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We propose a method of collective sentiment classification that assumes dependencies

among labels of an input set of reviews. The key observation behind our method is

that the distribution of polarity labels over reviews written by each user or written

on each product is often skewed in the real world; intolerant users tend to report

complaints while popular products are likely to receive praise. We encode these char-

acteristics of users and products (referred to as user leniency and product popularity)

by introducing global features in supervised learning. To resolve dependencies among

labels of a given set of reviews, we explore two approximated decoding algorithms,

“easiest-first decoding” and “two-stage decoding.” Experimental results on real-world

datasets with user and/or product information confirm that our method contributed

greatly to classification accuracy.
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1 Introduction

In document-level sentiment classification, early studies exploited language-based clues (e.g.,

n-grams) extracted from textual content (Turney 2002; Pang, Lee, and Vaithyanathan 2002),

followed by more recent studies that adapt the classifier to reviews written by a specific user or

written on a specific product (Tan, Lee, Tang, Jiang, Zhou, and Li 2011; Seroussi, Zukerman,

and Bohnert 2010; Speriosu, Sudan, Upadhyay, and Baldridge 2011; Li, Liu, Jin, Zhao, Yang,

and Zhu 2011). Although user- and product-aware methods exhibited better performance over

those based on purely textual clues, most of them use only the user information (Tan et al.

2011; Seroussi et al. 2010; Speriosu et al. 2011), or they assume that the user and product of a

test review are seen in the training data (Li et al. 2011). These assumptions heavily limit their

applicability in a real-world scenario where new users and new products are constantly emerging.

This paper proposes a method of collective sentiment classification that is aware of the user
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and product of the target review. Our method benefits from the biased distributions of polarity

labels in the real world; intolerant users tend to report complaints while popular products are

likely to receive praise. We introduce global features to encode the bias of a user and of a product

(referred to as user leniency and product popularity), and then compute the global features along

with testing. In this way, the global features are collectively computed with respect to the labels

of other test reviews. Our method is therefore applicable to reviews written by emerging users

and on emerging products that are not observed in the training data.

The major difficulty in realizing our collective sentiment classifier is in decoding. Because

global features depend on test review labels and labels conversely depend on the global features,

we need to optimize a global label configuration for the test reviews. In this study, we tackle this

problem by resorting to two approximate decoding algorithms, easiest-first (Tsuruoka and Tsujii

2005) and two-stage strategies (Krishnan and Manning 2006). We also empirically compare the

speed and accuracy of these two strategies.

We evaluate our methods on three datasets with user and/or product information (Pang and

Lee 2004; Blitzer, Dredze, and Pereira 2007; Maas, Daly, Pham, Huang, Ng, and Potts 2011).

Experimental results demonstrate that when user- or product-bias exists, our collective method

can improve classification accuracy against state-of-the-art methods.

The remainder of this paper is organized as follows. Section 2 discusses related work that

exploits user and product information in a sentiment classification task. Section 3 proposes a

method that collectively classifies a given set of reviews. Section 4 reports experimental results.

Finally, Section 5 concludes this study and addresses future work.

2 Related Work

Document-level sentiment classification focuses on labeling a given review (Turney 2002).

Normally, the content of the review, the user who wrote the review, and the product on which

the review is written are considered contributive to this research (Pang and Lee 2008). In what

follows, we briefly glance at traditional approaches based on purely textual content, and introduce

user- or product-aware approaches in depth.

2.1 Text-based Methods

Early studies consider only textual content for classifying the sentiment. Pang et al. (2002)

developed a supervised sentiment classifier that takes only word n-grams as features. Hu and

Liu (2004) analyzed the sentiment of products’ aspects. Blitzer et al. (2007) built a classifier
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that learns weights of textual features depending on the product domain. Nakagawa, Inui, and

Kurohashi (2010) and Socher, Pennington, Huang, Ng, and Manning (2011) considered structural

interaction between words to capture complex intra-sentential phenomena such as polarity shifting

(Li, Lee, Chen, Huang, and Zhou 2010). Qiu, Liu, Bu, and Chen (2011) used a bootstrap method

to expand sentiment lexicon, which greatly helps to identify the sentiment.

2.2 User- or Product-Aware Methods

Recently, user-generated content has been the focus of considerable attention stimulating

researchers to explore the effectiveness of user and product information. Tan et al. (2011) and

Speriosu et al. (2011) exploited a user network behind a social media (Twitter, in their case), and

developed a graph-based method under the assumption that friends give similar ratings towards

the same products. However, such user networks are not always available in the real world.

