
Efficient Discovery of Periodic-Frequent Patterns in
Very Large Databases

R. Uday Kirana,b,, Masaru Kitsuregawaa,c,, P. Krishna Reddyd,

aThe University of Tokyo, Japan
bNational Institute of Communication Technology, Japan

cNational Institute of Informatics, Japan
dInternational Institute of Information Technology-Hyderabad, India

Abstract

Periodic-frequent patterns (or itemsets) are an important class of regularities that
exist in a transactional database. Most of its mining algorithms discover all those
frequent patterns that satisfy the user-specified maximum periodicity constraint.
This constraint controls the maximum inter-arrival time of a pattern in a database.
The time complexity to measure periodicity of a pattern is O(n), where n repre-
sents the number of timestamps at which the corresponding pattern has appeared
in a database. As n usually represents a high value in voluminous databases, deter-
mining the periodicity of every candidate pattern in the itemset lattice makes the
periodic-frequent pattern mining a computationally expensive process. This paper
introduces a novel approach to address this problem. Our approach determines the
periodic interestingness of a pattern by adopting greedy search. The basic idea of
our approach is to discover all periodic-frequent patterns by eliminating aperiodic
patterns based on suboptimal solutions. The best and worst case time complexities
of our approach to determine the periodic interestingness of a frequent pattern are
O(1) and O(n), respectively. We introduce two pruning techniques and propose
a pattern-growth algorithm to find these patterns efficiently. Experimental results
show that our algorithm is runtime efficient and highly scalable as well.

Email addresses: uday_rage@tkl.iis.u-tokyo.ac.jp (R. Uday Kiran),
kitsure@tkl.iis.u-tokyo.ac.jp (Masaru Kitsuregawa), pkreddy@iiit.ac.in (P. Krishna
Reddy)

URL: http://researchweb.iiit.ac.in/˜uday_rage/index.html (R. Uday Kiran),
http://www.tkl.iis.u-tokyo.ac.jp/Kilab/Members/memo/kitsure_e.html (Masaru
Kitsuregawa), http://faculty.iiit.ac.in/˜pkreddy/index.html (P. Krishna Reddy)

Preprint submitted to Journal of Systems and Software November 9, 2015

Keywords:
Data mining, knowledge discovery, frequent patterns, periodicity, greedy search

1. Introduction

Frequent pattern (or itemset) mining is an important knowledge discovery
technique. It typically involves finding all patterns that are occurring frequently
within a transactional database. These patterns play a key role in discovering
associations [1], correlations [6, 30], episodes [26], multi-dimensional patterns
[24], diverse patterns [34], emerging patterns [9], and so on. The popular adop-
tion and successful industrial application of frequent patterns has been hindered
by a major obstacle: “frequent pattern mining often generates too many patterns,
and majority of them may be found insignificant depending on application or user
requirements.” When confronted with this problem in real-world applications,
researchers have tried to reduce the desired set by finding user interest-based fre-
quent patterns such as maximal frequent patterns [13], demand driven patterns
[?], utility patterns [41], constraint-based patterns [32], diverse-frequent patterns
[37], top-k patterns [18] and periodic-frequent patterns [38]. This paper focuses
on efficient discovery of periodic-frequent patterns.

An important criterion to assess the interestingness of a frequent pattern is its
temporal occurrences within a database. That is, whether a frequent pattern is oc-
curring periodically, irregularly, or mostly at specific time intervals in a database.
The class of frequent patterns that are occurring periodically within a database
are known as periodic-frequent patterns. These patterns are ubiquitous and play
a key role in many applications such as finding co-occurring genes in biologi-
cal datasets [42], improving performance of recommender systems [35], intrusion
detection in computer networks [25] and discovering events in Twitter [22]. A
classic application to illustrate the usefulness of these patterns is market-basket
analysis. It analyzes how regularly the set of items are being purchased by the
customers. An example of a periodic-frequent pattern is as follows:

{Bed, Pillow} [support = 10%, periodicity = 1 hour].

The above pattern says that 10% of customers have purchased the items ‘Bed’ and
‘Pillow’ at least once in every hour. The basic model of periodic-frequent patterns
is as follows [38]:

Let I = {i1, i2, · · · , in}, 1 ≤ n, be the set of items. Let X ⊆ I be a pattern (or an
itemset). A pattern containing β number of items is called a β-pattern. A trans-
action, trk = (tsk,Y), 1 ≤ k, is a tuple, where tsk ∈ R represents the timestamp of

2

Y pattern. For a transaction trk = (tsk,Y), such that X ⊆ Y , it is said that X oc-
curs in trk and such timestamp is denoted as tsX

k . A transactional database T DB
over I is a set of transactions, T DB = {tr1, · · · , trm}, m = |T DB|, where |T DB|
can be defined as the number of transactions in TDB. Let T SX = {tsX

j , · · · , tsX
k },

j,k ∈ [1,m] and j ≤ k, be an ordered set of timestamps where X has occurred in
T DB. In this paper, we call this list of timestamps of X as ts-list of X . The number
of transactions containing X in T DB is defined as the support of X and denoted
as Sup(X). That is, Sup(X) = |T SX |. Let tsX

q and tsX
r , j ≤ q < r ≤ k, be the two

consecutive timestamps in T SX . The time difference (or an inter-arrival time) be-
tween tsX

r and tsX
q can be defined as a period of X , say pX

a . That is, pX
a = tsX

r −tsX
q .

Let PX = {pX
1 , pX

2 , · · · , pX
r } be the set of periods for pattern X . The periodicity of

X , denoted as Per(X) = maximum(pX
1 , pX

2 , · · · , pX
r). The pattern X is a frequent

pattern if Sup(X) ≥ minSup, where minSup refers to the user-specified mini-
mum support constraint. The frequent pattern X is said to be periodic-frequent
if Per(X)≤ maxPer, where maxPer refers to the user-specified maximum period-
icity constraint. The problem definition of periodic-frequent pattern mining in-
volves discovers all those patterns in T DB that satisfy the user-specified minSup
and maxPer constraints. Please note that both support and periodicity of a pattern
can be described in percentage of |T DB|.

Table 1: Transactional Database

ts Items ts Items
1 ab 6 de f
2 acdi 7 abi
3 ce f j 8 cde
4 ab f gh 9 abe f
5 bcd 10 acg

Table 2: Periodic-frequent patterns discovered
from Table 1

P Sup Per P Sup Per
a 6 3 f 4 3
b 5 3 ab 4 3
c 5 3 cd 3 3
d 4 3 e f 3 3
e 4 3

EXAMPLE 1. Consider the transactional database shown in Table 1. This database
contains 10 transactions. Therefore, |T DB|= 10. Each transaction in this database
is uniquely identifiable with a timestamp (ts). The set of all items in T DB, i.e.,
I = {a, b, c, d, e, f , g, h, i, j}. The set of items ‘a’ and ‘b’, i.e., {a, b} is a
pattern. For brevity, we represent this pattern as ‘ab’. This pattern contains two
items. Therefore, it is a 2-pattern. The pattern ‘ab’ appears at the timestamps
of 1,4,7 and 9. Therefore, the list of timestamps containing ‘ab’ (or ts-list of
‘ab’) is {1,4,7,9}. In other words, T Sab = {1,4,7,9}. The support of ‘ab’ is the

3

size of T Sab. Therefore, Sup(ab) = |T Sab| = 4. The periods for this pattern are:
pab

1 = 1 (= 1− tsinitial), pab
2 = 3 (= 4−1), pab

3 = 3 (= 7−4), pab
4 = 2 (= 9−7)

and pab
5 = 1 (= ts f inal −9), where tsinitial = 0 represents the timestamp of initial

transaction and ts f inal = |T DB|= 10 represents the timestamp of final transaction
in the database. The periodicity of ab, i.e., Per(ab) = maximum(1,3,3,2,1) = 3.
If the user-defined minSup = 3, then ‘ab’ is a frequent pattern because Sup(ab)≥
minSup. If the user-defined maxPer = 3, then the frequent pattern ‘ab’ is said to
be a periodic-frequent pattern because Per(ab) ≤ maxPer. The complete set of
periodic-frequent patterns discovered from Table 1 are shown in Table 2.

