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Abstract e Visitors to a museum could request images/video-

clips of different rooms of the museum to decide
In mobile ad-hoc peer-to-peer (M-P2P) networks, frequent  which room they will visit first. They could even re-
network partitioning leads to typically low data availabil quest the museum’s path information from other visi-
ity, thereby making data replication a necessity. This work tors as in virtual reality applications.

proposes EcoRep, a novel economic model for dynamic _ . .
replica allocation in M-P2P networks. EcoRep performsNOtably' such P2P interactions among mobile users are

replica allocation based on a data item’s relative impor-3€nerally not freely supported by existing mobile commu-

tance, which is quantified by the data iterpiice in terms _nica'gion infrastructures. The _notion of replica consisten

of a virtual currency. The price of a data item depends or| this work is based on the time of the latest update. For
its access frequency, the number of users who accessed §<@mPple, for the shopping mall application, a copy of a
the number of its existing replicas, its (replica) consisie  SOPPing catalogue, which was updated one hour ago, is
and the average response time required for accessing fonsidered to be more consistent than one that had been
EcoRep ensures fair replica allocation by considering th&iPdated two days ago. Note that our application scenarios
origin of queries for data items. EcoRep requires a quenfi© N0t require absolute replica consistency [3, 17], hence

issuing user to pay therice of his requested data item to W& consider tolerance to weaker replica consistency.

the user serving his request. This discourages free-riding Interestingly, every sight-seeing bus generally has a tour
and encourages user participation by providing an incenguide for facilitating tourists. A tour guide could facdie

tive for users to become service-providers. EcoRep alsg2t@ sharingocally among the tourists within his own bus.
considers other issues such as load, energy and networ|eur guides in different buses could also collaborate with
topology as replication criteria. Our performance study in each other to enable effective data sharing across toirrists

dicates that EcoRep is indeed effective in improving quenyifférent buses, thereby supportirgmote querying Sim-

response times and data availability in M-P2P networks. 121y, shopping malis usually have administrators such as
information guides, who typically move within particular

: regions of the mall. Administrators in different parts oéth
1 Introduction mall could interact with each other to facilitate data shar-
In a Mobile ad-hoc Peer-to-Peer (M-P2P) network, mobileing among mobile customers across different regions of the
hosts (MHs) interact with each other in a peer-to-peer (P2Pall. Furthermore, museums almost always have admin-
fashion. Proliferation of mobile devices (e.g., laptops,istrators who supervise particular sections of the museum
PDAs, mobile phones) coupled with the ever-increasingand provide information to visitors. Such museum admin-
popularity of the P2P paradigm [11] strongly motivate M- istrators generally have the capability to interact withlrea
P2P network applications. Some application scenariospther. As we shall see in this work, such administrators can
which would facilitate mobile users in sharing information be used to facilitate replication in our application scévear
with each othepn-the-flyin a P2P manner, are as follows: Incidentally, data availability in M-P2P networks is typ-
] o ] ] ically lower than in fixed networks due to frequent net-
e Tourists in different sight-seeing buses could shargyqrk partitioning arising from user movement and/or users
touristic information (e.g., images of castles) with gyitching ‘on’/*off’ their mobile devices. (Data availdlty
each other.ifiter-vehicular communicatign is less than 20% even in a wired environment [20].) To im-
rove M-P2P data availability, several replication scheme
9, 21] have been proposed. However, these schemes do not
addresdair replica allocation since they allocate replicas
solely based on the read/write access ratio of a data item
Intermational Conference on Management of Daia d without considerin_g the origin of queries fdr(e.g., the
COMAD 2006, New Delhi, India, December 14-16, 2006 E-DCG+ approach in [9]). Hence, these schemes would
©Computer Society of India, 2006 regardd as ‘hot’ and create several replicasdyfeven if a

e Customers in a shopping mall could share informatio
about the cheapest available ‘Levis’ jeans. They coul
also exchange shopping catalogues with each other.




single MH M issues a very large number of (read) queriesparts of a shopping mall are generally equipped with mo-
for d. This is inherently unfair since it favour®/, thus bile devices to interact with each other.
these schemes are not able to serve the requests of mul- Our architecture facilitates replica allocation and agoid
tiple MHs in afair manner. Moreover, existing schemes broadcast storm during replica allocation. Intuitivelgrs
do not combafree-riding [10, 18], which is rampant in ing replicas arbitrarily at any MH could adversely impact
P2P systems. (Nearly 90% of the peers in Gnutella werenany MHs due to high communication overheads between
free-riders [1].) Since free-rider MHs do not participate i MHs, unnecessary delays and querying failures. Hence,
storing replicas, replication opportunities decreaserghy  replication should be performed carefully based on MH
degrading performance of these schemes. characteristics (e.g., load, energy) as well as networdltop
This work proposes EcoRep, which is a nosebnomic  ogy. Thus, someegional knowledgéecomes a necessity.
model for dynamic replica allocation in M-P2P networks. As we shall see later, each Mperiodically sends a mes-
EcoRep performs replica allocation based on a data item’sage to SP with information such as its current location,
relative importance, which is quantified by the data item’'sload, available memory space and energy status, thereby
pricein terms of a virtual currency. The price of a data item equipping SP with such regional knowledge. This helps SP
depends on its access frequency, the number of users whio better manage replication. In contrast, for an architec-
accessed it, the number of its existing replicas, its (capli ture without any SP (e.g., the E-DCG+ approach [9]), each
consistency and the average response time required for abtH needs to broadcast its status to all other MHs to make
cessing it. EcoRep requires a query issuing user to pay theach other aware of the regional status, thereby creating an
price of his requested data item to the user serving his reundesirable broadcast storm during replica allocatiorr. Ou
guest. Hence, a user has to provide service to the networrchitecture avoids such broadcast storm due to SP.
to earn enough currency to be able to issue his own queries. Our architecture does not require local queries to pass
The main contributions of EcoRep are two-fold: via SP, thereby preserving P2P autonomy. This is possi-
ble because every MH periodically sends the list of data
1. It ensures fair replica allocation by considering theitems/replicas stored at itself to SP, and SP broadcasts thi
origin of queries for data items to determine their rel- information to all MHs. Thus, every MH has adequate in-
ative importance to the network as a whole. formation not only for redirecting queries locally, butals
for distinguishing between local and remote queries. An
2. It discourages free-riding and provides an incentiveMH issues a remote query by sending the query to the SP
for users to become service-providers by virtue of itsin its region; SP stamps the query with its unique identifier
economic nature. and forwards it to other SPs.
Our performance study indicates that EcoRep is indeed
EcoRep also considers other issues such as load, energjfective in improving query response times and data avail-
and network topology as replication criteria. Incidentall apility in M-P2P networks, while incurring relatively low
the load of the MHM serving an access request for a datacommunication costs for replication. To our knowledge,
item d can influence the price of. If M is relatively un-  thjs s the first work to propose an economic model for
derloaded, it would be able to provide better service sincgata replication in M-P2P networks. The remainder of this
it can serve the request quickly, thereby implying lowerpaper is organized as follows. Section 2 discusses exist-
query response time and consequently, higher data itefizg works, while Section 3 discusses the EcoRep economic
price. However, ifM is overloaded, prices of data items model. Section 4 details the replica allocation algoritfm o
accessed at/ would decrease due to increased query ref£coRep. Section 5 reports our performance study. Finally,