Seroussi et al. (2010) computed the similarities among users on the basis of text and their

rating histories. Then, they classified a given review by referring to the ratings given for the same

product by other users who were similar to the user in question. Li et al. (2011) incorporated

user- or product-dependent n-gram features into a classifier. They argued that users employ user-

specific language to express their sentiment, while the sentiment toward a product is described

in product-specific language. These approaches, however, assume that the training data contains

reviews written by the test users or on the test products. This is an unrealistic assumption, since

we need to label reviews required for every emerging user or product.

In this study, we intend to handle reviews written by emerging users or on emerging products

by capturing their characteristics from the test reviews. As we later confirm in experiments, our

method improves classification accuracy even when only a few reviews are available for the users

or products in question.

3 Method

This section describes our method of collective sentiment classification that uses user leniency

and product popularity.

3.1 Overview

Our task is, given a set of N reviews R, to estimate labels Y , where yr ∈ {+1,−1} for each

given review r ∈ R, +1 and −1 represent positive and negative polarity, respectively. Each
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review label is estimated based on the following scoring function,

score(xr) = wTxr, (1)

where xr is feature vector representation of the review r, and w is a weight vector that we learn

from labeled data. With this scoring function, the label is estimated as follows:

yr = sgn(score(xr)) =

⎧⎨
⎩

+1 if score(xr) > 0,

−1 otherwise.

As discussed in the introduction, our aim is to exploit user leniency and product popularity

to improve sentiment classification. We therefore encourage reviews written by the same user

or on the same product to receive the same polarity when their polarity labels are found to be

biased. We realize this by encoding such biases as two global features in addition to local textual

features, as detailed in Section 3.2. Since global features make it impossible to estimate review

labels independently, we explore using two approximate decoding strategies in Section 3.3.

Note that here we assume each review to be associated with either the user who wrote that

review, the product on which the review was written, or both. This assumption is not unrealistic,

since the user or product can be identified in many review websites. We should emphasize that

our method does not require user profiles, product descriptions, or any type of extrinsic knowledge

of the users or products, and therefore it can handle reviews written by emerging users or on

emerging products.

3.2 Features

Our features can be divided into local and global, such that xr = (xl
r,x

g
r). The local features

(xl
r) are conventional word n-grams (n = 1 and n = 2) with binary values that indicate the

existence of the n-grams. The global features (xg
r) are the user leniency and product popularity

that are represented as real values.

Our global features are decomposed as:

xg
r = (f u+(r), f u−(r), f p+(r), f p−(r)),

where

f u+(r) =
|{rj | yj = +1, rj ∈ Su(r)}|

|Su(r)| , f u−(r) =
|{rj | yj = −1, rj ∈ Su(r)}|

|Su(r)| ,

f p+(r) =
|{rj | yj = +1, rj ∈ Sp(r)}|

|Sp(r)| , f p−(r) =
|{rj | yj = −1, rj ∈ Sp(r)}|

|Sp(r)| .
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Here, Su(r) is the user-related neighbor set of r, which contains the reviews written by the same

user u as r, while Sp(r) is the product-related neighbor set of r, which contains reviews written

on the same product p as r. If Su(r) (or Sp(r)) is empty, we set f u+(r) and f u−(r) (or f p+(r)

and f p−(r)) to be 0.

We use f u+(r) and f u−(r) to capture user leniency, i.e., how likely the user is to write

positive and negative reviews, respectively, while we use f p+(r) and f p−(r) to capture product

popularity, i.e., how likely positive and negative reviews are written on the product, respectively.1

3.3 Two Approximate Decoding Strategies

The global features make it difficult to perform decoding (i.e., labeling reviews) since each

review can no longer be labeled independently. Exact decoding algorithms based on dynamic

programming are not feasible in our case because the search space grows exponentially as the

number of test reviews increases. Instead, we explore and empirically compare two approximate

algorithms, easiest-first (Tsuruoka and Tsujii 2005) and two-stage decoding strategy (Krishnan

and Manning 2006). The easiest-first decoding is slower but expected to be more accurate than

the two-stage decoding.

Algorithm 1 depicts the easiest-first decoding algorithm. This strategy iteratively determines

review labels one by one. In each iteration, the review that is easiest to label, i.e., review rmax

with the highest absolute score score(xr), is chosen (line 5 in Algorithm 1), and then labeled

(line 6 in Algorithm 1). This process is repeated until all the reviews are labeled. The global

features are incrementally updated using the review labels that are already assigned. That is, at

the beginning of decoding, all global features are set to 0; when the labeling process proceeds,

the global features become more accurate as more labels are used to compute them.