The space of items in a transactional database gives rise to an itemset lattice.
Figure 1 shows the itemset lattice for the items ‘a’, ‘b’ and ‘c.’ This lattice is a
conceptualization of search space while finding the user interest-based patterns.
Tanbeer et al. [38] have introduced a pattern-growth algorithm, called Periodic-
Frequent Pattern-growth (PFP-growth), to mine the periodic-frequent patterns.
This algorithm generates periodic-frequent patterns by applying depth-first search
in the itemset lattice. From a singleton periodic-frequent pattern i, successively
larger periodic-frequent patterns are discovered by adding one item at a time.

{}null

a b c

ab ac bc

abc

Figure 1: Itemset lattice generated for the items ‘a,’ ‘b’ and ‘c’

The measure, periodicity, plays a key role in periodic-frequent pattern mining.
This measure ensures that the anti-monotonic property (see Property 1) of frequent
patterns still holds for periodic-frequent patterns. Measuring the periodicity of a
pattern requires a complete scan on its ts-list. As a result, the time complexity of
finding periodicity of a pattern is O(n), where n represents the number of times-
tamps at which the corresponding pattern has appeared within a database. As n
typically represents a very large number in voluminous databases, measuring
the periodicity of every candidate pattern in the huge itemset lattice makes
the periodic-frequent pattern mining a computationally expensive process or
impracticable in real-world applications.

4

EXAMPLE 2. Let ‘xy’ be a frequent pattern in a very large transactional database
appearing randomly at the timestamps, say 5, 9, 20, 23, 27, 50 and so on. The
existing state-of-the-art algorithms measure the periodicity of this pattern by per-
forming a complete search on its huge list of timestamps. In the next step, they
determine ‘xy’ as either periodic or aperiodic by comparing its periodicity against
the user-specified maxPrd. In other words, current approaches determine the pe-
riodic interestingness of this pattern by performing a complete search on its huge
list of timestamps. This approach of determining the periodic interestingness of
every candidate pattern in the itemset lattice makes the periodic-frequent pattern
mining a computationally expensive process.

Property 1. (Anti-monotonic property of periodic-frequent patterns.) For a pat-
tern X, if Sup(X) ≥ minSup and Per(X) ≤ maxPer, then ∀Y ⊂ X and Y ̸= /0,
Sup(Y)≥ minSup and Per(X)≤ maxPer.

Reducing the computational cost of periodic-frequent pattern mining is a non-
trivial and challenging task. The main reason is that we cannot sacrifice any in-
formation pertaining to periodic-frequent patterns in order to reduce the compu-
tational cost.

With this motivation, we propose an approach to reduce the computational
cost of finding the periodic-frequent patterns. Our approach determines the pe-
riodic interestingness of a pattern by adopting greedy search on its ts-list. The
usage of greedy search achieves two important tasks. First, reduces the need of
complete search on the ts-lists of aperiodically occurring patterns by identifying
them based on sub-optimal solution. Second, finds global optimal solution (i.e.,
periodicity) for every periodic-frequent pattern. As a result, our approach reduces
the computational cost without missing any information about periodic-frequent
patterns. The best and the worst case time complexities of our approach are O(1)
and O(n), respectively.

Our contributions are as follows:

1. A novel concept known as local-periodicity has been proposed in this paper.
For a pattern, local-periodicity and periodicity correspond to sub-optimal
solution and global optimal solution, respectively. If the local-periodicity
of a pattern fails to satisfy the user-defined maximum periodicity thresh-
old value, then we immediately determine the corresponding pattern as an
aperiodic-frequent pattern and avoid further search on its ts-list. As a result,
the usage of local-periodicity reduces the computational cost of finding the
periodic-frequent patterns.

5

2. Two novel pruning techniques have been introduced based on the concept
of local-periodicity. First pruning technique is based on the concepts of
2-phase locking [14], and is used to discover periodic-frequent patterns
containing only one item. Second pruning technique is used to discover
periodic-frequent patterns containing more than one item efficiently.

3. A pattern-growth algorithm, called Periodic-Frequent pattern-growth++ (PFP-
growth++), has been proposed using our pruning techniques.

4. A performance study has been conducted to compare the performance of
PFP-growth++ against PFP-growth. Our study shows that PFP-growth++ is
runtime efficient and highly scalable than the PFP-growth.

The PFP-growth++ was first proposed briefly in [19]. In this paper, we provide
theoretical correctness for PFP-growth++ and evaluate the performance of our
pruning techniques by conducting extensive experiments on both synthetic and
real-world databases.

The rest of the paper is organized as follows. Section 2 describes the related
work on finding periodically occurring patterns. Section 3 describes the work-
ing of PFP-growth and its performance issues. Section 4 introduces our PFP-
growth++. Section 5 reports the experimental evaluation of PFP-growth and PFP-
growth++ algorithms. Finally, Section 6 concludes the paper with future research
directions.

2. Related Work

A time series is a collection of events obtained from sequential measurements
over time. Periodic pattern mining involves discovering all those patterns that
are exhibiting either complete or partial cyclic repetitions in a timeseries. The
problem of finding periodic patterns has been widely studied in [3, 4, 7, 15, 16,
40]. The basic model used in all these studies, however, remains the same. That
is, this model takes into account a timeseries as a symbolic sequence and finds all
periodic patterns by employing the following two steps:

1. Partition the symbolic sequence into distinct subsets (or period-segments)
of a fixed length (or period).

2. Discover all periodic patterns that satisfy the user-defined minimum support
(minSup). Minsup controls the minimum number of period-segments in
which a pattern must appear.

6

EXAMPLE 3. Given the timeseries T S= a{bc}baebace and the user-defined period
as 3, T S is divided into three periodic-segments: T S1 = a{bc}b, T S2 = aeb and
T S3 = ace. Let {a ⋆ b} be a pattern, where ‘⋆’ denotes a wild character that can
represent any single set of events. This pattern appears in the periodic-segments
of T S1 and T S2. Therefore, its support count is 2. If the user-defined minSup is
2, then {a⋆b} represents a periodic pattern.

A major limitation of the above studies is that they do not take into account the
actual temporal information of events within a timeseries.

Ozden et al. [31] have enhanced the transactional database by a time attribute
that describes the time when a transaction has appeared, investigated the peri-
odic behavior of the patterns to discover cyclic association rules. In this study,
a database is fragmented into non-overlapping subsets with respect to time. The
association rules that are appearing in at least a certain number of subsets are
discovered as cyclic association rules. By fragmenting the data and counting the
number of subsets in which a pattern occurs greatly simplifies the design of the
mining algorithm. However, the drawback is that patterns (or association rules)
that span multiple windows cannot be discovered.

Tanbeer et al. [38] have proposed a simplified model to discover periodically
appearing frequent patterns without any data fragmentation. A pattern-growth al-
gorithm, PFP-growth, has been proposed to discover periodic-frequent patterns.
Uday and Reddy [20] and Akshat et al. [36] have enhanced Tanbeer’s model to
address the rare item problem [39], which involves discovering periodic-frequent
patterns involving both frequent and rare items. Amphawan et al. [2] have fo-
cussed on finding top-k periodic-frequent patterns. As the real-world is imperfect,
Uday and Reddy [21] have extended [38] to discover those frequent patterns that
have exhibited partial periodic behavior within a database. Alternatively, Rashid
et al. [33] have employed standard deviation of periods as an alternative cri-
terion to assess the periodic behavior of frequent patterns. The discovered pat-
terns are known as regular frequent patterns. The algorithms employed to dis-
cover periodic-frequent patterns in all of the above studies are the extensions of
PFP-growth; therefore, determine the periodic interestingness of a pattern by per-
forming a complete search on its ts-list. As a result, all of these algorithms are
computationally expensive to use in very large databases. Some of our pruning
techniques that we are going to discuss in this paper can be extended to improve
the performance of all these algorithms. However, we confine our work to reduce
the computational cost of finding periodic-frequent patterns as defined in [38].

7

Table 3: Comparison of issues addressed by our approach and related current approaches. The
issues 1, 2 and 3 represent the ‘inability to capture temporal information of the items,’ ‘fragmenta-
tion of data,’ and ‘computational expensiveness,’ respectively. The symbols ‘X’ and ‘×’ represent
the issue addressed and have not addressed by the corresponding work, respectively

Issue 1 Issue 2 Issue 3
Han et al. [15] × × X
Ozden et al. [31] X × ×
Tanbeer et al. [38] X X ×
Our approach X X X

The problem of finding sequential patterns [28] and frequent episodes [26, 23]
has received a great deal of attention. However, it should be noted that these
studies do not take into account the periodicity of a pattern.