sponse times. Notably, our primary focusdsonomy- e conclude in Section 6 with directions for future work.
based fair replica allocation, a pleasant side-effect of

which is that ofdiscouraging free-riding at no additional

cost. EcoRep can also be regarded ame@ntive scheme 2 Related Work

which encourages increased user partiticipation in M-P2REconomic models have been discussed in [5, 13, 7, 4, 22]
networks essentially due to its economic nature. primarily for resource allocation in distributed systems.

To manage replication efficiently, EcoRep deploys acompetitive micro-economic auction-based bidding model
super-peer architecture [23]. The super-peer (SP) is awith support for load-balancing has been proposed in [5],
MH, which generally moves within the region and which while the work in [13] examines economy-based optimal
has maximum energy and processing capacity at a givefile allocation. The proposal in [7] uses game-theoritic and
time. In the context of our application scenarios, the tourtrust-based ideas. Although the work in [4] considers eco-
guides in the sight-seeing buses, the administrators in theomic replication, it does not address fairness in replica
shopping mall and the museum administrators would act aallocation and P2P concerns such as free-riding. Inciden-
SP. We assume that the SPs in different regions (in case ¢élly, none of these works address the unique issues associ-
the shopping mall and museum applications) or in differentted with the M-P2P environment such as frequent network
buses (for the inter-vehicular application) have the cdpab partitioning and mobile resource constraints. Our recent
ity to collaborate with each other. This is in consonanceworks [16, 15] address issues associated with frequent net-
with real-world scenarios e.g., administrators in diffdre work partitioning and mobile resource constraints, buythe



do not consider economicissues. Recently, the work in [22parable number of messages.) We stipulate that the value
has proposed an economic model for M-P2P environment&f Rel should be lower than the price of the lowest-priced
However, the proposal in [22] aims at data disseminatiordata item to ensure that storage of data items and replicas
with the aim of reaching as many peers as possible, whilés assigned higher priority than relay functions.

we consider on-demand services. Furthermore, it does not Each MH maintains recent read-write logs (including
consider replication, bidding and the conversion of relaytimestamps) of its own data items and the read-logs of the
peers into pro-active brokers. replicas stored at itself. As we shall see shortly, each MH

Works concerning free-riding include [6, 10, 14, 18]. uses this information for computing the prices of the data
The works in [6, 10] propose incentive schemes to combaitems and replicas stored at itself. We shall explain the de-
free-riding. The work in [18] discuss utility functions to tails concerning the access statistics maintenance at each
capture user contributions, while trust issues are examineMH in Section 4. Furthermore, each data itdris owned
in [14]. However, these works are completely orthogonalby only one MH, which can updatel autonomouslhany-
to replication issues associated with free-riding. time; other MHs cannot update Memory space of MHs,

The work in [12] proposes a suite of replication proto- bandwidth and data item sizes may vary. We define the
cols for maintaining data consistency and transactional sdoad L; ; of an MH M, at timet; as the job queue length
mantics of centralized systems. P2P replication systems irof A/, normalized w.r.t. available bandwidth and service
clude Clique [19] and Rumor [8]. An update strategy, basectapacity to address heterogeneity.
on a hybrid push/pull Rumor spreading algorithm, for truly
decentralized and self-organizing systems has been exam- Lij = Jig; = (0ixBy) (1)
ined in [3]. . )

The proposals in [9] present replica allocation methoddVhere Ji ., represents the job queue lengthdf at time
with periodic and aperiodic updates, which consider lim-t;- Since job queue length is a function of time, load is also
ited memory space in MHs for storing replicas, access fre@ function of time.o; and B; are the normalized values of
quencies of data items and the network topology, to im-{he service capacity and the available bandwidtifre-
prove data accessibility in mobile ad-hoc networks. Ehe ~ SPectively.o; is fixed for a given MH since it is hardware-
DCG+ approach[9] is among the most influential replica dependento; = (oar, /omin ), Whereoyy, is the service
allocation approaches. By creating groups of MHs that¢@pacity ofM; anda,;, is a low service capacity. We have
are biconnected components in a network, E-DCG+ sharg¢seéd the minimum service capacity among all the MHs as
replicas in larger groups of MHs to provide high stability. @min- Similarly, B; = ( Bar, + Bmin ), WhereByy, rep-
However, the proposal in [9] does not consider economi¢€Sents the available bandwidth bf; and B,,,;,, is a low
issues such as incentives and prices of data items. Furthéf@ndwidth e.g., we have usés),., = 56 Kbps.
more, the architecture in [9] is not suitable for our applica
tion scenarios since it does not consider load sharing angactors influencing the price of a data item
tolerance to weaker consistency.