Algorithm 2 depicts a two-stage decoding algorithm (Krishnan and Manning 2006). This

strategy performs decoding twice. In the first stage (lines 1–3 in Algorithm 2), we use only local

features to classify the reviews. In the second stage (lines 4–7 in Algorithm 2), those labels are

used to compute global features, and the labels are reassigned using the additionally computed

global features. In our case, the two-stage decoding at first only uses word n-gram features to

estimate the labels. Thereafter, those labels are used to compute global features in the second

stage.

1 Considering f u+ and f u− (f p+ and f p−) always add up to 1, we could also use only one feature for each
leniency and popularity (e.g. f u+ and f p+). We ran some experiments and found that the two-feature
designation outperformed the one-feature designation (f u+, f p+) on two out of three datasets (Maas and
Blitzer). Therefore, we choose to represent user leniency and product popularity using positive and negative
ratio of labels.
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Algorithm 1 Easiest-first strategy

1: for r ∈ R do

2: initialize the global features to 0

3: compute score(xr)

4: while R �= ∅ do

5: rmax = argmaxr∈R |score(xr)|
6: yrmax = sgn(score(xrmax))

7: for rj ∈ (Su(rmax) ∪ Sp(rmax)) ∩R do

8: update global features

9: re-compute score(xrj )

10: R = R\{rmax}
11: return Y

Algorithm 2 Two-stage strategy

1: for r ∈ R do

2: xr = xl
r

3: yr = sgn(score(xr))

4: for r ∈ R do

5: compute global features xg
r

6: xr = (xl
r,x

g
r)

7: yr = sgn(score(xr))

8: return Y

The major difference in the two algorithms is in the way they compute global features. The

easiest-first strategy uses labels estimated by local features and previously computed global fea-

tures, while the two-stage strategy uses labels estimated only by local features. We expect the

easiest-first decoding will exhibit better classification accuracy over the two-stage strategy, which

we will confirm later in experiments.

Time Complexity

We here analyze the time complexity of the two decoding strategies with respect to the number

of test reviews, N .

In the easiest-first strategy, two processes consume most of the computation time, one of which

is choosing the easiest review to label (line 5 in Algorithm 1). The argmax operation spends

O(logN) time in each iteration, using a heap structure to maintain the scores. Thus, the time

complexity of this step is O(N logN) for N iterations. Another bottleneck is score recomputation

(line 9 in Algorithm 1). To update the score for each review r ∈ Su(rmax) ∩ Sp(rmax), we need

|Su(rmax) ∩ Sp(rmax)| times delete and insert operations to the heap. If we can assume the

maximal number of reviews for each user or each product, |Su(rmax)∩Sp(rmax)| is upper-bounded
by a constant C.2 The overall time complexity adds up to O(N(logN +C logN)) = O(N logN).

In the two-stage strategy, the complexity is O(N) for both stages. Then the total complexity

is also O(N) , which is the same as the baseline method that uses only local textual features.

2 However, based on our experiment as shown in Fig. 2, the number |Su(rmax)∩Sp(rmax)| is weakly related to
N .
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3.4 Training

It is straightforward to train the parameters of the scoring function for the two decoding

algorithms. We train a binary classifier as the score estimation function in Eq. 1, considering

word n-gram, user leniency and product popularity features. The values of global features are

computed using the gold labels of training data. This classifier is used for the easiest-first decoding

and second stage of the two-stage decoding. A classifier used in the first stage of the two-stage

decoding is trained only with word n-gram features.

4 Experiments

In this section, we evaluate our method of collective sentiment classification on three real-

world review datasets with user and/or product information (Pang and Lee 2004; Blitzer et al.

2007; Maas et al. 2011).

4.1 Setting

We preprocessed each review in the datasets using OpenNLP3 toolkit to detect sentence

boundaries and to tokenize sentences. Following Pang et al. (2002), we induced word unigrams

and bigrams as local features while taking negation into account. We ignored the n-grams that

appeared less than a predefined number of times (we set this number to be six) in the training

data to limit the feature size.

We used an online linear classifier called confidence-weighted (Dredze, Crammer, and Pereira

2008) in our methods.4 We should emphasize here that the confidence-weighted algorithm is re-

ported to perform as well as Support Vector Machine in a document-level sentiment classification

(Dredze et al. 2008), and it thereby constructs a strong baseline.

For each confidence-weighted classifier, we tune the two hyper-parameters (confidence pa-

rameter φ and the number of iterations for training) on the training data. Confidence-weighted

learning adjusts a multivariate Gaussian distribution over the weight parameters where φ con-

trols the update rate of the variance and mean. Given a larger φ, the variance decreases faster

and the mean is updated more gradually. The number of iterations controls how many times

each training instance is used to update the parameters. We divided the training data into two

equal-sized parts. In tuning, one part is used as training data and the other as development data.