Finding partial periodic patterns [11], motifs [29], and recurring patterns [27]
has also been studied in time series; however, the focus was on finding numerical
curve patterns rather than symbolic patterns.

Table 3 compares the issues addressed by our approach against the related
current approaches. It can be observed that our approach tries to address all of the
above issues, while related approaches address a portion of them.

3. Periodic-Frequent Pattern-growth: Working and Performance Issues

In this section, we describe the working of PFP-growth along with its perfor-
mance issues.

3.1. PFP-growth
The PFP-growth involves two steps: (i) Compress the database into a tree

known as Periodic-Frequent tree (PF-tree) and (ii) Recursively mine PF-tree to
discover all periodic-frequent patterns. Before explaining these two steps, we
describe the structure of PF-tree as we will be using similar tree structure for our
algorithm.

3.1.1. Structure of PF-tree
The structure of PF-tree contains PF-list and prefix-tree. The PF-list consists

of three fields – item name (i), support (f) and periodicity (p). The structure
of prefix-tree is same as that of the prefix-tree in Frequent Pattern-tree (FP-tree)
[17]. However, please note that the nodes in the prefix-tree of PFP-tree do not

8

maintain the support count as in FP-tree. Instead, they explicitly maintain the
occurrence information for each transaction in the tree by keeping an occurrence
timestamp, called ts-list, only at the last node of every transaction. Two types of
nodes are maintained in a PF-tree: ordinary node and tail-node. The former is
the type of nodes similar to that used in FP-tree, whereas the latter is the node
that represents the last item of any sorted transaction. The tail-node structure is
of form i j[ts1, ts2, · · · , tsn], where i j ∈ I is the node’s item name and tsi ∈ R, is
a timestamp in which i j is the last item. The conceptual structure of a prefix-
tree in PF-tree is shown in Figure 2. Like an FP-tree, each node in a PF-tree
maintains parent, children, and node traversal pointers. Please note that no node
in a PF-tree maintains the support count as in FP-tree. To facilitate a high degree
of compactness, items in the prefix-tree are arranged in support-descending order.

{}null

tsi, tsj, ...

Figure 2: Conceptual structure of prefix-tree in PF-tree. Dotted ellipse represents ordinary node,
while other ellipse represents tail-node of sorted transactions with timestamps tsi, ts j ∈ R.

3.1.2. Construction of PF-tree
The periodic-frequent patterns discovered using minSup and maxPer satisfy

the anti-monotonic property (see Property 1). Therefore, finding periodic-frequent
1-patterns (or items) plays an important role in efficient discovery of periodic-
frequent k-patterns, k > 1. Algorithm 1 describes the steps followed by PFP-
growth to discover periodic-frequent items. Let PI denote the set of periodic-
frequent items discovered by this algorithm.

Figure 3(a), (b) and (c) respectively show the PF-list generated after scanning
the first, second and every transaction in the database (lines 2 to 8 in Algorithm 1).
To reflect the correct periodicity for an item, the periodicity value of every item
in PF-list is re-calculated by setting tscur = |T DB| (lines 9 to 11 in Algorithm 1).
Figure 3(d) shows the updated periodicity of items in PF-tree. It can be observed
that the periodicity of ‘ j’ and ‘h’ items have been updated from 3 and 4 to 7 and
6, respectively. The items having support less than minSup or periodicity more
than maxPer are considered as uninteresting items and removed from the PF-list
(lines 12 to 16 in Algorithm 1). The remaining items are considered as periodic-
frequent items and sorted in descending order of their f (or support) value (line

9

17 in Algorithm 1). Figure 3(e) shows the sorted list of periodic-frequent items.

i f p ts1

a 1 1 1
b 1 1 1

i f p ts1

a 2 1 2
b 1 1 1
c 1 2 2
d 1 2 2

(a) (b) (c)

i 1 2 2

i f p ts1

a 6 3 10
b 5 3 9
c 5 3 10
d 4 3 8

e 4 3 9
f 4 3 9

g 2 6 10
h 1 4 4

i 2 5 7

j 1 3 3

i f p

a 6 3
b 5 3
c 5 3
d 4 3

e 4 3
f 4 3

g 2 6
h 1 6

i 2 5

j 1 7

i f p

a 6 3
b 5 3
c 5 3
d 4 3
e 4 3
f 4 3

(d) (e)

Figure 3: Construction of PF-list. (a) After scanning first transaction (b) After scanning second
transaction (c) After scanning every transaction (d) Updated periodicity of items and (e) Sorted
list of periodic-frequent items

{}
null

a

b:1

{}
null

a

b:1 c

d:2

(a) (b) (c)

{}
null

a

b:1,7

f:4

c:10

d:2

d

e

f:6

c

e d

e:8f:3

b

c

d:5e

f:9

i f p

a 6 3
b 5 3
c 5 3
d 4 3
e 4 3
f 4 3

Figure 4: Construction of PF-tree. (a) After scanning first transaction (b) After scanning second
transaction and (c) After scanning every transaction

Using the FP-tree construction technique [17], only the items in PI will take
part in the construction of PF-tree. The tree construction starts by inserting the
first transition, ‘1 : ab’, according to PF-list order, as shown in Figure 4(a). The
tail-node ‘b : 1’ carries the timestamp of the transaction. After removing the un-
interesting item ‘i’ from the second transaction ‘2 : acdi’, a branch as shown in
Figure 4(b) is created with node ‘d : 2’ as the tail-node. After inserting all the
transactions in the database, we get the final PF-tree as shown in Figure 4(c).
For the simplicity of figures, we do not show the node traversal pointers in trees,
however, they are maintained in a fashion like FP-tree does.

10

Algorithm 1 PF-list (T DB: transactional database, minSup: minimum support
and maxPer: maximum periodicity)

1: Let tsl be a temporary array that explicitly records the timestamps of last
occurring transactions of all items in the PF-list. Let t = (tscur,X) denote a
transaction with tscur and X representing the timestamp of current transaction
and pattern, respectively. Let Pcur be a temporary variable that records the
current period of an item.

2: for each transaction t ∈ T DB do
3: if tscur is i’s first occurrence then
4: Set f i = 1, tsi

l = tscur and pi = tscur.
5: else
6: Calculate pcur = tscur − tsi

l . Set f i ++, pi = (pcur > pi)?pcur : pi and
tsi

l = tscur.
7: end if
8: end for
9: for each item i in PF-list do

10: Calculate pcur = |T DB|− tsi
l . Set pi = (pcur > pi)?pcur : pi.

11: end for
12: for each item i in PF-list do
13: if f i < minSup or pi > maxPer then
14: Remove i from PF-list.
15: end if
16: end for
17: Consider the remaining items in PF-list as periodic-frequent items and sort

them with respect to their f value.

3.1.3. Mining PF-tree
The PFP-growth finds periodic-frequent patterns by employing the following

steps:

1. Choosing the last item ‘i’ in the PF-tree as an initial suffix item, its prefix-
tree (denoted as PTi) constituting with the prefix sub-paths of nodes labeled
‘i’ is constructed. Figure 5(a) shows the prefix-tree for the item ‘ f ’, say
PTf .

2. For each item ‘ j’ in PTi, aggregate all of its node’s ts-list to derive the ts-
list of ‘i j’, i.e., T Si j. Next, perform a complete search on T Si j to measure
the support and periodicity of ‘i j’. Now determine the interestingness of

11

i f p

a 2 5
b 2 5
c 1 7
d 1 6
e 3 3

{}
null

a

b:4

d

e:6

c

e:3

e:9

i f p

e 3 3

{}
null

e:3,6,
 9

(a) (b) (c)

{}
null

a

b:1,4,
 7

c:10

d:2

d

e:6

c

e:3 d

e:8

b

c

d:5e:9

i f p

a 6 3
b 5 3
c 5 3
d 4 3
e 4 3

Figure 5: Mining periodic-frequent patterns for the suffix item ‘ f .’ (a) Prefix-tree of f , i.e., PTf
(b) Conditional tree of ‘ f ’, i.e., CTf and (c) PF-tree after removing item ‘ f ’.

‘i j’ by comparing its support and periodicity against minSup and maxPer,
respectively. If ‘i j’ is a periodic-frequent pattern, then we consider ‘ j’ as a
periodic-frequent item in PTi.