When an MHM; accesses a data itefrthat is stored at an
3 EcoRep: An Economic Model for Data MH Mg, the pricep, which is spent byl/; and earned by

Replication in M-P2P networks Mg, depends upon the following factors:

This section discusses EcoRep, which is an economic e Access frequency ofl during recent time periods:

model for dynamic replica allocation in M-P2P networks. Higher access frequency dfimplies greater impor-
In EcoRep, each data item hapmdce p (in terms of a tance ofd, henced's price should increase with in-

virtual currency) that quantitatively reflects its relative im- creasing access frequency.

portance to the M-P2P network as a whole. Whenever an

MH M; accesses a data itedhstored at an MHM g, it e The number of MHs served byd during recenttime

pays theprice p (in terms of avirtual currency) of d to Mg periods: The larger the number of MHs served by

sinceMg serves its request. Thus{; spends the amount d, the greater isi's importance to the network as a

p, while Mg earnsp. We define theevenueof an MH as whole. Henced’s price should increase as it serves

the difference between the amount of virtual currency that requests originating from more MHs. Thus, unlike ex-
it earns and the amount that it spends. EcoRep provides an isting works, for two data items with equal access fre-
incentive for MHs to provide service to the network so that guencies, the price would be higher for the data item
they can earn more revenue in order to be able to issue their  that is accessed by a larger number of MHs.

own queries. An MH can provide service to the network

either by storing data items/replicas that are accessed by e The number of existing replicas ofd: The lesser the
other MHSs or by forwarding messages e.g., queries, query  number of replicas of in the network, the more diffi-
results (i.e., relay functions). The amouR¢l earned by cult it is to obtaind. Hence d’s price should increase
an MH each time it performs a relay function is constant, asd’s number of replicas decreases and vice versa.
irrespective of the message being forwarded. (Randomness This is in consonance with the economic principles,
ensures that each MH will generally have to forward com- which dictate higher prices for rarer items.



e Consistency of the replicas which answered queries
on d: In some sense, replica consistency may be re
garded as being akin to the quality of results. Hence
higher replica consistency should imply higher price
and vice versa. Notably, replica consistency issues d

not arise for queries answered by an MH’s own data|

items since such data items are always consistent.

Query response time:Response time for a queryQ
pertaining tad reflects the quality of service provided
to the query issuing MR/} by the query serving MH
Mg, hence shorter response times should comman
higher price. 7 equals (I'w + Tp + Tgeiay), Where
Tyw is the waiting time spent bg in Mg's job queue,
Tp is the download time fotl, and7 ., iS the path
delay. Ty, depends onV/s’s job queue length and
its service capacityl, depends upon the bandwidth
allocated byMg for d's download, which is related
to Mg's total bandwidth and the number of concur-
rent access requests Mdg. Tyeqy depends on the

Notation Significance
d A given data item
Mg MH that stores a given data itedchand serves requests fdr
Prec Price ofd during most recent allocation period
P Moving Average Price ofl across multiple allocation periods
Ny o Number of MHs
w; Weight coefficient for MH: for fairness in serving multiple MH§
n; Number of access requests tboriginating from a given MH
C; Average consistency with which MiHanswered queries ah
BA; Bandwidth allocated by MH for d’s download
)| PAMS Probability of availability of MHM g
Ngr Number of existing replicas af
Jng £ Job queue length at query serving MHs during timet ;
oMy Service capacity of query serving MM s

Table 1: Summary of notations

1 for queries answered h\/s’s own data items since such

delays introduced in the path of the query results dur-queries are always answered with absolute consistency. For

ing the hops from\is to M; due to bandwidth vari-
ations, in casé/g and M; are not 1-hop neighbours.
Thuserelay = ( Z;’Lzh({p (RSize/Bi) )1 Wherenhop is
the number of ‘hops’ betweells and My, Rg;.. iS
the size of the query result angl; is the bandwidth
between the MHs at thé" hop. T4, considers the

connectivity of an MH answering an access request.

Quantifying the relative importance of a data item by
its price

Based on the factors discussed above, an MKl which
stores a data itend, computesl’s price in two steps. First,
Mg compute,..., which is the price ofl based on the ac-
cesses t@ at Mg during the most recent replica allocation
period. Second)/s uses moving averages pf.. over a
fixed number of replica allocation periods to compute th
price p of d. This is necessary becaugg.. may not al-
ways be able to reflect the true importanceldd the net-
work (e.g., when spurious ‘spikes’ ifis access frequency

occur). Table 1 summarizes the notations, which we shal

henceforth use in this paper.

Computation of p,.... Mg first sorts the MHs irde-
scendingorder of their access frequencies tbduring the
most recent replica allocation period i.e., the first MH in
this order made the most accessed.toGiven this order
and using the notations in Table M¢ computes,... of d
as follows:

Nuvu
Prec = Z (U}Z X n; X C; X BAZ) X PAMS /
i=1

(Nr+1) x (Jus,t;/oms))  (2)

where the weight coefficient; equals (/N x ), thereby
ensuring that more the number of MHs serveddhythe
more its price will be.C; reflects the (replica) consistency
with which d was answered for queries by MH C; =

e.

gueries answered by replicas, we consider three different
levels of replica consistency, namehygh, mediumand

low. C; is assigned values of 1, 0.5 and 0.25 for high,
medium and low consistency respectively. Each MH main-
tains a tablel, ¢, which contains the following entries:
(x%, high), (y%, medium), (z%, low), where X, y, z are
error-bounds, whose values are application-dependent and
pre-specified by the system at design time. Thusis
computed using ¢, which is replicated at each MH and

is the same for each MH.

BA,; equals(Ts/N,), whereTs is the sum of all the
bandwidths thaf\/s allocated to MH: over each of the
times when MH; accessed at Ms. N, is the total num-
ber of access requests that Mishade ford. Observe how
the probability of availabilityP? A ;. of MH Mg influences
the price. Equation 2 takes heterogeneity in service capac-
ities of MHs into account by normalizing job queue length
of the query serving MHV/g w.r.t. its service capacity.
Furthermore, the total number of copiesdah the M-P2P

etwork equals the number of replicas in addition to the
riginal data item itself, which explains the termV£+1)
in Equation 2. To put things into perspective, now let us
consider some examples for the computatiop,Qf. with
Nura = 50. For simplicity, assume thaty ¢, /ons =1
(at a given time;) for the following examples:

1. A single MH makes 100 accessesitdor all i, C;
1, BA; =50 units; PAy;, = 0.5, Ng = 1: Here,n;
100 wheni =1 (and 0 otherwise), hengeg,.. = 25.