The parameter φ is chosen between {1, 2, 5, 10, 20, 50} and the number of iterations is chosen

3 http://opennlp.apache.org/
4 The code was kindly provided by the author of this paper.
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between {1, 2, 5, 10, 15, 20, 25}. After tuning, we used the tuned hyper-parameters to train a

classifier with the entire training data.

4.2 Datasets

Pang et al. (2004), Blitzer et al. (2007), and Maas et al. (2011) collected three datasets that

contain user and/or product information. All of the polarities (positive and negative labels) in

these datasets are balanced. Table 1 summarizes the statistics of these datasets.

Pang: This dataset is a small subset of reviews manually chosen from a movie review archive5

collected from a discussion newsgroup on art movies. 2,000 reviews are randomly chosen from a

large archive that contains over 30,000 reviews.

Blitzer: This dataset is collected from a shopping website6 on various domains of products. We

used part of its total 780 k reviews, to be consistent with the other two datasets. We automatically

deleted replicated reviews written by the same author on the same product (resulting in 740 k

raw reviews). Then, the reviews are balanced for positive and negative labels (over 90 k reviews

for each, by randomly sampling the equal number of positive and negative reviews).

Maas: This dataset is collected from the same movie review website as the Pang dataset ex-

cept that the reviews are not constrained on any discussion newsgroup. The choosing process

is automatically performed by collecting (upper-bounded number of) reviews for each product

(movie).

We automatically recovered the user and product information (implicitly) included in the

datasets. The Pang and Blitzer datasets are accompanied by the original html files, from which

we automatically extracted the user and product for each review. We used a URL (link to the

movie title) provided by the Maas dataset for each review as the identifier of the product, in this

case, a movie. Because user information cannot be fully recovered in the Maas dataset, we only

Table 1 Dataset statistics

Dataset Pang Blitzer Maas

No. of reviews 2,000 188,350 50,000

No. of users 309 123,584 n/a

No. of products 1,107 101,021 7,036

No. of reviews/user 6.5 1.5 n/a

No. of reviews/products 1.8 1.9 7.1

5 http://reviews.imdb.com/Reviews
6 http://www.amazon.com
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consider the product popularity in this dataset.

When we split the datasets for cross-validation, we maintained the order of the Pang dataset

and shuffled the Blitzer and Maas datasets for training and testing before splitting. Since our

method takes advantage of the user and product information, the more reviews each user or

product has, the higher accuracy our method is expected to achieve (as we will later confirm in

Section 4.3). In the Blitzer and Maas datasets, the reviews were originally ordered by the user and

product, respectively. Therefore, if we naively use the original order given by the datasets without

shuffling when splitting them, the average number of reviews for each user or product becomes

unnaturally high, which generates advantages to our method. In order to prevent the seemingly

unfair accuracy gain in this particular splitting, we shuffled the reviews before any experiment

rather than using the split provided by the authors. We performed a two-fold cross-validation on

all three datasets.

4.3 Results

We compared the accuracy of our method with two other methods: a baseline method using

a confidence-weighted linear classifier with n-gram features and an existing user-aware sentiment

classifier proposed by Seroussi et al. (2010). For reference, we also listed the results reported in

Maas et al. (2011), which was evaluated using a different two-fold splitting.

Seroussi et al. (2010) proposed a framework that combines scores given by classifiers trained

on other users, according to the similarity to the target user. We build a personalized classifier for

each user on his/her training reviews if he/she has more (positive and negative) reviews than a

predefined threshold. For any pair of users, they compute the similarity as the jacquard distance

of word n-grams from their (testing and training) reviews (called “AIT,” which performed best

in their paper). To classify a review written by a given user, they combine the scores generated

by the other users’ personalized classifiers weighted by the similarities between those users and

the given user. If we set the aforementioned threshold too high, many word n-gram features will

be lost because many reviews will be ignored. We tuned the threshold (from 1 to 5) using the

identical method we used to tune the hyper-parameters for the confidence-weighted classifier.7 In

our datasets, many test users had a similarity of 0 to the users in the training data because the

number of reviews written by each user is much smaller than that in the Seroussi’s dataset. For

labeling reviews written by such test users, we constructed and used a default classifier trained

on all the training data.

7 Seroussi et al. (2010) chose users who had more than 50 positive and 50 negative reviews. However, in our
datasets, users have fewer reviews so we set the boundary to be 5.
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Table 2 shows the experimental results. Our method improves accuracies on the Blitzer and

Maas datasets against the baseline classifiers. A larger improvement is achieved on the Maas

dataset, probably because the average number of reviews for each product is higher than that

of the Blitzer dataset such that we could estimate more reliable global features. On the Pang

dataset, however, our method had no advantage. We will further analyze the reason in the

following paragraphs.

