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Abstract. Periodic pattern mining is an important model in data min-
ing. It typically involves discovering all patterns that are exhibiting either
complete or partial cyclic repetitions in a dataset. The problem of finding
these patterns has been widely studied in time series and (temporally or-
dered) transactional databases. This paper contains these studies along
with their advantages and disadvantages. This paper also discusses the
usefulness of periodic patterns with two real-world case studies. The first
case study describes the useful information discovered by periodic pat-
terns in an aviation dataset. The second case study describes the useful
information discovered by periodic patterns pertaining to users’ browsing
behavior in an eCommerce site.

The tutorial will start by describing the frequent pattern model
and the importance of enhancing this model with respect to time di-
mension. Next, we discuss the basic model of finding periodic patterns
in time series, describe its limitations, and the approaches suggested to
address these limitations. We next discuss the basic model of finding pe-
riodic patterns in a transactional database, describe its limitations, and
the approaches suggested to address them. Finally, we end this tutorial
with the real-world case studies that demonstrate the usefulness of these
patterns.

Keywords: Data mining, knowledge discovery in databases, frequent
patterns and periodic patterns

1 Introduction

Time and frequency are two most important dimensions to determine the inter-
estingness of a pattern in a given data set. Periodic patterns are an important
class of regularities that exist in a data set with respect to these two dimensions.
Periodic pattern mining involves discovering all patterns that are exhibiting ei-
ther complete or partial cyclic repetitions in a data set [1, 2]. Finding these pat-
terns is a significant task with many real-world applications. Examples include
finding co-occurring genes in biological data sets [3], improving the performance
of recommender systems [4], intrusion detection in computer networks [5], and
finding events in Twitter [6]. A classic application to illustrate the usefulness of
these patterns is market-basket analysis. It analyzes how regularly the sets of
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items are being purchased by the customers. An example of a periodic pattern
is as follows:

{Bed, P illow} [support = 10%, period = 1 hour].

The above pattern says that 10% of customers have purchased the items ‘Bed’
and ‘Pillow’ at least once in every hour.

The problem of finding periodic patterns has been studied in [1–3, 7–16].
Some of these approaches consider input data as time series [2, 3, 7–11], while
others consider data as an enhanced transactional database having time attribute
[1, 12–16]. In this paper, we study all of these approaches with respect to the
following topics:

1. Data representation. How a periodic pattern model considers input data?
What are the implicit assumptions pertaining to the frequency and periodic
behavior of the items within the data?

2. Computational expensiveness. What is the size of search space? What
properties are used to reduce the search space efficiently?

3. Mining rarity. In many real-world databases, some items appear very fre-
quently in the data, while others appear rarely. The knowledge pertaining
to rare items is often of great interest and high value. However, finding this
knowledge is challenging due to infrequent appearances of rare items. This
problem is known as the rare item problem. We discuss how some of the
periodic pattern models are trying to address this problem.

The rest of the paper is organized as follows. Section 2 describes the ap-
proaches for finding periodic patterns in time series. Section 3 describes the
approaches for finding periodically occurring frequent patterns in a transac-
tional database. Sections 4 reports on the experimental results. Finally, Section
5 concludes the paper.

2 Periodic pattern mining in time series

In this section, we first describe the basic model of periodic patterns. We next
discuss the limitations of this model. Finally, we describe the approaches that
try to address these limitations.

2.1 The basic model of periodic patterns

Time series is a collection of events obtained from sequential measurements over
time. Han et al. [2] have studied the periodic behavior of patterns in a series,
and discussed a model to find periodic patterns. The model is as follows:

Let I be the set of items and D be a set of transactions (or a database),
where each transaction t is a set of items such that t ⊆ I. The time series S
represents the gathering of n timestamped databases into a single database, i.e.,
S = D1, D2, · · · , Dn, 1 ≤ n. Let the symbol * denote a wild (or do not care)
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character, which can match any single set of items. The pattern s = s1, · · · , sp is
a non-empty sequence over (2I −{∅})∪{∗}. Let |s| denote the length (or period)
of the pattern s. Let the I-length of s = s1 · · · sp be the number of si which
contains letters from I. A pattern with I-length k is also called a k-pattern.
Moreover, a subpattern of a pattern s = s1 · · · sp is a pattern s′ = s′1 · · · s′p
such that s and s′ have the same length, and s′i ⊆ sifor every position i where
s′i ̸= ∗ . The support of a pattern s in S is denoted as Sup(x) = |{i|0 ≤ i <
m, and the string s is true in Di|s|+1 · · ·Di|s|+|s|}|, where m is the maximum
number of periods of length s. Each segments of the form Di|s|+1 · · ·Di|s|+|s|,
where 0 ≤ i < m, is called a period segment. The pattern s is said to be a
periodic pattern if Sup(s) ≥ minSup, where minSup represents the user-defined
minimum support threshold value.