2. A single MH makes 100 accessesltdor all i, C;
1, BA; =50 units; PAy;, = 0.5, Ng = 5: Here,n;
100 wheni =1 (and 0 otherwise), henge.. = 8.33.

3. A single MH makes 100 accessesltdor all i, C;
1, BA; =10 units; PAys, = 0.5, Ngp =5: Here,n;
100 wheni =1 (and O otherwise), hengg,. = 1.67.



4. 4 MHs make 25 accesses eachitdor all i, C; = 1, in our applications. The results indicate th¥t= 5 is a
BA; =50 units; PAy, = 0.5, Ng = 1: Here,n; = reasonably good value for our application scenarios.

25 fori = 1to 4 (and O otherwise), henpg.. = 62.5. Price p of a data item w.r.t. a region: Recall that our

application scenarios involve multiple SPs such that each

SP is responsible for a specific region in space. For ex-

ample, in case of the shopping mall application, a region

could be the area covered by one floor of the mall. For

6. 50 MHs make 2 accesses eachitdor all i, C; = 1, the tourist bus application, it could be either the area ef th
BA; = 50 units; PAy,. =1, Np = 1: Here,n; = 2 bus, or the area of some castle, museum or garden which
for i = 110 Ny, hencep, .. =1275. the tourists of a bus are currently visiting. As we shall see

in Section 4, the price of a data itedrshould be computed

5. 50 MHs make 2 accesses eachitdor all 7, C; = 1,
BA; =50 units; PAy; =0.5, Np = 1: Heren; =2
fori=1to Ny g, hencep,... = 637.5.

7. 50 MHs make 2 accesses eachdtofor all i, C; =  W.r.t. each such region to determine the region(s) in which
0.25,BA; = 50 units; PAy;, =1, Ng = 1: Here,n;  dshould be replicated. Hence, each Meriodicallysends
=2fori = 1to Ny, hencep,.. = 318.75. the prices of the data items and replicas stored at itself to

the corresponding SP in its region.S collates such price

Observe from examples 1 and 2 above hgw. decreases information from all the MHSs in its region to compute the
with increase in the number of existing replicas. From ex-price pregion Of a data itemi w.r.t. the region covered by
amples 2 and 3, notice how... decreases when average itself. preqion iS the sum of the prices ef at all the MHs
available bandwidth for download is decreased. Across exwithin S’s region. Given that is the number of MHs in
amples 1, 4 and 5, we see h@y.. increases ad serves the region covered by a particular SP, ands d’s price p
more MHs. Observe from examples 5 and 6 hgw. in- at theit" MH, PRegion €QUAlSs (Z?Zl i)
creases with increase in the probability of availability of  Revenue of an MH:In EcoRep, a MHV/ earns virtual
Ms. Examples 6 and 7 indicate how.. decreases with  cyrrency from accesses to its own data items and replicas
decreasing replica consistency. Finally, even though thenat are stored at itself. Suppose Mi#i stores data items
total access frequency dfis the same in all the above ex- of jts own andj replicas. Lep; be the price of thé'" data
amplesy;,.. differs in each case. _ _ item/replica. Letney, andne,, be the access frequencies

Computation of the moving average pricep: Inciden-  of the i data item and the” replica respectively. The

ta”y, Prec may not a|Wa>/S be able to reflect the true _impor- amountE (of virtual Currency) earned bM follows:
tance of a given data itend to the network. As a single

instanced’s access frequency may have been low during p q
the most recent allocation period, even thodglould have £ = Y ( pi xnea, )+ Y ( Cix p;x ney, ) (4)
been heavily accessed during the allocation periods prior t i=1 i=1

the most recent one. Since replica allocation is an expen
sive operation, the true importance of a data item should b
determined meticulously to avoid unnecessary replica allo
cation. HenceMS compqtesthe moving average prjcef . the first term of Equation 4 as the first term conceli's

d. However, simple moving averages give the same weigh wn data items, which are always absolutely consistent

to the lastV replica allocation periods, hence they suffer o ) '
from ‘lag’ i.e., they are not capable of reacting quickly M spends its virtual currency when it accesses data
to changing access patterns of data items. Given that iféms and/or replicas stored at other MHs. Supplsac-
M-P2P networks, access patterns typically change dynanf:esse® original data items and replicas. Leip; be the
ically over time, we use the Exponential Moving Average Price of thei*" data item/replica. Letsg, andns,, be the
(EMA), which gives higher weights to recent access pat-2ccess frequencies of thié data item and the" replica
terns relative to older access patterns, thereby redulsing t "espectively. The amoust spent byM follows:

‘lag’. Mg computes the pricg of d as follows:

n the second term of Equation @ is a parameter which
fhdicates the average consistency with which queries on the
replicas (stored at/) were answered”; does not occur in

q
( pixmnsq, )+ Z ( Ci x pixnsy, ) (5)

i=1 i=1

S =

p
p = (prec — EMApre) % 2/ (N + 1) + EMAprey (3) A

where EM Ay, represents the EMA that was computed yhere; has the same significance as in Equation 4. Using

for the previous replica allocation period, aiNdrepresents Equations 4 and 5, thevenuey of M follows.
the number of replica allocation periods over which the ’

moving average is computed. Observe that the EMA ap- w = E — 8§ (6)
proach only required/s to store the previous allocation

period’s value of EMA instead of the values of price dataThus, revenue of an MH is simply the difference between
for the entire period being averaged, thereby optimizinghe amount that it earns and the amount that it spends. Ob-
memory space usage of SP, which is important in case aderve how EcoRep’s economy-based paradigm of replica-
M-P2P networks. We performed preliminary experimentstion encourages MHs to store replicas so that they can in-
to determine a suitable value fo¥ for various scenarios crease their revenues, thereby ensuring that they obtgin be



ter service from the M-P2P network. fer across MHSs. For the sake of convenience, we shall use
When an MH joins the M-P2P network, SP provides theR + L = 1 to reflect the above normalization.