On the Blitzer dataset, user leniency was more helpful than product popularity. This is

probably because the Blitzer dataset includes all the reviews written by each user. On the other

hand, product information plays an important role because the Maas dataset includes all the

reviews for each product.

Among the two decoding methods, the easiest-first decoding consistently achieves higher

accuracy. This confirms our expectation that easiest-first decoding is more cautious than two-

stage decoding. However, easiest-first decoding has its own weakness in speed.

Seroussi et al. (2011) performed badly because the number of reviews for each user in our

datasets was lower than theirs, hence, the personalized classifiers learned on limited instances

would be unreliable.

Table 2 Accuracy (%) on review datasets

Method Pang Blitzer Maas

Seroussi et al. (2010) 78.05 89.33 n/a

Maas et al. (2011) 88.90 n/a 88.898

baseline 86.00 90.14 91.47

proposed (easiest-first)

+user 86.00 91.03� n/a

+product 85.95 90.17 92.68

+user + product 85.55 91.11� n/a

proposed (two-stage)

+user 85.55 90.94� n/a

+product 85.70 90.16 92.63

+user + product 85.50 91.02� n/a

+user and +product mean considering user leniency and product popularity features. Accuracy marked

with “�” was significantly better than baseline (p < 0.01, assessed by McNemar’s test).

8 This result used different two-fold splitting from ours. Under their splitting, our accuracies were 90.79%,
92.39%, and 92.27% for baseline, easiest-first, and two-stage strategies, respectively. Both strategies easily
beat Maas et al. (2011)’s accuracy, 88.89%. Our baseline is superior to their method, partly because of the
features we used. They used only unigram features, whereas we used unigram and bigram (which considers
negation) as features. With only unigram features, our baseline classifier achieved 87.80% accuracy.
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4.4 Analysis

In this section, we analyze our experimental results on accuracy. We first investigate the

impact on accuracy when we change the testing data size in Analysis i. Next, we show how much

improvement will be gained by our method if a user (or a product) has a different number of

reviews in Analysis ii. Then, we show the biases of each dataset, and the performance of our

method on both emerging and existing users (and products) in Analysis iii and iv. Finally, in

Analysis v and vi, we show the learning curves and some examples.

Analysis i: Impact of testing data size on speed and accuracy

First, we investigate the impact of the number of test reviews on speed and accuracy in

our collective sentiment classification. We use the Blitzer dataset for evaluation because of its

larger size. User leniency and product popularity are both considered. We use the fixed hyper-

parameters (φ = 1.0, # iterations = 10) for all the confidence-weighted classifiers used in this

experiment.

To illustrate the impact of the size of test data on classification accuracy, we changed the

number of test reviews processed at once. Here, instead of decoding the whole testing data, we

split the test reviews into equal-sized smaller subsets and apply our classifier independently to

each.9 We accumulate the results for all the subsets to compare the accuracy for the entire test

data. Fig. 1 shows the experimental results. When we process a larger number of reviews at once,

we have more reviews per user or per product to compute the global features. The computed

global features thereby become more statistically reliable and accurately capture user leniency

and product popularity, which results in higher classification accuracy. We will confirm this in

Analysis ii.

We then measured the testing speed using the same setting as the above experiment, while

evaluating the average time consumed by one single subset. As shown in Fig. 2, the speed

of the easiest-first decoding drastically slows down as the number of processed reviews grows,

whereas the speed of the two-stage decoding increases linearly. Meanwhile, the accuracy of the

two strategies are competitive, as shown in Fig. 1.

Based on these observations, the key factor in achieving better accuracy is not the choice of

decoding strategy, but the amount of test data processed at once. We conclude that when we have

too much test data for the easiest-first decoding to process in a practical time we should adopt

the two-stage decoding strategy to induce and exploit more reliable global features. Otherwise,

we can choose the easiest-first decoding to enjoy a modest gain in accuracy.

9 We used the same two-fold cross-validation as the main experiment for accuracy.
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Fig. 1 Classification accuracy computed accu-

mulatively when the number of testing

reviews was changed

Fig. 2 Average computation time when the

number of testing reviews was changed

Analysis ii: Accuracy in terms of size of neighbors

The accuracy gain is rooted in global features, while global features are computed by referring

to labels of (user- and product-related) neighboring reviews, Su(r) and Sp(r). When only one

such neighbor is available, global features may be unreliable compared with those computed from

many neighbors. We then investigate how the number of (user- and product-related) neighboring

reviews affect accuracy improvement.