EXAMPLE 4. Let us consider the last item ‘e’ in the PTf . The set of times-
tamps containing ‘e’ in PTf is {3,6,9}. Therefore, the ts-list of the pattern
‘e f ’, i.e., T Se f = {3,6,9}. A complete search on T Se f gives Sup(e f) = 3
and Per(e f) = 3. Since Sup(e f)≥ minSup and Per(e f)≤ maxPer, the pat-
tern ‘e f ’ is considered as a periodic-frequent pattern. In other words, ‘e’ is
considered as a periodic-frequent item in PTf . Similar process is repeated
for the other items in PTf . The PF-list in Figure 5(a) shows the support and
periodicity of each item in PTf .

3. Choosing every periodic-frequent item ‘ j’ in PTi, construct its conditional
tree, CTi, and mine it recursively to discover the patterns.

EXAMPLE 5. Figure 5(b) shows the conditional-tree, CTf , derived from
PTf . It can be observed that the items ‘a’, ‘b’, ‘c’ and ‘d’ in PTf are not
considered in the construction of CTf . The reason is that they are aperiodic-
frequent items in PTf .

4. After finding all periodic-frequent patterns for a suffix item ‘i’, prune it from
the original PF-tree and push the corresponding nodes’ ts-lists to their par-
ent nodes. Next, once again repeat the steps from i to iv until the PF-list =
/0.

EXAMPLE 6. Figure 5(c) shows the PF-tree generated after pruning the
item ‘ f ’ in Figure 4(c). It can be observed that ts-list of all the nodes con-
taining ‘ f ’ in Figure 4(c) have been pushed to their corresponding parent
nodes.

12

3.2. Performance Issues
We have observed that PFP-growth suffers from the following two perfor-

mance issues:

1. The PFP-growth prunes uninteresting items from the PF-list only after the
initial scan on a database. We have observed that this approach leads to
increase in memory, search and update requirements of PF-list.

EXAMPLE 7. In Table 1, the items ‘g’ and ‘h’ have initially appeared in
the transaction whose timestamp is 4 (i.e., ts = 4). Thus, their first period
is going to be 4, which is greater than the maxPer. In other words, these
two items were aperiodic by the time when they were first identified in the
database. Thus, there is no need to consider these two items in the construc-
tion of PF-list. However, PFP-growth considers these items in the construc-
tion of PF-list. This results in performance issues as described above.

2. PFP-growth determines the periodic interestingness of every item ‘ j’ in PTi
by performing a complete search on its ts-list. In voluminous databases, the
ts-list of a pattern (or for an item ‘ j’ in PTi) can be long. In such cases,
the task of performing a complete search on a pattern’s ts-list can make
the periodic-frequent mining a computationally expensive process (or PFP-
growth a computationally expensive algorithm).

EXAMPLE 8. Let us consider the item ‘a’ in PTf . The ts-list of ‘a’ in
PTf contains 4 and 9. Therefore, T Sa f = {4,9}. All periods of ‘a f ’
are: pa f

1 = 4 (= 4− tsi), pa f
2 = 5 (= 9− 4) and pa f

3 = 1 (= ts f − 9). The
PFP-growth measures periodicity = 5 (= max(4,5,1)), compares it against
maxPer, and then determines ‘a’ as an aperiodic-frequent item in PTf . In
other words, PFP-growth determines the interestingness of ‘a f ’ by perform-
ing a complete search on its ts-list. However, such a complete search is not
necessary to determine ‘a f ’ as an aperiodic-frequent pattern. The reason is
that the first period of ‘a f ’ itself fails to satisfy the maxPer as pa f

1 �maxPer.

In the next section, we discuss our approach that addresses the performance
issues of PFP-growth.

4. Proposed Algorithm

In this section, we first describe our basic idea. Next, we explain our PFP-
growth++ algorithm to discover the patterns.

13

4.1. Basic Idea: local-periodicity
Our idea to reduce the computational cost of mining periodic-frequent patterns

is as follows. “Apply greedy search on a pattern’s ts-list to derive its local-periodicity.
For a pattern, local-periodicity and periodicity correspond to sub-optimal solu-
tion and global optimal solution, respectively. If the local-periodicity of a pattern
fails to satisfy the maxPer, then we immediately determine it as an aperiodic-
frequent pattern and avoid further search on the ts-list. Thus, reducing the com-
putational cost of mining these patterns.”

The local-periodicity of a pattern X is defined in Definition 1. Example 9
illustrates this definition. The correctness of our idea is based on Property 2 and
shown in Lemma 1. Example 10 illustrates our idea of finding aperiodic-frequent
patterns using local-periodicity.

Definition 1. (Local-periodicity of pattern X .) Let PX = {pX
1 , pX

2 , · · · , pX
n }, n =

Sup(X)+1, denote the complete set of periods for X in T DB. Let P̂X = {pX
1 , pX

2 ,-
· · · , pX

k }, 1 ≤ k ≤ n, be an ordered set of periods of X such that P̂X ⊆ PX . The
local-periodicity of X, denoted as loc-per(X), refers to the maximum period in
P̂X . That is, loc-per(X) = max(pX

1 , pX
2 , · · · , pX

k).

EXAMPLE 9. Continuing with Example 1, the set of all periods for ‘ab’, i.e.,
Pab = {1,3,3,0}. Let P̂ab = {1,3} ⊂ Pab. The local-periodicity of ‘ab’, denoted
as loc-per(ab) = max(pab

j |∀pab
j ∈ P̂ab) = max(1,3) = 3.

Property 2. For a pattern X, Per(X)≥ loc-per(X) as P̂X ⊆ PX .

Lemma 1. For the frequent pattern X, if loc-per(X) > maxPer, then X is an
aperiodic-frequent pattern.

PROOF. From Property 2, it turns out that if loc-per(X)>maxPer, then Per(X)>
maxPer. Thus, X is an aperiodic-frequent pattern. Hence proved.

EXAMPLE 10. In Table 1, the pattern ‘a f ’ occurs at the timestamps of 4 and 9.
Therefore, T Sa f = {4,9}. The first period of ‘a f ,’ i.e., pa f

1 = 4 (= tsi−4). At this
point, the loc-per(a f) = pa f

1 = 4. As loc-per(a f)> maxPer, we can conclude in
prior that Per(a f)> maxPer. Thus, ‘a f ’ is an uninteresting pattern.

14

Another important advantage of adopting greedy search to determine the pe-
riodic interestingness of a pattern is that both local-periodicity and periodicity
remains the same for periodic-frequent patterns. Thus, we do not miss any infor-
mation pertaining to periodic-frequent patterns. The correctness of this argument
is based on Property 3, and shown in Lemma 2.

Property 3. For a pattern X, loc-per(X)≤ Per(X) as P̂X ⊆ PX .

Lemma 2. If X is a periodic-frequent pattern, then loc-per(X) = Per(X).

PROOF. For a periodic-frequent pattern X , P̂X = PX . From Property 3, it turns
out that loc-per(X) = Per(X). Hence proved.

Overall, our approach facilitates an algorithm to find the periodic-frequent pat-
terns with a global optimal solution, while pruning the aperiodic-frequent patterns
with a sub-optimal solution. Thus, our approach reduces the computational cost
of mining the patterns without missing any information pertaining to periodic-
frequent patterns.

In the next subsection, we describe PFP-growth++ that implements the above
approach to find periodic-frequent patterns effectively.

4.2. PFP-growth++
Our PFP-growth algorithm involves the following two steps:

1. Compress the database into a tree structure known as PF-tree++ and
2. Recursively mine PF-tree++ to discover the complete set of periodic-frequent

patterns.

We now discuss each of these steps.

4.2.1. Construction of PF-tree++.
The structure of PF-tree++ consists of two components: (i) PF-list++ and (ii)

prefix-tree. The PF-list++ consists of three fields – item name (i), total support
(f) and local-periodicity (pl). Please note that PF-list++ do not explicitly store
the periodicity of an item i as in the PF-list. The structure of prefix-tree in
PF-tree++, however, remains the same as in PF-tree (see Section 3.2.1).