MH with a small amount of revenue to start with so thatthe  Computation of\ for different cases follows.

MH can issue a few queries. However, once this initial rev-Case 1: Revenue and load are both assigned equal

enue is eXhaUStEd, the MH will eventually have to prOVidQNeight: ARelL Computes a functiojﬁ as follows.
service to the network, otherwise it will not be able to issue

any further queries. However, it is possible for a malicious f=RxL=Rx(1-R)

MH to join the network, obtain the initial amount of rev-

enue from SP and issue a few queries. Then it can leave tHdsing the product rule of differentiation, we differenggt
network and re-join the network after some time. To miti- W.I.t. R.

gate the effect of such free-riding, the unique device ident

fier of a mobile device could be used to uniquely identify an dff/dR = R(-1)+1-R=1-2R

MH; SP could maintain a log containing MH identifiers and ' , . I :

a summary of MH behaviours during recent time intervals.T0 fln(Lf S maxm;L;%m_vgluegh_e Egrl\/sqtlvzf(idil dLR_) is setto
Understandably, our aim is to encourage MH participationzf)ro: efce/é— h T = = lle. |Inc - hwe
in the network, hence we do not want to exclude MHs by0 tain L = 1/2. Thus,f's maximum value occurs whef

deploying policies that are too strict against free-riding =L =1/2. Hence, AReL cqmputég (7 + L). in this case.
Case 2: Revenue is assigned higher weight than load:

4 AReL: An Adaptive Revenue-Load-based AReL computes the following functiof

Replica Allocation Algorithm for EcoRep f=R*xL=R*x(1-R)

This section discusses the AReL (Adaptive Revenue-Load) o we differentiatef w.r.t. R.
replica allocation algorithm deployed by EcoRep. We first
explore the interaction betweenrevenue andload ofanMH.  4f /dR = R?*(—1) + 2R(1 — R) = R(—3R + 2)

Interaction between revenue and load of an MH To find the maximum value Of, we set the derivative
(dp/dR) to zero. Sinc® # 0, —3R +2=0= R = (2/3).

Incidentally, an MHM may earn high amounts of virtual Hence,L = 1/3. Thus, the maximum value gf occurs

currency by serving only a few requests for some high\yhenR =2L, hence\ = 2R + L.

priced data items, while not issuing any access requests of

its own. ThusM'’s revenue could be high, even thoudh

is underloaded. On the other hard, could be serving a

large number of access requests for low-priced data items, f=RxL>=Rx(1—R)?

thereby implying thatVi’s revenue could be low in spite

of its high load. Even ifA/ earns high amounts of virtual Differentiating f w.r.t. R, we obtain

currency,M'’s revenue could still be low i/ issues sev-

eral access requests for high-priced data items. In essence df /JdR = R(2)(1 — R)(—1) + (1)(1 — R)?

there is no direct correlation between the revenue and load =(1-R)(1-3R)

of an MH. AReL uses a parametgthat can be tweaked to

adjust the relative importance of revenue and load durindo find f's maximum value, we set the derivative (df/dR)

replica allocation. Thus, AReL is capable adaptingto  to zero. Sincd. # 0,1 — R#0, hencel —-3R=0= R =

the needs of different types of applications. (1/3). Hence, we obtaif = 2/3. Thus, the maximum value
Computation of\ involves calculating the normalized of f occurs wherl, =2R. Thus,A = R + 2L in this case.

values of revenue and load since revenue and load are

Case 3: Revenue is assigned lower weight than load:
In this case, we computgas follows.

measured in different units. Normalization is necessary notation Significance

to correctly reflect the relative weights of revenue and™ ;... Identifier of a given data item

load. We define the normalized revenue of an MHas M, Identifier of the query issuing MH

MRSU/TO,talRe”’ WhereMRev is the revenue of\/ and Mg Identifier of the MH serving the query request

Totalge, is the summation of the revenues of all the MHs SP, Identifier of the SP in whose regidi; is currently movin

in the network. Similarly, normalized load of an MM is 2 oo y Tovms
t Time of query issue

defined asV 1, pqa/Total,oad, WhereMp oqq is the load of
M andTotalLoad is the summation of the loads of all the Dint List summarizing internal accessesifs's own data items ab/ g
MHs in the network. For the sake of convenience, we shal|_Pez: | Listsummarizing external accessids's own data items abls

henceforth designate the normalized revenue of an MH ds_Rint List summarizing internal accesses to replicad &y

R and the normalized load of an MH ds Moreover, for Reat List summarizing external access to replicag &

every MH, we normalize further to mak&* L) = 1. This

can be easily performed by multiplying the value & ¢ Table 2: Notations for access statistics maintenance

L) of every MH by a real numbeéf, whose value may dif-



Maintenance of access statistics at each MH Intuitively, internally accessed items should be repli-
Table 2 summarizes the notations for access statisticsmaiﬁated atMHs W!thm agiven Sps region, while the exter-
tenance at each MH. Each MM distinguishes between nfally accessed items needto be repllcatfad at MH.S In the re-
accesses made to its own data items from within the reJion'S Of Other SPs. Hence, when selecting candidate items
gion of its corresponding SP (i.énternal accessgsand for replica allocation,S distinguishes between internally
accesses 1o its own data items from MHs that are moy2ccessed and externally accessed data items. For the in-
ing within the region of other SPs (i.@xternal accesss ternally accessed item$, sorts these items in descending