Both user leniency and product popularity features show no improvement on the Pang dataset,

as in Table 3, because of the limited review size, as we illustrated in Analysis i. It is also probablly

because the biases of the user and product are not sufficient in this dataset, which will be shown

in Analysis iii. Table 4 shows that user leniency features greatly contribute to the improvement,

while product popularity has limited influence on the Blitzer dataset. Popularity features play

an important role on the Maas dataset, as shown in Table 5. In general, we expect further

improvement if we collect some unlabeled reviews for the user (or product).

We noticed that when the number of reviews written by a user or on a product is large enough

(3 ≤ |Su(r)| ≤ 7 in the Blitzer dataset and 2 ≤ |Sp(r)| ≤ 5 in the Maas dataset) having more

reviews for such users and products does not improve the accuracy any further. Considering that

a larger |Su(r)| or |Sp(r)| results in lower speed of easiest-first decoding, as shown earlier, we

could bound the number of reviews written by each user or on each product to save computation

without losing accuracy.

Analysis iii: Polarity bias in terms of user or product

Since our method takes advantage of biased distributions over polarity labels in terms of a

user or product, larger the bias in the data, greater our method could improve classification
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Table 3 Accuracy (%, lower inside cell) of proposed method (two-stage) and review size (upper inside

cell) of the Pang dataset divided according to the number of reviews written by the user and

number of reviews on the product

No. of product-related neighbors (|Sp(r)|)
0 1 2 3–

120 52 23 27
0 80.83 (+0.00) 82.69 (+0.00) 82.61 (−4.35) 96.30 (+0.00)

41 32 12 15
1 85.37 (+2.44) 90.63 (+3.13) 58.33 (−16.66) 100.00 (+0.00)

48 17 4 9

N
o
.
o
f
u
se
r-
re
la
te
d

n
ei
g
h
b
o
rs

(|S
u
(r
)|)

2 85.42 (+0.00) 82.35 (−5.88) 75.00 (+0.00) 66.67 (+0.00)

201 90 57 54
3–7 87.06 (+0.00) 82.22 (−1.11) 82.46 (+1.75) 88.89 (−1.85)

609 299 138 152
8– 84.73 (−0.66) 87.29 (+0.67) 87.68 (−2.17) 87.50 (−1.32)

The float inside parentheses is the difference from the baseline method. No accuracy is significantly

different from baseline (p ≥ 0.01, assessed by McNemar’s test).

Table 4 Accuracy (%, lower inside cell) of proposed method (two-stage) and review size (upper inside

cell) on the Blitzer dataset divided according to number of reviews written by the user and

the number of reviews on the product

No. of product-related neighbors (|Sp(r)|)
0 1 2 3–

55,043 34,735 16,601 9,630
0 90.12 (+0.01)� 90.13 (+0.27)� 90.90 (+0.67)� 92.37 (+0.56)�

10,768 6,530 2,974 1,536
1 91.14 (+1.33) 91.33 (+2.07) 91.36 (+1.34) 92.25 (+1.04)

4,595 2,711 1,292 663

N
o
.
o
f
u
se
r-
re
la
te
d

n
ei
g
h
b
o
rs

(|S
u
(r
)|)

2 91.80 (+2.13)� 91.26(+2.73) 90.48 (+1.63) 91.98 (+2.04)

8,120 4,974 2,174 998
3–7 92.45 (+2.35)� 91.19 (+2.37)� 92.23 (+3.50) 89.98 (+1.70)

13,243 7,484 3,017 1,289
8– 93.66 (+1.94)� 92.34 (+1.80)� 91.32 (+1.46)� 90.07 (+1.55)

The float inside parentheses is the difference from the baseline method. Accuracy marked with “�” was

significantly better than baseline (p < 0.01, assessed by McNemar’s test).

Table 5 Accuracy (%, lower inside cell) of proposed method (two-stage) and review size (upper inside

cell) on the Maas dataset divided according to number of reviews on the product

No. of product-related neighbors (|Sp(r)|)
0 1 2–5 6–10 11–

3,597 4,646 14,394 10,444 16,919
86.41 (+0.27)� 91.05 (+2.00)� 92.48 (+1.55)� 93.96 (+1.22) 93.69 (+0.74)�

The float inside parentheses is the difference from the baseline method. Accuracy marked with “�” was

significantly better than baseline (p < 0.01, assessed by McNemar’s test).
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accuracy. We then compute the polarity bias in terms of users (in short, user bias) and products

(product bias) as follows:

user bias(u) =
|N+(u)−N−(u)|
N+(u) +N−(u)

,

product bias(p) =
|N+(p)−N−(p)|
N+(p) +N−(p)

,

where, N+/−(u) or N+/−(p) are the number of reviews written by user u or written on product

p with polarity ∈ {+,−}.10 With this definition, for instance, user u who only writes positive

reviews will have user bias(u) = 1 while user u who writes positive and negative reviews evenly

will be assigned as user bias(u) = 0. Higher the user bias and product bias values that exist,

the more potential our method has to improve accuracy.