The periodic-frequent items (or 1-patterns) play a key role in discovering
periodic-frequent k-patterns, k > 1. In order to discover these items, we employ
a pruning technique that is based on the concepts of 2-Phase Locking [14] (i.e.,
‘expanding phase’ and ‘shrinking phase’). The pruning technique is as follows:

15

• Expanding phase: In this phase, we insert every new item found in a trans-
action into the PF-list++. Thus, expanding the size of PF-list++. This phase
starts from the first transaction (i.e., ts = 1) in the database and ends when
the timestamp of a transaction equals to maxPer. If the timestamp of a trans-
action is greater than maxPer, then we do not insert any new item found in
the corresponding transaction into the PF-list++. It is because such items are
aperiodic as their first period (or local-periodicity) fails to satisfy maxPer.

• Shrinking phase: In this phase, we remove those items from the PF-list++
that are occurring aperiodically within a database. Thus, shrinking the
length of PF-list++. The aperiodic items are those items that have period
(or local-periodicity) greater than the maxPer. This phase starts right after
the completion of expansion phase (i.e., when the timestamp of a transaction
equal to maxPer+1) and continues until the end of database.

The items remaining in the PF-list++ are called as candidate items. We will
perform another scan on the candidate items to discover periodic-frequent items.
The relationship between all items (I), candidate items (CI) and periodic-frequent
items (PI) in T DB is I ⊇CI ⊇ PI.

i f p
a 1 1 1
b 1 1 1

i f pl
a 2 1 2
b 1 1 1
c 1 2 2
d 1 2 2

i f
a 2 1 2
b 1 1 1
c 2 2 3
d 1 2 3

e 1 3 3
f 1 3 3

(a) (b) (c)

i 1 2 2 i 1 2 2

j 1 3 3

l i f
a 3 2 4
b 2 3 4
c 2 2 3
d 1 2 2

e 1 3 3
f 2 3 4

(d)

i 1 2 2

j 1 3 3

i f
a 4 3 7
b 4 3 7
c 3 2 5
d 3 3 6
e 2 3 6
f 3 3 6

i f
a 6 3 10
b 5 3 9
c 5 3 10
d 4 3 8
e 4 3 9
f 4 3 9

i f
a 6 3
b 5 3
c 5 3
d 4 3
e 4 3
f 4 3

(e) (f)

j 1 3 3 j 1 3 3 j 1 7

(g)

i f
a 6 3
b 5 3
c 5 3
d 4 3
e 4 3
f 4 3

(h)

ts1 ts1 ts1 ts1 ts1 ts1
pl pl pl pl pl pl

Figure 6: The construction of PF-list++. (a) After scanning the first transaction (b) After scanning
the second transaction (c) After scanning the third transaction (d) After scanning the fourth trans-
action (e) After scanning the seventh transaction (f) After scanning all transactions (g) Measuring
the actual periodicity for all candidate items and (h) The sorted list of periodic-frequent items

Algorithm 2 shows the construction of PF-list++ using the above two phases.
We illustrate this algorithm using the database shown in Table 1. The ‘expanding
phase’ starts from first transaction. The scan on first transaction, “1 : ab,” with
tscur = 1 results in inserting the items ‘a’ and ‘b’ in to the PF-list++ with f = 1,
pl = 1 and tsl = 1 (lines 4 to 6 in Algorithm 2). The resultant PF-list++ is shown
in Figure 6(a). The scan on the second transaction, “2 : acdi,” with tscur = 2

16

results in adding the items ‘c’, ‘d’ and ‘i’ into the PF-list++ with f = 1, tsl = 2
and pl = 2. Simultaneously, the f and tsl values of an already existing item ‘a’
are updated to 2 and 2, respectively (lines 7 and 8 in Algorithm 2). The resultant
PF-list++ was shown in Figure 6(b). Similarly, the scan on the third transaction
with tscur = 3 results in adding the items ‘e’, ‘ f ’ and ‘ j’ into the PF-list++ with
f = 1, tsl = 3 and pl = 3. In addition, the f , p and tsl values of ‘c’ are updated to
2, 2 and 3, respectively. Figure 6(c) shows the PF-list++ generated after scanning
the third transaction. Since maxPer = 3, the expanding phase ends at tscur = 3.
The ‘shrinking phase’ begins from tscur = 4. The scan on the fourth transaction,
“4 : ab f gh,” updates the f , pl and tsl of the items ‘a’, ‘b’ and ‘ f ’ accordingly as
shown in Figure 6(d). It can be observed that our algorithm do not add the new
items ‘g’ and ‘h’ into the PF-list++ as their period (or local-periodicity) is greater
than the maxPer (lines 11 to 18 in Algorithm 2). Similar process is repeated for
the other transactions in the database, and the PF-list++ is constructed accordingly.
Figure 6(e) shows the PF-list++ constructed after scanning the seventh transaction.
It can be observed that aperiodic-frequent item ‘i’ has been pruned from the PF-
list++ as its local-periodicity (or pl = 5 (= tscur − tsl)) has failed to satisfy the
maxPer (lines 15 to 17 in Algorithm 2). Figure 6(f) shows the initial PF-list++
constructed after scanning the entire database. The items in PF-list++ denote
candidate items. Figure 6(g) shows the updated periodicity of all candidate items
in the PF-list++ (lines 21 to 32 in Algorithm 2). It can be observed that pl value
of the candidate item ‘ j’ has been updated from 3 to 7. Figure 6(h) shows the set
of periodic-frequent items sorted in descending order of their frequencies. Let PI
denote this sorted list of periodic-frequent items (line 33 in Algorithm 2).

Algorithms 3 and 4 show the construction of prefix-tree in PFP-growth++.
The working of these two algorithms has already been discussed in Section 3.2.2.
Figure 7 shows the PF-tree++ generated after scanning the database shown in
Table 1. Since the local-periodicity of a periodic-frequent item (or 1-pattern) is
same as its periodicity (see Lemma 2), the constructed PF-tree++ resembles that
of the PF-tree in PFP-growth. However, there exists a key difference between
these two trees, which we will discuss while mining the patterns from PF-tree++.

4.2.2. Mining PF-tree++.
Algorithm 5 describes the procedure to mine periodic-frequent patterns from

PF-tree++. Briefly, the working of this algorithm is as follows. Choosing the last
item ‘i’ in the PF-list++, we construct its prefix-tree, say PTi, with the prefix sub-
paths of nodes labeled ‘i’ in the PF-tree++. Since ‘i’ is the bottom-most item in

17

{}
null

a

b:1,7

f:4

c:10

d:2

d

e

f:6

c

e d

e:8f:3

b

c

d:5e

f:9

i f
a 6 3
b 5 3
c 5 3
d 4 3
e 4 3
f 4 3

pl

Figure 7: PF-tree++ generated after scanning every transaction in the database

i f pl

a 2 4
b 2 4
c 1 7
d 1 6
e 3 3

i f
e 3 3

{}
null

e:3,6,
 9

i f
a 6 3
b 5 3
c 5 3
d 4 3
e 4 3

(c)(b)(a)

{}
null

a

b:1,4,
 7

c:10

d:2

d

e:6

c

e:3 d

e:8

b

c

d:5e:9

pl pl
{}

null

a

b:4

d

e:6

c

e:3

e:9

Figure 8: Mining periodic-frequent patterns using ‘ f ’ as suffix item. (a) Prefix-tree of suffix item
‘ f ’, i.e., PTf (b) Conditional tree of suffix item ‘ f ’, i.e., CTf and (c) PF-tree++ after pruning item
‘ f ’

the PF-list++, each node labeled ‘i’ in the PF-tree++ must be a tail-node. While
constructing the PTi, we map the ts-list of every node of ‘i’ to all items in the
respective path explicitly in a temporary array. It facilitates the construction of
ts-list for each item ‘ j’ in the PF-list++ of PTi, i.e., T Si j (line 2 in Algorithm 5).
The length of T Si j gives the support of ‘i j’. Algorithm 6 is used to measure the
local-periodicity of ‘i j.’ This algorithm applies the following pruning technique to
determine the interestingness of j in PTi. The pruning technique is as follows: “If
loc-per(X) > maxPer, then X is an aperiodic-frequent pattern.” If j is periodic-
frequent in PTi, then its pl denotes its actual periodicity in the database. However,
if ‘ j’ is aperiodic-frequent in PTi, then its pl denotes the local-periodicity (or the
period) that has failed to satisfy the maxPer. The correctness of this technique
has already been shown in Lemma 2.

Figure 8(a) shows the prefix-tree of item ‘ f ’, PTf . The set of items in PTf
are ‘a’, ‘b’, ‘c’, ‘d’ and ‘e.’ Let us consider an item ‘a’ in PTf . The ts-list of the
nodes containing ‘a’ in PTf gives T Sa f = {4,9}. The support of ‘a f ’, S(a f) =
2(= |T Sa f |). As S(a f)≥ 2 (= minSup), we determine ‘a f ’ as a frequent pattern.