D, andD,,, are lists in whichM sﬁmmarizes the inter order of their pricesS considers those items, whose prices

int ext -

. . exceed the average pri¢e as candidates for replicatiomn.
nal accesses and external accesses respectively to its owh ge prige P 7

data items.D;,. guides)Ms in selecting its own data items €duals (1/Na) PPN pj ), whereNq is the total number
that should be replicated within the region of its corre-Of items anp; is the price of the*" item. Observe hows
sponding SP, whilé,,, facilitates Mg in determining its prefers items with relatively higher prices for replicaoall
own data items that should be replicated at regions coveregfition due to the higher importance of these items.
by other SPs. Using Table 2, each entryl,, is of the For the extgrnally accessed itensscomputes the price
form (data:q, M;), while entries inD..; are of the form of e_ach data itend w.r.t. every (external) SP from whose
(dataiq, SPr, M;). Mg uses the entry ofP; in Dey. region at least one access was madedfoThenS creates
to decide the SP, within whose region the given data iten lISt Lsugges: Of these items, each entry of which is of the
should be replicated. (Every query issuing MH includes theform (dataiq, p, SPia), wheredata;q is the identifier of
identifier of its corresponding SP in its query.) the item, ang is the price of the item w.r.t5 P4, which is

Mj also differentiates between its own data items andhe identifier of a given external SP. Thérsorts the items
the replicas that are stored at itself. Thus, in Tabl&2, N Lsuggest in descending order of. S considers items
and R, are lists in whichMg summarizes the internal (Of Lsuggest), whose prices exceed the thresholds can-
accesses and external accesses respectively to the seplictidates for replication. (The remaining items are deleted
stored at itself. Using Table 2, each entry®,; is of  Tom Lsugges-) a equals (1/Na) Sn?, p; ), whereN,
the form (ata;q, M;), while entries inR,,; are of the is the total number of items accessed by external SPs, and
form (data;q, SPr, M;). Notably, heredata;, refers to  p; is the price of thgt" data item w.r.t a given external SP.
the identifier of theeplicastored atMs, while for the lists Observe the similarities in determining the candidate
Djn: and D¢, data;q represented the identifier éffs's data items for replication for internally and externally ac
own data item. Besides this difference, the data structuregessed data items, the difference being that the case for ex-
of R;n: andR.,; are essentially similar to that @;,,, and  ternally accessed data items is more complicated due to the
D... respectively.R;,; andR,.; guide Mg in computing  computation of data item prices w.r.t. multiple SPs. Fur-
replica prices w.r.t. different SPs. Notably, the ligds,,, thermore,S does not participate in allocating replicas for
Deyt, Rint and R,,; are periodically refreshed to reflect the selected candidate items/ig, g4.5:. Instead, for each
recentaccess statistics. This is performed by periodicallycandidate itemyS just sends a message to tleéevantex-
deleting all the existing entries from these lists and therternal SP, which will perform the actual replica allocation
re-populating them with fresh information from the recentat some MH within its region. Givetata;q, the relevant
queries. Such refreshing is especially important due to thexternal SP is the correspondifi@;q in Lsuggest- Just as
dynamic changes in access patterns in M-P2P networks. S suggests external SPs to replicate items, the external SPs

also suggest to replicate items that have been accessed

Selection of candidate data items for replication at these external SPs by the MHs$i§ region. We shall
henceforth refer to the list of items, for whichneeds to
llocate replicas, aRep. Thus,Rep comprises two types
fitems: (a) items that are stored at the MHs within its own
egionR (i.e.,internal item3 (b) items which are stored at
MHs outsideR (i.e., external items External items are
recommended t&' by the other (external) SPs.

Using its D;,,; and R;,,; respectively, each MH computes
the price of each of its items (i.e., its own data items an
replicas stored at itself), which were accessed by MHs fron?
within the region of its corresponding SR Since D¢
andR;,,; summarize thénternal accesseshese prices are
w.r.t. S. Similarly, from its D.,; and R..; respectively,
each MH calculates the price of each of its items, whic .

were accessed by MHs that are outside the regiaf\. dh hThe ARel. algorithm

this case, MHs from the respective regions correspondingach SP performs replica allocation within the region that
to multiple SPs may have accessed a particular item, hendecovers.Periodically, each MH sends its current (x,y) co-
the prices of data items and replicas are computed w.r.ordinates, its revenue valug the prices of items stored at
each SRseparately Periodically, each MH sends all these itself, its load, energy and available memory space status t
prices to to its corresponding SR Upon receiving these the corresponding SP in its region. SP collates the (x,y) co-
prices from all the MHs inits region, each SBums up the ordinate information of all the MHs in its region to estimate
price of each item (w.r.t. each of the other SPs) from eaclthe network topology during the time of replica allocation.
MH within its region, thereby computing the total price of  Figure 1 depicts the AREL replication algorithm, which
each item w.r.t. each SP. is executed by a given S® for allocating replicas at MHs



within its own region. The lisRep in Figure 1 comprises Line 16 of Figure 1 indicates that AReL allocates repli-

items that are candidates for replica allocatiorSby.ine 1 cas of relatively higher-priced data items to MHs with low

of Figure 1 indicates that AREL allocates replicas startingvalues of\. This facilitates both revenue-balance and load-

from the highest-priced data item, thus preferring higherbalance since low value of implies relatively lower MH

priced items since these items have higher importance. revenue and lower MH load. Revenue-balancing becomes
a necessity because gross imbalance of revenues across

Algorithm AReL MHs may result in undesirably low revenues for some of
Rep: List of data items that are candidates for replication the MHs, which could potentially prevent them from ob-
(1) Sort data items itRep in descending order gf taining their desired services (i.e., issuing access 1®@gle
(2) for each data iterd in Rep from the network. This would decrease the overall partici-
(3) FLAG.R=FALSE pation in the M-P2P network, which is undesirable. On the
(4)  Identify list L 4 of MHs which have recently accesséd other hand, load-balancing is required to optimize query
(5) for each MHM in L 4 response times by preventing queries from incurring long
(6) Compute the nog of M’s 1-hop neighbours that accessed ~ Waiting times in the job queues of overloaded MHs.
(7)  Sort the MHs in descending orderginto a listL g In Line 18 of Figure 1, the pricg of a data itemi is re-
(8)  while (FLAG.R != TRUE) computed after replica allocation singglepends upon the
9 for each MHM in Lp number of existing replicas. If there is still some avaiéabl
(10) Add M and its 1-hop neighbours to a list- memory space at some MHSs after the AReL algorithm has
(1) Delete MHs with inadequate memory space frbm been executed for all the candidate data items for replica-
(12) Delete MHs with low remaining energy froic tion, the algorithm is executed multlple times until none of
(13) Delete overloaded MHs from the MHs have adequate memory space for storing replicas.
(14) Delete MHs with low probability of availability fronk o
(15) if ( Lo is not an empty list )
(26) FromL ¢, select the MH with lowesh for storing the

replica ofd 5 Performance Evaluation
a7) Delete all entries fronk 4, L and L&
(18) Recompute of d  /* p depends on number of replicas */ Qur experiments considéive different regions. Each re-
(19) FLAGR=TRUE gion has 50 MHs and 1 SP. MHs in each region move ac-
(20) break cording to theRandom waypoint mod§2?] within the re-
end gion. Each region’s area is 1000 metr&000 metre. The