Because of the different collecting methods, the three datasets we used show different bias

properties. The distributions of user bias and product bias values are shown in Fig. 3 and Fig. 4,

respectively. Possibly, because the Pang dataset is collected from a discussion newsgroup, the

users in it are less biased than those in the Blitzer dataset, which is collected from a general

domain. As such, the user leniency features extracted from the Pang dataset might be unreliable

since users do not have much bias. The products in the Maas dataset are more biased than those

in the other two datasets. This could be a reason user information in the Blitzer dataset and

product information in the Maas dataset contribute the most to improvement.

As illustrated in Fig. 1, when the number of reviews is small, the accuracy of our method

decreases. Thus, the small size of the Pang dataset (Table 1) and low user bias values seem to

Fig. 3 User bias distribution. The users who

have only one review are eliminated.

Fig. 4 Product bias distribution. The prod-

ucts that have only one review are elim-

inated.

10 The numbers are counted using all the reviews, including training and testing data.
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be the reasons our method performed badly on this dataset.

Analysis iv: Impact of training reviews written by test users (on test products)

Aiming at revealing how well our method works for reviews written by unseen (emerging)

users or on unseen (emerging) products, we investigated classification accuracy depending on

whether we observed the same user (or product) in the training data. We use user leniency and

product popularity features on the Pang and Blitzer datasets, while we consider only product

popularity features on the Maas dataset. The baseline classifier is expected to estimate the labels

of reviews written by seen users or on seen products better than those unseen ones’ because the

classifier learns n-grams specific to these users or the products (and thus is more effective in

classification). On the other hand, our method performed well when more reviews were available

for users and products in the test data, so we can expect consistent improvement for seen and

unseen users (products).

On the Pang dataset, as shown in Table 6, the smaller number of training data resulted in

poor classification accuracy, particularly on unseen users and unseen products. Unlike in the

other two datasets, lack of biases and the small number of reviews seem to be responsible.

As shown in Table 7, a larger improvement was observed on reviews written by the seen

users in the Blitzer dataset. We found that the average number of reviews written by a user

was extremely low (1.04 reviews), and no global features were fired in most of these reviews. We

consider this may be the main reason for the poor improvement in accuracy on reviews written

by unseen users.

On the Maas dataset, as shown in Table 8, the improvement on the reviews written on unseen

products is significantly larger than the reviews on seen products. This may seem counterintuitive

since we have a smaller number of reviews written on the unseen products (which means fewer

Table 6 Accuracy (%) on seen/unseen user or product splits of Pang dataset

(su, sp) (uu, sp) (su, up) (uu, up) total

No. of reviews 951 86 850 113 2,000

No. of reviews/user 3.98 1.13 3.85 1.18 4.41

No. of reviews/product 1.69 1.08 1.16 1.02 1.44

baseline 87.38 88.37 84.71 82.30 86.00

proposed (easiest-first) 87.07 (−0.32) 87.21 (−1.16) 84.24 (−0.47) 81.42 (−0.88) 85.55 (−0.45)

proposed (two-stage) 87.07 (−0.32) 87.21 (−1.16) 84.12 (−0.59) 81.42 (−0.88) 85.50 (−0.50)

su, uu, sp and up denote seen user, unseen user, seen product, and unseen product, respectively. The

float inside parentheses is the difference between our method and baseline classifier. No accuracy is

significantly different from baseline (p ≥ 0.01, assessed by McNemar’s test).
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Table 7 Accuracy (%) on seen/unseen user or product splits of Blitzer dataset

(su, sp) (uu, sp) (su, up) (uu, up) total

No. of reviews 35,689 60,775 36,859 55,027 188,350

No. of reviews/user 2.04 1.04 2.14 1.04 1.40

No. of reviews/product 1.20 1.39 1.14 1.20 1.43

baseline 89.72 90.33 90.50 89.94 90.14

proposed (easiest-first) 91.39 (+1.67)� 90.91 (+0.58)� 92.34 (+1.84)� 90.33 (+0.39)� 91.11 (+0.98)�

proposed (two-stage) 91.24 (+1.52)� 90.87 (+0.54)� 92.13 (+1.63)� 90.29 (+0.35)� 91.02 (+0.88)�

su, uu, sp and up denote seen user, unseen user, seen product, and unseen product, respectively. The

float inside parentheses is the difference between our method and baseline classifier. Accuracy marked

with “�” was significantly better than baseline (p < 0.01, assessed by McNemar’s test).