18

Next, we pass T Sa f as an array in Algorithm 6 to find whether ‘a f ’ is a periodic-
frequent or an aperiodic-frequent pattern. The first period, pcur = 4 (= 4− 0)
(line 1 in Algorithm 6). As pcur > maxPer, we determine ‘a f ’ as an aperiodic-
frequent pattern and return pl = pcur = 4 (lines 2 to 4 in Algorithm 6). Thus, we
prevent the complete search on the ts-list of an aperiodic-frequent pattern. Similar
process is applied for the remaining items in the PTf . The PF-list++ in Figure
??(a) shows the support and local-periodicity of items in PTf . It can be observed
that the pl value of aperiodic-frequent items, ‘a’ and ‘b’, in PTf are set to 4 and 4,
respectively. Please note that these values are not their actual periodicity values.
The actual periodicity of ‘a’ and ‘b’ in PTf are 5 and 6, respectively (see Figure
3(a)). This is the key difference between the PFP-tree++ and PFP-tree.

The conditional tree, CTi, is constructed by removing all aperiodic-frequent
items from the PTi. If the deleted node is a tail-node, its ts-list is pushed up to its
parent node. Figure 8(b), for instance, shows the conditional tree for ‘ f ’, say CTf ,
from PTf . The same process of creating prefix-tree and its corresponding condi-
tional tree is repeated for the further extensions of ‘i j’. Once the periodic-frequent
patterns containing ‘ f ’ are discovered, the item ‘ f ’ is removed from the original
PF-tree++ by pushing its node’s ts-list to its respective parent nodes. Figure 8(c)
shows the resultant PF-tree++ after pruning the item ‘ f ’. The whole process of
mining for each item in original PF-tree++ is repeated until its PF-list++ ̸= /0. The
correctness of PFP-growth++ is shown in Lemma 3.

Lemma 3. Let α be a pattern in PF-tree++. Let minSup and maxPer be the user-
defined minimum support and maximum periodicity, respectively. Let B be the α-
conditional pattern base, and β be an item in B. Let T Sβ be an array of timestamps
containing β in B. If α is a periodic-frequent pattern, T Sβ.length ≥ minSup and
Periodicity(T Sβ)≤ maxPer, then < αβ > is also a periodic-frequent pattern.

PROOF. According to the definition of conditional pattern base and compact PF-
tree++, each subset in B occurs under the condition of the occurrence of α in
the transactional database. If an item β in B at the timestamps tsi, ts j, · · · , then
β appears with α at tsi, ts j, · · · . Thus, T Sβ in B is same as T Sαβ. From the def-
inition of periodic-frequent pattern in our model, if T Sβ.length ≥ minSup and
Periodicity(T Sβ) ≤ maxPer, then < αβ > is also a periodic-frequent pattern.
Hence proved.

The above bottom-up mining technique on support-descending PF-tree++ is
efficient, because it shrinks the search space dramatically with the progress of
mining process.

19

Table 4: Statistics of the databases. The terms Tmin, Tmax and Tavg respectively represent the
minimum, maximum and average number of items within a transaction

Database Type Tmin Tmax Tavg Size Total Items
T10I4D100K synthetic 1 29 10.1 100,000 870
T20I6D100K synthetic 1 47 19.89 99,522 893

T10I4D1000K synthetic 1 31 10.1 983,155 30,387
T25I6D1000K synthetic 1 55 24.9 999960 1007

Shop-4 Real 1 82 2.36 59,240 155
Retail Real 1 76 10.3 88,162 16,470

Kosarak Real 1 2,498 8 990,002 41,270

5. Experimental Results

This section compares the performance of PFP-growth and PFP-growth++ al-
gorithms on various databases. We show that our PFP-growth++ is runtime ef-
ficient and highly scalable than the PFP-growth. Both of these algorithms are
written in GNU C++ and run with Ubuntu 14.4 on a 2.66 GHz machine with 8
GB of memory.

5.1. Experimental Setup
For our experiments, we have selected both synthetic (T 10I4D100K, T 20I6D-

100K and T 10I4D1000K) and real-world (Retail, Shop-14 and Kosarak) data-
bases. The synthetic databases are generated by using the IBM data generator
[1, 8], which is widely used for evaluating the association rule mining algorithms.
The Retail database is constructed by Brijs et al. [5] from an anonymous Bel-
gian retail supermarket store. The Kosarak database is provided by Ferenc Bodon
and contains click-stream data of a hungarian on-line news portal. We have con-
structed the Shop-4 database from the clickstream data of product categories vis-
ited by the users in “Shop 4” (www.shop4.cz) provided in the ECML/PKDD 2005
Discovery challenge [10]. Each transaction in this database represents the set of
web pages (or product categories) visited by the people at a particular minute in-
terval. The statistical details of all of these databases has been shown in Table
4. The databases, Retail and Kosarak, are available for download at Frequent
Itemset MIning repository [12].

5.2. Finding Periodic-Frequent Patterns
Figure 9 (a), (b), (c) and (d) show the number of periodic-frequent patterns

discovered at various minSup values in T 10I4D100K, T 20I6D100K, Retail and

20

Shop-4 databases, respectively. The X-axis represents the maximum periodicity
used to discover periodic-frequent patterns. The Y -axis represents the number of
periodic-frequent patterns discovered at a given maxPer value. The following two
observations can be drawn from these figures:

• At a fixed maxPer, the increase in minSup may decrease the number of
periodic-frequent patterns being generated. This because many patterns fail
to satisfy the increased minSup threshold values.

• At a fixed minSup, the increase in maxPer typically increases the number of
periodic-frequent patterns. The reason is that increase in maxPer facilitates
some of the frequent patterns that were having longer inter-arrival times to
be periodic-frequent patterns.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f p
at

te
rn

s

maxPer

minSup=0.01%
minSup=0.06%
minSup=0.11%

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f p
at

te
rn

s

maxPer

minSup=0.01%
minSup=0.06%
minSup=0.11%

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f p
at

te
rn

s

maxPer

minSup=0.01%
minSup=0.06%
minSup=0.11%

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000

 45000

 1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f p
at

te
rn

s

maxPer

minSup=0.01%
minSup=0.06%
minSup=0.11%

(a) T10I4D100K (b) T20I6D100K

(c) Retail (d) Shop-4

Figure 9: Number of periodic-frequent patterns discovered at different minSup and maxPer values

21

5.3. Runtime comparison of PFP-growth and PFP-growth++
Figure 10 shows the runtime taken by PFP-growth and PFP-growth++ algo-

rithms on various databases at different minSup and maxPer thresholds. The X-
axis represents the maximum periodicity used to discover periodic-frequent pat-
terns. The Y -axis represents the runtime taken by PFP-growth and PFP-growth++
algorithms to discover periodic-frequent patterns. The unit of runtime is seconds.
The following three observations can be drawn from these figures:

• Increase in maxPer threshold has increased the runtime for both the algo-
rithms. This is because of the increase in number of periodic-frequent pat-
tern with the increase in maxPer threshold.

• At any maxPer threshold , the runtime of PFP-growth++ is no more than
the runtime of PFP-growth. It is because of the greedy search technique
employed by the PFP-growth++ algorithm.

• At a low maxPer value, the PFP-growth++ algorithm has outperformed the
PFP-growth by a very large margin. It is because the PFP-growth++ has
performed only partial search on the ts-lists of aperiodic-frequent patterns.

5.4. Scalability Test
We study the scalability of PFP-growth and PFP-growth++ algorithms on exe-

cution time by varying the number of transactions in T 10I4D1000K and Kosarak
datasets. In the literature, these two database were widely used to study the scal-
ability of algorithms. The experimental setup was as follows. Each database was
divided into five portions with 0.2 million transactions in each part. Then, we
investigated the performance of both algorithms after accumulating each portion
with previous parts. We fixed the minSup = 1% and maxPer = 2.5%.