Example 1. Given the time series S = a{bc}baebace, I = {a, b, c, e}. If the user-
defined period is 3, S is divided into three periodic-segments: D1 = a{bc}b,
D2 = aeb and D3 = ace. Let a ∗ b be a pattern. The length of this pattern
is 3, and its I-length is 2 (i.e., it contains only two items within this pattern).
Therefore, we represent this pattern as 2-pattern. This pattern appears in the
periodic-segments of D1 and D2. Therefore, its support count is 2. If the user-
defined minSup is 2, then a ⋆ b represents a periodic pattern.

2.2 The limitations of basic model

Aref et al. [17] have extended the Han’s model to incremental mining of peri-
odic patterns. Yang et al. [11] have studied the change in periodic behavior of a
pattern due to the influence of noise, and enhanced the basic model to discover
a class of periodic patterns known as asynchronous periodic patterns. Zhang et
al. [3] have enhanced the basic model to discover periodic patterns in charac-
ter sequences like protein data. The popular adoption and successful industrial
application of this basic periodic pattern model suffers from the following obsta-
cles:

1. Computationally expensive model:

– In the basic periodic pattern model, a pattern represents sets of items.
Therefore, the search space of this model is

∑p
i=1 n

p, where n and p rep-
resent the total number of items in a series and the user-defined period,
respectively. This search space is typically much higher than the frequent
pattern model that has the search space of 2n − 1.

– Periodic patterns satisfy the anti-monotonic property [18]. That is, all
non-empty subsets of a periodic pattern are also periodic patterns. How-
ever, this property is insufficient to make the periodic pattern mining
practical or computationally inexpensive in real-life. The reason is that
number of frequent i-patterns shrink slowly (when i > 1) as i increases
in time series data. The slow speed of decrease in the number of frequent
i-patterns is due to a strong correlation between frequencies of patterns
and their sub-patterns [19].
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– Overall, the huge search space followed by the inability to reduce the
search space using anti-monotonic property makes the model computa-
tionally expensive or impractical in real-world applications.

2. Sparsity problem: The basic model of periodic patterns uses the wild
character ‘⋆’ to represent an event within a pattern. This leads to the sparsity
problem, which involves many discovered patterns having a large number of
wild characters with very few events. For example, a ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
bc ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆a ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆b. This problem makes the discovered patterns
impracticable in applications.

3. The rare item problem: Since only a single period and minSup are used
for the whole data, the model implicitly assumes that all items in the data
have same periodic behavior and uniform frequency. However, this is seldom
not the case in many real-world data sets. In many data sets, some items
appear very frequently in the data, while others rarely appear. Moreover, rare
items typically occur with long periods (i.e., inter-arrival times) as compared
against the frequent items. Henceforth, finding periodic patterns with a single
period and minSup leads to the following two problems:

– If the period is set too short and/or the minSup is set too high, we will
miss the periodic patterns involving rare items.

– In order to find the periodic patterns involving both frequent and rare
items, we have to set a long period and a lowminSup. However, this may
result in combinatorial explosion, producing too many patterns, because
frequent items can combine with one another in all possible ways and
many of them may be meaningless.

4. Methodology to specify period: An open problem of this model is the
methodology to specify period that can capture the heterogeneous temporal
behavior of all items in a series effectively.

5. Inability to consider temporal information of events: Han’s model
considers time series as a symbolic sequence. As a result, this model does
not take into account the actual temporal information of events within a
sequence [5].