Random Waypoint Modéd appropriate for our application
) ) ) ) scenarios, which consider random movement of users. As a
Figure 1: AReL replica allocation algorithm single instance, tourists in a shopping mall generally move
) o . - randomly i.e., they do not follow any specific mobility pat-

Lines 4-7 indicate thab' identifies MHs that have re- (e, SPs move within their respective regions. SPs are able
cently accessed a given data itetn Among these MHS, {9 communicate with each other. Each region contains 200
it tries to replicated starting from the MHM, which has  gata items that are uniformly distributed among 50 MHs
maximum number of 1-hop neighbours that have accesseth  each MH owns 4 data items. Each query is a request
d or at one ofM’s 1-hop neighbours.q knows the 1-hop  for ejther a local data item or a remote one. We had per-
neighbours of?/ due to its knowledge of network topol- formed experiments with different percentages of remote
ogy.) This facilitates brlng_ln_g nearer to the origin of most gndocal queries, the results indicating increasing qreery
of the requests faf, which is in consonance with EcoRep’s sponse times with increasing percentage of remote queries.
objective of serving the maximum possible number of MHsgjnce the results exhibited similar trends, here we present
in & fair manner. Line 10 shows that we also consider thene results of experiments in which 60% of the queries were
1-hop neighbours of\/ since M may not have adequate remote ones, while the other 40% were local queries.
available memory space and/or remaining energy.

From Lines 11-14 observe how thé&tperforms replica
allocation based on constraints such as available memo
space at the MHSs, energy, load status of the MHs and th
probability of availability of the MHs. (SP is able to es-

Periodically, everyT P seconds, SP decides whether
perform replica allocation. Network topology dosst
hange significantly during replica allocation since it re-
quires only a few seconds [9]. In all our experiments, 20
. ility of ilability of an MH intain- dueries/second are issued in the network, the number of
timate probability of availability of an by maintain gueries directed to each MH being determined by the Zipf

ing availability information about the MH over a period 7.~ =, N
of time.) In particular, AREL avoids replica allocation at phstnbuﬂon. Communication range of all MHs (except SP)

overloaded MHs (see Line 13) primarily because such MHSS @ circle of 100_metre radius. Table 3 summarizes the
would not be able to provide good service due to their |argeoarameters used in our performance evaluation.

job queues, which would force queries to incur long wait- Performance metrics aswerage response tim¢ART)

ing times and consequently, higher response times. of a query,data availability (DA) and traffic (TR) for



Parameter Default value Variations and eventually plateaus after some time due to competi-

No. of MHs (N a7 z1) 50 10,20,30,40 | tion among replicas for MH memory space. AReL cre-
Zipf factor (ZF) 0.9 0.1,03,05,07| ates more replicas efthan E-DCG+ because AReL’s eco-
Allocation periodT' P (107 s) 2 13,456 | homic model encourages more MHs to participate in stor-
Queries/second 20 ing replicas, hence total available memory space and avail-
Bandwidih between MHs 28 Kbps to 100 Kbps able bandwidth are more for AReL than for E-DCG+.
Probability of MH availability 50% to 85%
MH service capacity 1 to 5 service capacity unitg 0 ¢ 0
Size of a data item 50 Kb to 350 Kb AReL ) s §
Memory space of each MH 1MBto1.5MB % E-DCGt ---¢--- 4 [P SN S WU T 1
Speed of an MH 1 metre/s to 10 metres/s ‘(—% NORep """ b 13
: 0 4 L A S
Size of message headers 220 bytes N 5 X g 5
0 Ay 0 o}
Table 3: Performance Study Parameters S 4 % AReL o
g ¢ E-DCGt -
replica allocation. We compute ART as follows: L L L g NoRep & ‘ ‘
2 4 6 9 i 6
Yo Tie (1 e if
ART = (1/Ng) 3. (Ty - T)) % me (10 Tie (5
i—1 (a) No. of replicas for a data item (b) Average hop-count of queries
whereT; is the time of query issuindl’; is time of the Figure 2: Effect of fair replica allocation
query result reaching the query issuing MH, a¥g is the
total number of queriedD A is computed as follows:
DA = (Ns/NQ) x 100 (8)
where Ng is the number of queries that were answered 160 ok 100
successfully andVy, is the total number of queries. Each — '
query has a ‘hops-to-live’i.e., queries that are notaneder 120 - .
within n hops are dropped. Preliminary results of our ex- 2 < 60 ettt
periments indicated that = 4 is a reasonable value for our E 8 L . ) el et
application scenarios. We define TR as the total hop-count < ARel. ¥ * AReL -x
for replica allocation during the course of the experiment. 0 E-DCG+ -6 ' 20 E-DCGH —o—
As reference, we adapt tlie DCG+ approach [9] (dis- 0 NoRep —#+- ‘ NoRep
cussed in Section 2) to our scenario. Notably, the E-DCG+ 10 0 2 0 20 20
approach is the closest to our scheme since it addrdgses
namic replica allocation in M-P2P environments. More- v v
over, none of the proposals on economic issues addresseg,) average Query Response Time (b) Data Availability

dynamicreplica allocation in M-P2P networks. E-DCG+ is
executed at every replica allocation period. As a baseline,
we also compare our proposed ARelL algorithm with an
approachNoRep, which does not perform replica alloca-
tion. Incidentally, AReL showed comparable performance o
for different values of\, hence we present here the results ~ Figure 2b indicates the average number of hop-counts

of AReL corresponding to equal weight for both revenuerequired for querying the same data itehturing differ-
and load (i.e.) = R + L, as discussed in Section 4). ent periods of time. These results were averaged over a

total of 1200 queries. Initially, before replica allocatio
had been performed, all three approaches required compa-
rable number of hops for queryingy After replica alloca-

