguchi, M. Oguchi, and M. Kitsuregawa. Per-
formance Evauation and Improving of Sequential Storage
Access using the iSCSI Protocol in Long-delayed High
throughput Network. DBSJ Letters Vol.2 No.1, 2003. (in
Japanese).

[22] S.‘Yamaguchi, M. Oguchi, and M. Kitsuregawa. Analysis of
iSCS Storage Access with Short Blocks. In IEICE the 15th
Data Engineering Workshop, March 2004. (in Japanese).

[23] S.Yamaguchi, M. Oguchi, and M. Kitsuregawa. iSCSI Anal-
ysis System and Performance Improvement of Sequential
Access. The IEICE Transactions on Information and Sys-
tems(Japanese Edition), 87:216-231, February 2004. (in
Japanese).