2.3 Research efforts to address the limitations

Han et al. [19] have introduced “maximum sub-pattern hit set property” to re-
duce the computational cost of finding these patterns . Based on this property,
a tree-based algorithm, called max-subpattern tree, has been proposed to dis-
covered periodic patterns effectively. A max-subpattern tree takes the candidate
max-pattern, Cmax, as the root node. Each subpattern of Cmax with one non-*
letter missing is a direct child node of the root. The tree expands recursively ac-
cording to the following rules. A node w may have a set of children if it contains
more 2 non-* letters. Then the tree from the root of the tree is constructed and
the missing non-* letters are checked in order to find the corresponding node.
The count increases by 1 if the node w is found. Otherwise, a new node w (with
count 1) and its missing ancestor nodes (only those on the path to w, with count
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0) are created. If one exists, it (or them) is (or are) inserted into the correspond-
ing place(s) of the tree. After a max-subpattern tree has been built, the tree is
scanned to find frequency counts of the candidate patterns and eliminate the
non-frequent ones. Notice that the frequency count of a node is the sum of the
count of itself and those of all of the reachable ancestors. If the derived frequent
pattern set is empty, then return. For more details, refer to the study by [19].

Zhang et al. [3] have tried to address the sparsity problem by limiting the gap
(i.e., number of wild characters allowed between two itemsets) within a pattern.
Yang et al. [7] have used “information gain” to address the rare item problem
in periodic pattern mining. The discovered patterns are known as surprising
patterns. Alternatively, Chen et al. [8] have tried to address this problem by
finding periodic patterns using multiple minSups [20]. In this approach, each
item in the series is specified with a support constraint known as minimum item
support (MIS). The minSup for a pattern is represented with the lowest MIS
value of its items. That is,

minSup(s) = minmum(MIS(ij)|∀ij ∈ s)

where, MIS(ij) represents the user-specified minimum item support for an item
ij ∈ s. The usage of minimum item support enables us to achieve the goal of
having higher minSup for patterns that only involve frequent items, and having
lower minSup for patterns that involve rare items.

Berberidis et al. [9] have discussed a methodology to specify approximate
period using Fast Fourier Transformations and auto-correlation. Unfortunately,
this method may miss some frequent periods and it requires a separate pass
to scan the data sequence to compute the periods. Moreover, for each item, it
needs to compute, at a high cost, the circular auto-correlation value for different
periods in order to determine whether the period is frequent or not. Cao et al. [10]
have proposed a computationally inexpensive approach to determine period with
an implicit assumption that periodic pattern can be approximately expressed by
an arithmetic series together with a support indicate about its frequency.

All of the above mentioned approaches consider time series as a symbolic se-
quence, and therefore, do not take into account the actual temporal information
of the items in the data. In the next section, we discuss the approaches that take
into account the temporal information of the items in the data.

3 Periodic pattern mining in transactional databases

In this section, we first describe the basic model of periodic-frequent patterns.
We next discuss the limitations of this model, and describe the efforts made in
the literature to address these limitations.

3.1 The basic model of periodic-frequent patterns

Ozden et al. [1] have enhanced the transactional database by a time attribute
that describes the time when a transaction has appeared, investigated the peri-
odic behavior of the patterns to discover cyclic association rules. In this study, a
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database is fragmented into non-overlapping subsets with respect to time. The
association rules that are appearing in at least a certain number of subsets are
discovered as cyclic association rules. By fragmenting the data and counting the
number of subsets in which a pattern occurs greatly simplifies the design of the
mining algorithm. However, the drawback is that patterns (or association rules)
that span multiple windows cannot be discovered.

Tanbeer et al. [12] have discussed a simplified model to discover periodically
occurring frequent patterns, i.e., periodic-frequent patterns, in a transactional
database. The model is as follows:

Let I be a set of items. LetX ⊆ I be a pattern (or an itemset). A pattern con-
taining k number of items is known as a k-pattern. A transaction, tr = (ts, Y ),
is a tuple, where ts ∈ R represents the timestamp and Y is a pattern. A trans-
actional database TDB over I is a set of transactions, TDB = {tr1, · · · , trm},
m = |TDB|, where |TDB| is the size of the TDB in total number of transac-
tions. For a transaction tr = (ts, Y ), such that X ⊆ Y , it is said that X occurs
in tr and such a timestamp is denoted as tsX . Let TSX = {tsXk , · · · , tsXl }, where
1 ≤ k ≤ l ≤ m, denote an ordered set of timestamps at whichX has occurred
in TDB.