Table 8 Accuracy (%) on seen/unseen product splits of Maas dataset

(sp) (up) total

No. of reviews 46,397 3,603 50,000

No. of reviews/product 4.82 1.62 4.22

baseline 91.93 85.62 91.47

proposed (easiest-first) 93.07 (+1.14) 87.73 (+2.11)� 92.68 (+1.21)

proposed (two-stage) 93.02 (+1.09) 87.59 (+1.97)� 92.63 (+1.16)

sp and up denote seen product and unseen product, respectively. The float inside parentheses is the

difference between our method and baseline classifier. Accuracy marked with “�” was significantly

better than baseline (p < 0.01, assessed by McNemar’s test).

reliable global features). The reason is probably that baseline classifier performed poorly on

reviews written on unseen products, and hence left our method larger space for improvement.

Analysis v: Learning curves

Using the same setting as in Analysis i, we divided the training data and investigated the

effect on accuracy. Fig. 5 shows the accuracy when we change the size of the training data.

Our method has a clear advantage over the baseline method, even when the size of the training

data is small (1,800 reviews). In other words, we do not need much training data to learn the

correlation between the label and global features. Our method trained with half of the training

data achieved a higher accuracy (90.53%) than the baseline method trained on the entire data

(90.31%).

Analysis vi: Examples

Some examples are given to explain how our model works. As shown in Table 9, our method

successfully classifies some reviews that are hard to classify correctly when only textual features

are used.

In the first two examples, weak negative textual features are found in the test review. How-
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Fig. 5 Average accuracy when size of the training data is changed

Table 9 Examples show the influence of leniency and popularity global features

Leniency Popularity Review
Label

gold baseline our

f u+: 0.92 f p+: 0.67
+1 −1 +1

f u−: 0.08 f p−: 0.33

... The book would deserve 5 stars if the author had compared
several popular jurisdictions instead of focusing solely on

Nevada

f u+: 0.81 f p+: 0.50
+1 −1 +1

f u−: 0.19 f p−: 0.50

... I am using Windows XP with office Pro 2003 and today
was disappointed to find that the Help menu is not as user
friendly or helpful as earlier editions

f u+: 0.18 f p+: 0.00 −1 +1 −1
f u−: 0.82 f p−: 1.00

ooo! see Halle act. act, halle, act. emote. emote. see halle
act drunk. see halle act crying. see halle act nympho. ... but
what does it matter, since we get to see halle act ...

The bold content is the negative evidence learned by classifier.

ever, since the two users are lenient and product of the first review is relatively popular (these

characteristics are captured by our proposed method), the two reviews should still be given

positive labels.

Frequently, sentiment expressed inside a review is not obvious if the classifier does not know

the meaning of the words (sometimes, even a human finds it hard to identify sentiment from

words). As we can see in the third example in Table 9, the baseline classifier could recognize no

obvious sentiment evidence from the textual features, while our method classified it as negative

by detecting that it is about a notorious product and the user is critical.

These examples illustrate that our model can successfully exploit the user and product biases

to improve accuracy of sentiment classification.

557



Journal of Natural Language Processing Vol. 21 No. 3 June 2014

5 Conclusion

We presented a method of collective sentiment classification that captures and utilizes user

leniency and product popularity. Different from most of the previous studies that are aware of

the user and product of the review, our model does not assume the training data to contain

reviews written by the same user or on the same product in the test reviews. To determine a

label configuration for a given set of reviews, we adopted and compared two strategies, namely,

easiest-first decoding and two-stage decoding.

We conducted experiments on three real-world review datasets to compare with existing meth-

ods. The proposed method performed more accurately than the baseline, which uses only word

n-grams as features when the users and products are biased on sentiment (which is often true

in the real-world). It also outperformed the state-of-the-art method that combines personalized

classifiers. The more reviews per user or per product are available, larger the improvement our

method gains. The two-stage strategy runs in time that is linear to the number of test reviews

(expected to be the same order of speed as the baseline classifiers), while achieving slightly less

accuracy compared with the easiest-first strategy.

We consider our proposed method as a first step toward modeling more complex properties

of reviews. A future extension of this work is to detect a user’s preference for a certain kind

of product. We also plan to use dual decomposition (Koo, Rush, Collins, Jaakkola, and Sontag

2010) as an advanced decoding strategy for our collective sentiment classification.
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