Figure 11(a) (b) and (c) shows the runtime requirements of PFP-growth and
PFP-growth++ algorithms on T 10I4D1000K, T 25I6D1000K and Kosarak database,
respectively. It can be observed that the increase in database size has increased the
runtime of both the algorithms. However, the proposed PFP-growth++ has taken
relatively less runtime than the PFP-growth. In particular, as the database size in-
creases, the proposed PFP-growth++ algorithm has outperformed PFP-growth by
an order of magnitude. The reason is as follows: Increase in database size gen-
erally increases the size of ts-list of a pattern. The complete search on these huge
ts-lists for both periodic and aperiodically occurring patterns by PFP-growth in-
creases its runtime requirements. However, partial search on the ts-list of an

22

 0

 5

 10

 15

 20

 25

1 2 3 4 5 6 7 8 9 10

se
co

nd
s

maxPer

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

1 2 3 4 5 6 7 8 9 10

se
co

nd
s

maxPer

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 2 3 4 5 6 7 8 9 10

se
co

nd
s

maxPer

(g) Retail with minSup=0.01% (h) Retail with minSup=0.06% (i) Retail with minSup=0.11%

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5 6 7 8 9 10

se
co

nd
s

maxPer

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5 6 7 8 9 10

se
co

nd
s

maxPer

PF-growth
PF-growth++

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5 6 7 8 9 10

se
co

nd
s

PF-growth
PF-growth++

(a) T10I4D100K with minSup=0.01% (b) T10I4D100K with minSup=0.06% (c) T10I4D100K with minSup=0.11%

(d) T20I6D100K with minSup=0.01% (e) T20I6D100K with minSup=0.06% (f) T20I6D100K with minSup=0.11%

 0

 50

 100

 150

 200

 250

 300

1 2 3 4 5 6 7 8 9 10

se
co

nd
s

maxPer

PF-growth
PF-growth++

 0

 50

 100

 150

 200

 250

1 2 3 4 5 6 7 8 9 10

se
co

nd
s

maxPer

PF-growth
PF-growth++

 0
 20
 40
 60
 80

 100
 120

 140
 160
 180

1 2 3 4 5 6 7 8 9 10
se

co
nd

s
maxPer

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 2 3 4 5 6 7 8 9 10

se
co

nd
s

maxPer

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 2 3 4 5 6 7 8 9 10

se
co

nd
s

maxPer

 0

 0.5

 1

 1.5

 2

 2.5

1 2 3 4 5 6 7 8 9 10

se
co

nd
s

maxPer

maxPer

PF-growth
PF-growth++

PF-growth
PF-growth++

PF-growth
PF-growth++

PF-growth
PF-growth++

PF-growth
PF-growth++

PF-growth
PF-growth++

PF-growth
PF-growth++

PF-growth
PF-growth++

Figure 10: Runtime comparison of PFP-growth and PFP-growth++ algorithms

23

 0

 50

 100

 150

 200

 250

 2 4 6 8 10

R
u

n
ti

m
e
 (

s)

Database size (100K)

PFP-growth

(a) T10I4D1000K

PFP-growth++

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

 2 4 6 8 10

PFP-growth

PFP-growth++

 0

 50

 100

 150

 200

 250

 2 4 6 8 9.9

R
u

n
ti

m
e
 (

s)

Database size (100K)

(c) Kosarak

PFP-growth

PFP-growth++

R
u

n
ti

m
e
 (

s)

(b) T25I6D1000K

Database size (100K)

Figure 11: Scalability of PFP-growth and PFP-growth++ algorithms.

aperiodically occurring pattern has facilitated by our PFP-growth++ to reduce
its runtime requirements. complete search on the tid-list of both periodic-frequent
and aperiodic-frequent patterns by PFP-growth has increased its runtime require-
ments. The partial search on the ts-list of an aperiodically occurring pattern has
facilitated the PFP-growth++ to reduce its runtime requirements.

5.5. A case study on Shop-4 database
In this subsection, we demonstrate the usefulness of periodic-frequent patterns

by considering shop-4 database. Table 5 presents some of the patterns discovered
in this database at minSup= 0.1% and maxPrd = 10%. The first two patterns, i.e.,
{{Built-in dish washers}, {Refrigerators, freezers, show cases}} and {{Washer
dryers}, {Refrigerators, freezers, show cases}, {built-in ovens, hobs, grills}}, are
appearing not only frequently within the database but also appearing at regular
intervals within the database. The remaining two patterns, i.e., {{Speakers for
home cinemas}, {Home cinema systems-components}} and {{Tv’s}, {Analog
camcorders}}, are not appearing as frequently as the former two patterns; how-
ever, they are still appearing periodically within the database. This clearly shows
that periodic-frequent pattern model can discover knowledge pertaining to both
frequent and rare items.

6. Conclusions and Future Work

Determining the periodicity of every candidate pattern in an itemset lattice
makes the periodic-frequent pattern mining a computationally expensive process.
In this paper, we have proposed a novel approach to reduce the computational
cost of mining the periodic-frequent patterns. Our approach facilitates the user to
find the periodic-frequent patterns by pruning the aperiodically occurring patterns

24

Table 5: Some of the interesting periodic-frequent patterns discovered in Shop-4 database

S. No. Pattern Support Periodicity
1 {{Built-in dish washers}, 35.4% 0.77%

{Refrigerators, freezers, show cases}}
2 {{Washer dryers}, {Refrigerators, 15.2% 1.34%

freezers, show cases}, {built-in ovens,
hobs, grills}}

3 {{Speakers for home cinemas}, {Home 0.11% 8.4%
cinema systems-components}}

4 {{Tv’s}, {Analog camcorders}} 0.1% 9.5%

based on sub-optimal solutions. As a result, our approach reduces the computa-
tional cost without missing any useful knowledge pertaining to periodic-frequent
patterns. Two novel pruning techniques have been introduced to discover the
patterns effectively. A pattern-growth algorithm, known as PFP-growth++, has
been proposed to discover the patterns. Experimental results show that our PFP-
growth++ is runtime efficient and scalable as well.

As a part of future work, we would like to extend our pruning techniques to
mine partial periodic-frequent patterns in a database. In addition, we would like to
investigate alternative search techniques to further reduce the computational cost
of mining the patterns.

7. References

[1] Agrawal, R., Imieliński, T., Swami, A., 1993. Mining association rules be-
tween sets of items in large databases. In: SIGMOD. pp. 207–216.

[2] Amphawan, K., Lenca, P., Surarerks, A., 2009. Mining top-k periodic-
frequent pattern from transactional databases without support threshold. In:
Advances in Information Technology. pp. 18–29.

[3] Aref, W. G., Elfeky, M. G., Elmagarmid, A. K., mar 2004. Incremental, on-
line, and merge mining of partial periodic patterns in time-series databases.
IEEE TKDE 16 (3), 332–342.

[4] Berberidis, C., Vlahavas, I., Aref, W., Atallah, M., Elmagarmid, A., 2002.
On the discovery of weak periodicities in large time series. In: PKDD. pp.
51–61.

25

[5] Brijs, T., Goethals, B., Swinnen, G., Vanhoof, K., Wets, G., 2000. A data
mining framework for optimal product selection in retail supermarket data:
the generalized profset model. In: KDD. pp. 300–304.

[6] Brin, S., Motwani, R., Silverstein, C., 1997. Beyond market baskets: gener-
alizing association rules to correlations. In: SIGMOD. pp. 265–276.

[7] Cao, H., Cheung, D., Mamoulis, N., 2004. Discovering partial periodic pat-
terns in discrete data sequences. In: Advances in Knowledge Discovery and
Data Mining. Vol. 3056. pp. 653–658.

[8] Cheng, H., 1994. IBM Quest Market-Basket Synthetic Data Gener-
ator. Available at http://www.philippe-fournier-viger.com/spmf/
datasets/IBM_Quest_data_generator.zip .

[9] Dong, G., Li, J., 2009. Emerging patterns. In: Encyclopedia of Database
Systems. pp. 985–988.

[10] ECML PKDD Challenge, 2005. ClickStream data. Available at http://
lisp.vse.cz/challenge/CURRENT/ .

[11] Esling, P., Agon, C., Dec. 2012. Time-series data mining. ACM Computing
Surveys 45 (1), 12:1–12:34.

[12] Goethals, B., 2005. Frequent Itemset Mining repository. Available at http:
//fimi.ua.ac.be/data/ .

[13] Gouda, K., Zaki, M. J., 2001. Efficiently mining maximal frequent itemsets.
In: ICDM. pp. 163–170.

[14] Gray, J., 1978. Notes on data base operating systems. In: Operating Systems,
An Advanced Course. Vol. 60 of Lecture Notes in Computer Science. pp.
393–481.