Example 2. Table 1 shows the transactional database with each transaction
uniquely identifiable with a timestamp (ts). All transactions in this database
have been ordered with respect to their timestamps. This database do not con-
tain any transaction with timestamps 6 and 9. However, it has to be noted that
these two timestamps still contribute in determining the periodic interestingness
of a pattern. The set of all items in this database, I = {a, b, c, d, e, f, g, h}. The
set of items ‘a’ and ‘b’, i.e., ‘ab’ is a pattern. This pattern contains only two
items. Therefore, this is a 2-pattern. This pattern appears at the timestamps of
1, 2, 5, 7 and 10. Therefore, TSab = {1, 2, 5, 7, 10}.

The above measures, support and all-confidence, determine the interestingness
of a pattern in frequency dimension. We now describe the measures to determine
the interestingness of a pattern in time dimension.

Table 1. A transactional database

ts Items ts Items ts Items ts Items ts Items
1 ab 3 cdgh 5 ab 8 cd 11 cdg
2 abd 4 cef 7 abce 10 abdef 12 aef

Definition 1. (Support of a pattern X.) The number of transactions con-
taining X in TDB (i.e., the size of TSX) is defined as the support of X and
denoted as sup(X). That is, sup(X) = |TSX |.

Example 3. The support of ‘ab’ in Table 1 is the size of TSab. Therefore, sup(ab) =
|TSab| = |1, 2, 5, 7, 10| = 5.
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Definition 2. (A frequent pattern X.) The pattern X is said to be frequent if
its support satisfies the user-specified minimum support (minSup) constraint.
That is, if SUP (X) ≥ minSup, then X is a frequent pattern.

Example 4. Continuing with the previous example, if the user-specifiedminSup =
3, then ab is a frequent pattern as sup(ab) ≥ minSup.

Definition 3. (A period of X) Given TSX = {tsXa , tsXb , · · · , tsXc }, 1 ≤ a ≤
b ≤ c ≤ |TDB|, a period of X, denoted as pXk , is calculated as follows:

– pX1 = tsXa − tsini, where tsini = 0 denotes the initial timestamp of all trans-
actions in TDB.

– pXk = tsXq − tsXp , 1 < k < Sup(X) + 1, where tsXp and tsXq , a ≤ p < q ≤ c,

denote any two consecutive timestamps in TSX .
– pXsup(X)+1 = tsfin − tsXc , where tsfin denotes the final timestamp of all

transactions in TDB.

Example 5. In Table 1, the pattern ab has initially appeared at the timestamp
of 1. Therefore, the initial period of ab, i.e., pab1 = 1 (= 1−tsini). Similarly, other
periods of this pattern are: pab2 = 1 (= 2−1), pab3 = 3 (= 5−2), pab4 = 2 (= 7−5),
pab5 = 3 (= 10− 7) and pab6 = 2 (= tsfin − 10).

The terms ‘tsini’ and ‘tsfin’ play a key role in determining the periodic appear-
ance of X in the entire database. Let PX = {pX1 , pX2 , · · · , pXk }, k = Sup(X) + 1,
denote the set of all periods of X in TDB. The first period in PX (i.e., pX1 )
provides useful information pertaining to time taken for initial appearance of X
in TDB. The last period in PX (i.e., pXk ) provides useful information pertaining
to time elapsed after the final appearance of X in TDB. Other periods in PX

provide information pertaining to inter-arrival times of X in TDB.
The occurrence intervals, defined as above, gives information of appearance

behavior of a pattern. The largest occurrence period of a pattern provides the
upper limit of its periodic occurrence characteristic. Hence, the measure of the
characteristic of a pattern of being periodic in a TDB can be defined as follows.

Definition 4. (Periodicity of X.) Let PX denote the set of all periods of X
in TDB. The maximum period in PX is defined as the periodicity of X and
is denoted as per(X), i.e., per(X) = max(pXi |∀pXi ∈ PX).

Example 6. Continuing with the previous example, P ab = {1, 1, 3, 2, 3, 2}. There-
fore, the periodicity of ab, i.e., per(ab) = max(1, 1, 3, 2, 3, 2) = 3.

Definition 5. (A periodic-frequent pattern X.) The pattern X is said to be
periodic-frequent if sup(X) ≥ minSup and per(x) ≤ maxPer.