[15] Han, J., Dong, G., Yin, Y., 1999. Efficient mining of partial periodic patterns
in time series database. In: ICDE. pp. 106–115.

[16] Han, J., Gong, W., Yin, Y., 1998. Mining segment-wise periodic patterns in
time-related databases. In: KDD. pp. 214–218.

26

[17] Han, J., Pei, J., Yin, Y., Mao, R., Jan. 2004. Mining frequent patterns without
candidate generation: A frequent-pattern tree approach. Data Min. Knowl.
Discov. 8 (1), 53–87.

[18] Han, J., Wang, J., Lu, Y., Tzvetkov, P., 2002. Mining top.k frequent closed
patterns without minimum support. In: ICDM. pp. 211–218.

[19] Kiran, R. U., Kitsuregawa, M., 2014. Novel techniques to reduce search
space in periodic-frequent pattern mining. In: DASFAA (2). pp. 377–391.

[20] Kiran, R. U., Reddy, P. K., 2010. Towards efficient mining of periodic-
frequent patterns in transactional databases. In: DEXA (2). pp. 194–208.

[21] Kiran, R. U., Reddy, P. K., 2011. An alternative interestingness measure for
mining periodic-frequent patterns. In: DASFAA (1). pp. 183–192.

[22] Kiran, R. U., Shang, H., Toyoda, M., Kitsuregawa, M., 2015. Discovering
recurring patterns in time series. In: EDBT. pp. 97–108.

[23] Laxman, S., Sastry, P. S., Unnikrishnan, K. P., 2007. A fast algorithm for
finding frequent episodes in event streams. In: KDD. pp. 410–419.

[24] Lent, B., Swami, A., Widom, J., 1997. Clustering association rules. In:
ICDE. pp. 220–231.

[25] Ma, S., Hellerstein, J., 2001. Mining partially periodic event patterns with
unknown periods. In: ICDE. pp. 205–214.

[26] Mannila, H., 1997. Methods and problems in data mining. In: The Interna-
tional Conference on Database Theory. pp. 41–55.

[27] Mohammad, Y. F. O., Nishida, T., 2013. Approximately recurring motif dis-
covery using shift density estimation. In: IEA/AIE. pp. 141–150.

[28] Mooney, C. H., Roddick, J. F., mar 2013. Sequential pattern mining – ap-
proaches and algorithms. ACM Comput. Surv. 45 (2), 19:1–19:39.

[29] Oates, T., 2002. Peruse: An unsupervised algorithm for finding recurrig pat-
terns in time series. In: ICDM. pp. 330–337.

[30] Omiecinski, E. R., January 2003. Alternative interest measures for mining
associations in databases. IEEE Trans. on Knowl. and Data Eng. 15, 57–69.

27

[31] Özden, B., Ramaswamy, S., Silberschatz, A., 1998. Cyclic association rules.
In: ICDE. pp. 412–421.

[32] Pei, J., Han, J., Lakshmanan, L. V., 2004. Pushing convertible constraints
in frequent itemset mining. Data Mining and Knowledge Discovery 8, 227–
252.

[33] Rashid, M. M., Karim, M. R., Jeong, B. S., Choi, H. J., 2012. Efficient
mining regularly frequent patterns in transactional databases. In: DASFAA
(1). pp. 258–271.

[34] Srivastava, S., Kiran, R. U., Reddy, P. K., 2011. Discovering diverse-
frequent patterns in transactional databases. In: COMAD. pp. 69–78.

[35] Stormer, H., 2007. Improving e-commerce recommender systems by the
identification of seasonal products. In: Twenty second Conference on Ar-
tificial Intelligence. pp. 92–99.

[36] Surana, A., Kiran, R. U., Reddy, P. K., 2011. An efficient approach to mine
periodic-frequent patterns in transactional databases. In: PAKDD Work-
shops. pp. 254–266.

[37] Swamy, M. K., Reddy, P. K., Srivastava, S., 2014. Extracting diverse patterns
with unbalanced concept hierarchy. In: PAKDD (I). pp. 15–27.

[38] Tanbeer, S. K., Ahmed, C. F., Jeong, B. S., Lee, Y. K., 2009. Discovering
periodic-frequent patterns in transactional databases. In: PAKDD. pp. 242–
253.

[39] Weiss, G. M., 2004. Mining with rarity: A unifying framework. SIGKDD
Explorations 6 (1), 7–19.

[40] Yang, R., Wang, W., Yu, P., 2002. Infominer+: mining partial periodic pat-
terns with gap penalties. In: ICDM. pp. 725–728.

[41] Yao, H., Hamilton, H. J., Butz, C. J., 2004. A foundational approach to
mining itemset utilities from databases. In: SDM. SIAM, pp. 482–486.

[42] Zhang, M., Kao, B., Cheung, D. W., Yip, K. Y., aug 2007. Mining periodic
patterns with gap requirement from sequences. ACM Trans. Knowl. Discov.
Data 1 (2).

28

Algorithm 2 PF-list++
1: for each transaction t ∈ T DB do
2: if tscur < β then
3: /*Expanding phase*/
4: if tscur is i’s first occurrence then
5: Insert i into the list and set f i = 1, tsi

l = tscur and pi
l = tscur.

6: else
7: Calculate pcur = tscur − tsi

l .
8: Set f++, tsi

l = tscur and pi
l = (pcur > pi

l)?pcur : pi
l .

9: end if
10: else
11: /*Shrinking phase*/
12: Calculate pcur = tscur − tsi

l .
13: if pcur < maxPerβ then
14: Set f i ++, tsi

l = tscur and pi
l = (pcur > pi

l)?pcur : pi
l .

15: else
16: prune the i from the list;
17: end if
18: end if
19: end for
20: Let CI denote the set of candidate items remaining in PF-list++.
21: for each item i in PF-list++ do
22: if f i ≥ minSup then
23: Calculate pcur = |T DB|− tsi

l .
24: if pcur ≤ maxPer then
25: Set pi = (pcur > pi)?pcur : pi.
26: else
27: Remove i from the PF-list++.
28: end if
29: else
30: Remove i from the PF-list++
31: end if
32: end for
33: Consider the remaining items in PF-list++ as periodic-frequent items and sort

them with respect to their support. Let PI denote this sorted list of items in
PF-list++.

29

Algorithm 3 PF-Tree++(T DB, PF-list++)
1: Create the root of an PF-tree++, T , and label it “null”.
2: for each transaction t ∈ T DB do
3: Set the timestamp of the corresponding transaction as tscur.
4: Select and sort the candidate items in t according to the order of PI. Let

the sorted candidate item list in t be [p|P], where p is the first item and P is
the remaining list.

5: Call insert tree([p|P], tscur,T).
6: end for
7: call PFP-growth++ (Tree, null);

Algorithm 4 insert tree([p|P], tscur, T)
1: while P is non-empty do
2: if T has a child N such that p.itemName ̸= N.itemName then
3: Create a new node N. Let its parent node be linked to T . Let its node-link

be linked to nodes with the same itemName via the node-link structure.
Remove p from P.

4: end if
5: end while
6: Add tscur to the leaf node.

Algorithm 5 PFP-growth++(Tree, α)
1: for each ai in the header of Tree do
2: Generate pattern β = ai ∪α. Collect all of the a′is ts-lists into a temporary

array, T Sβ.
3: if T Sβ.length ≥ minSup and CalculateLocalPeriodicity(T Sβ) < maxPer

then
4: Construct β’s conditional pattern base then β’s conditional PF-tree++

Treeβ.
5: if Treeβ ̸= /0 then
6: call PFP-growth++(Treeβ, β);
7: end if
8: end if
9: Remove ai from the Tree and push the ai’s ts-list to its parent nodes.

10: end for

30

Algorithm 6 CalculateLocalPeriodicity (T SX : an array of timestamps containing
X .)

1: Set pl =−1 and pcur = T SX [0] (= T SX [0]−0).
2: if pcur > maxPer then
3: return pcur; /*(as pl value).*/
4: end if
5: for i = 1; i < T SX .length−1;++i do
6: Calculate pcur = T SX [i+1]−T SX [i].
7: pl = (pcur > pl)?pcur : pl
8: if pl > maxPer then
9: return pl;

10: end if
11: end for
12: Calculate pcur = |T DB| − T SX [T SX .length], and repeat the steps numbered

from 7 to 10.

31