Example 7. Continuing with the previous example, if the user-specifiedmaxPer =
3, then ab is a periodic-frequent pattern as sup(ab) ≥ minSup and per(ab) ≤
maxPer.
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3.2 The performance issues of the periodic-frequent pattern model

Unlike the periodic pattern mining models in time series, periodic-frequent pat-
tern mining model takes into account the temporal information of the items
within the data. Moreover, the latter model do not suffer from the sparsity prob-
lem. This model is also computationally inexpensive than the periodic pattern
model, because its search space of 2n − 1, where n is the total number of items
within the database, is much less than search space of periodic pattern model.
However, this model still suffers from the following performance issues:

1. The rare item problem. The usage of single minSup and maxPer leads
to the rare item problem.

2. Inability to discover partial periodic-frequent patterns. SincemaxPrd
controls the maximum inter-arrival time of a pattern in the entire database,
this model discovers only full periodic-frequent patterns (i.e., only those fre-
quent patterns that have exhibited complete cyclic repetitions in a database).
As the real-world is imperfect, partial periodic patterns are ubiquitous in
real-world databases. This model fails to discover these patterns.

3.3 Research efforts to address the performance issues

To address the rare item problem, Uday et al. [13] have proposed an enhanced
model to discover periodic-frequent patterns using multipleminSups andmaxPrds.
In this model, the minSup and maxPrd for a pattern are represented as follows:

minSup(X) = min(minIS(ij)|∀ij ∈ X)

and (1)

maxPer(X) = max(maxIP (ij)|∀ij ∈ X).

Where minIS(ij) and maxIP (ij) respectively represent the user-specified min-
imum item support and maximum item periodic for an item ij ∈ X. This model
facilitates the user to specify a low minSup and a high maxPrd for a pattern
containing rare items, and high minSup and a low maxPrd for a pattern con-
taining only frequent items.

The periodic-frequent patterns discovered by [13] do not satisfy the anti-
monotonic property. This increases the search space, which in turn increases the
computational cost of finding the periodic-frequent patterns. In other words, this
enhanced model is impracticable in real-world very large databases. Akshat et
al. [21] have proposed another model using the notion of multiple minSups and
maxPrds. In this model, the minSup and maxPer for a pattern are represented
as follows:

minSup(X) = max(minIS(ij)|∀ij ∈ X)

and (2)

maxPer(X) = min(maxIP (ij)|∀ij ∈ X)
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The periodic-frequent patterns discovered by this model satisfy the anti-monotonic
property. Therefore, this model is practicable in real-world databases.

Amphawan et al. [14] have used standard deviation of periods to determine
the periodic interestingness of a pattern in the database. Uday et al. [22] have
introduced a novel measure, called periodic-ratio, to discover partial periodic-
frequent patterns in a database. The periodic-ratio of a pattern X is calculated
as follows:

PR(x) =
|IPX |
|PX |

, (3)

where IPX ⊆ PX , such that ∀pXi ∈ IPX , pXi ≤ maxPeriod. The termmaxPeriod
refers to the user-defined maximum period threshold value.

4 Experimental Results

In this section, we discuss the usefulness of periodic-frequent patterns using
two real-world (Shop-4 and Accidents) databases. We use periodic-frequent
pattern-growth++ (PF-growth++) [16] to discover periodic-frequent patterns.
In this paper, we do not discuss the usefulness of periodic patterns discovered in
time series data. The reasons are as follows: (i) there exists no publicly available
real-world time series data and (ii) current periodic pattern mining algorithms
do not consider temporal information of the items within a series.

4.1 Experimental setup

The PF-growth++ algorithm is written in GNU C++, and run on Ubuntu 14.04
machine having 16GB of RAM. The details of the databases are as follows:

1. Shop-4 database. A Czech company has provided clickstream data of seven
online stores in the ECML/PKDD 2005 Discovery challenge [23]. For our
experiment, we have considered the click stream data of product categories
visited by the users in “Shop 4” (www.shop4.cz), and created a transactional
database with each transaction representing the set of web pages visited
by the people at a particular minute interval. The transactional database
contains 59,240 transactions (i.e., 41 days of page visits) and 155 distinct
items (or product categories).

2. Accidents database. The Federal Aviation Authority (FAA) has collected
data pertaining to aircraft damages. In order to improve aviation safety, this
data was made available in Aviation Safety Information Analysis and Sharing
(ASIAS) system. The Accidents database is created from the data retrieved
from ASIAS from 1-January-1978 to 31-December-2014 [24]. The raw data
collected by FAA contains both numerical and categorical attributes. For our
experiments, we have considered only categorical attributes, namely ‘local
event date,’ ‘event city,’ ‘event state,’ ‘event airport,’ ‘event type,’ ‘aircraft
damage,’ ‘flight phase,’ ‘aircraft make,’ ‘aircraft model,’ ‘operator,’ ‘primary
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flight type,’ ‘flight conduct code,’ ‘flight plan filed code’ and ‘PIC certificate
type.’ The missing values for these attributes are ignored while creating this
database.

The statistical details of these two databases are provided in Table 2.

Table 2. Database statistics. The terms, Tmin, Tavg and Tmax, represent the minimum,
average and maximum number of items within a transaction, respectively

Database Tmin Tavg Tmax Size Items

Shop-4 1 2.4 82 59,240 155

Accidents 3 8.9 9 98,864 9,290

4.2 Generation of periodic-frequent patterns

Figure 1(a) and (b) shows the number of periodic-frequent patterns discovered in
Shop-4 and Accidents database, respectively. The X-axis represents the maxPer
values used to discover periodic-frequent patterns. The Y -axis represents the
number of periodic-frequent patterns generated at a particular maxPer value.
Each line in this figure represents the number of periodic-frequent patterns gen-
erated at a particular minSup value. The minSup used in our experiments are
0.01%, 0.06% and 0.11%. The reason for setting lowminSup values is to generate
periodic-frequent patterns involving both frequent and rare items. The following
observations can be drawn from these two figures:

1. The increase in maxPrd results in the increase of periodic-frequent pat-
terns. The reason is that increase in maxPrd causes sporadically appearing
patterns to be discovered as periodic-frequent patterns.

2. The increase in minSup results in the decrease the periodic-frequent pat-
terns, because it is difficult for the items to appear frequently with other
items in the entire database.

4.3 Interesting patterns discovered in accidents database

We discuss the usefulness of periodic-frequent patterns discovered in Accidents
database. Table 3 presents some of the interesting periodic-frequent patterns
discovered in accidents database when minSup = 0.11% and maxPer = 4%.
The first pattern in this table conveys the useful information that ‘substantial’
damages to an aircraft have happened during ‘general operating rules.’ The
frequency of this event is 1,899 and the maximum inter-arrival time of this event
is 110 days (i.e., almost 4 months). The second pattern conveys the information
that ‘substantial’ damages to an aircraft with ‘private pilot’ have happened
during ‘general operating rules.’ The frequency of this event is 750, while the
periodicity of this event is 219 days (i.e., around 7 months). The third pattern
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Fig. 1. Periodic-frequent patterns generated at different minSup and maxPer values

conveys the crucial information that within every 15 days, aircrafts of ‘Cessna’
airlines undergo a ‘minor’ accident. The fourth pattern provides the information
that within every 22 days, aircrafts in ‘California’ airport witness a ‘minor’
accident. The fifth pattern provides the information that with an interval of
15 days, 16154 ‘minor’ aircraft accidents pertaining to ‘Cessna’ airlines have
happened during ‘general operating rules’.

Table 3. Interesting patterns found in accidents database

S.No. Patterns Support Periodicity
1 {General operating rules, Substantial} 1899 110
2 {General operating rules, private pilot, substantial} 750 219
3 {Cessna, Minor} 17,971 15
4 {California, Minor} 6,620 22
5 {General operating rules, Cessna, Minor} 16,154 15

4.4 Interesting patterns discovered in Shop-4 database

We now discuss the useful information discovered by periodic-frequent patterns
in Shop-4 database. Table 4 presents some of the interesting patterns discovered
in Shop-4 database. The periodicity of a pattern is expressed in minutes. These
patterns were interesting, because they contain costly and durable goods, which
are regularly viewed by the visitors.

5 Conclusions

This paper classifies current periodic pattern mining algorithms into two types:
(i) finding periodic patterns in time series data and (ii) finding periodically
occurring frequent patterns in temporally ordered transactional databases.This
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Table 4. Interesting patterns discovered in Shop-4 database

S. No. Patterns Support Periodicity

1 {{Built-in ovens, hobs, grills}, {Washer dryers}} 4861 1353

2 {{Built-in ovens, hobs, grills}, {Microwave ovens}} 2134 2112

3 {{Refrigerators, freezers, show cases}, {washer dryers}} 5628 1288

4 {Washing machines, washer dryers} 8342 1114

paper describes the basic model of periodic patterns in time series and transac-
tional databases, and also discusses advantages and disadvantages of each model.
Experimental results on real-world data sets demonstrate that periodic patterns
can find useful information.
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