We conducted an experiment to observe the number dion has been performed, AReL requires lower number of
replicas created by AReL and E-DCG+ for a single ‘hot’ hops than E-DCG+ to answer queriesdsince AReL cre-
data itemd over a period of time. This data item was se- ates more replicas fat, as discussed for Figure 2a. More
lected randomly from the top 10% hottest data items. Fig+eplicas generally decrease the querying hop-count since i
ure 2a depicts the results. For both AReL and E-DCG+jncreases the likelihood of queries being answered within
the number of replicas af increases over time since more lower number of hops. Observe that E-DCG+ requires
MHs start participating in providing service. However, the lower number of querying hop-counts than NoRep essen-
number of replicas does not increase indefinitely over timeially due to replication.

Figure 3: Effect of revenue threshold

Effect of fair replica allocation
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Figure 5: Effect of variations in the workload skew

Effect of variations in the number of MHs above thresh-  and 3. Additionally, AReL creates larger number of repli-
old revenue cas for many different data items depending upon data item

. ) . prices. Thus, AReL would create a replica for a data item
Threshold revenug is defined as the ratio of the total rev- ;'\ hich is accessed by a large number of MHs, even if

enue of the system to the total number of MHs.  In other ;g 14t4] access frequency is low, in which case E-DCG+
words, y is the average revenue in the system. Figure 3,14 not create any replica. Furthermore, AReL allo-
depicts the results concerning the effec'E O,f variationen t ¢y replicas only to underloaded MHs, while it is possible
number of MHs above. In Figure 3, the 'V' on the x-axis ¢4 £_pCG+ to aliocate replicas to overloaded MHs. The
refers to the ‘number of MHs above the threshold revenu%encormance gap between ARel and E-DCG+ keeps in-
7' The results indicate that when the revenue of more MHS; e a5ing over time due to to more MH participation in case
exceedy, ART decreases and data availability increasesy¢ ARel . Incidentally, during replica allocation, E-DCG+
This is due to more MHs participating in providing service requires every MH to broadcast its RWR values to every
as MH revenues increase, thereby implying more OpporMH,therebyincurring ON?Z, ,,) messages, while AReL re-
tunities for replication, more memory space and availableires each MH to send évrf]ﬁ, one message to SP and SP to

bandwidth, and multiple path; for locating a replica. E-gonq 4 message to each MH, thus incurring/@¢;) mes-
DCG+ and NoRep show relatively constant ART and DAsages which explains the results in Figure 4c.

as these approaches are independent of revenue. AReL out-

performs thg reference approaches due 1o t_he reasons Qe ct of variations in the workload skew

plained for Figure 2 i.e., larger number of replicas owing to

more MHSs providing service in case of AReL. Figure 5 depicts the results when the zipf factor (ZF) is
varied. For high ZF values (i.e., high skew), AReL and
E-DCG+ perform better in terms of ART and DA due to
more replica allocations in response to load-imbalance con
We conducted an experiment using default values of the paditions. The performance gap between ARelL and E-DCG+
rameters in Table 3. Figure 4 depicts the results, which cadecreases with decreasing skew since lowly skewed work-
be explained partly by the reasons discussed for Figures @ads do not require replica allocations. AReL outperforms

Performance of AReL
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Figure 7: Effect of variations in the number of MHs

E-DCG+ and NoRep due to the reasons explained for Figeutperforms E-DCG+ due to the reasons explained for Fig-
ures 2, 3 and 4. The explanation for Figure 5c is essentiallyres 2, 3 and 4. A&,y decreases, the performance gap

similar to that of Figure 4c. decreases due to limited replication opportunities. Repli
allocation traffic for E-DCG+ dramatically decreases with

Effect of variations in the replica allocation period decreasingVy, i due to reduced broadcast traffic.

Recall that every’ P seconds, SP decides whether to allo- < 10

cate replicas. Figure 6 depicts the results of varyiifg. M e

At lower values ofl’ P, more number of replica allocation 0 .

periods occur, hence load imbalances are corrected quickly -2 5 )

in response to changing access patterns, thereby improv- Q

ing ART and DA for both AReL and E-DCG+. AgP % !

increases, load imbalances are corrected less frequently, 0 !

hence performance degrades for both AReL and E-DCG+. g i

For NoRep, ART and DA remain relatively constant be- 0  ARel

cause they depend only upon probability of MH availabil- 9 4 6

ity. The explanation for the results in Figure 6c is essen- _

tially similar to that of Figure 4c. In particular, replick a Time (185

location traffic decreases dramatically with increasing

due to decreased number of replica allocation periods. ) ) _ o
Figure 8: Discouraging free-riding

Effect of variations in the number of MHs

To test ARel’s scalability, we varied the numb¥®y, 5 of Discouraging free-riding

MHSs, keeping the number of queries proportionaMgy ;. Figure 8 depicts the percentage of service providers for
Figure 7 depicts the results. At high values\of; 7, AReL  AReL in the M-P2P network during different time periods.



An MH is regarded as a service provider during a time pe- [9] T.Hara and S.K. Madria. Data replication for improv-

riod T'if it stores a data item/replica that is accessed atleast  ing data accessibility in ad hoc networkSEE Trans-

once duringl’. Initially, the MHs have little revenue, but actions on Mobile Computing(11):1515-1532, Nov

as more queries are issued, MH revenues increase, thereby 2006.

increasing MH participation levels upto the point where the

majority of the MHs are providing service to the network [10] S. Kamvar, M. Schlosser, and H. Garcia-Molina. In-

essentially due to AReL’s economic replication model. centives for combatting free-riding on P2P networks.
Proc. Euro-Pay 2003.

6 Conclusion
[11] Kazaa. http://www.kazaa.com/.
We have proposed EcoRep, which is a hovel economic dy-

namic replica allocation model for improving the typically [12] B. Kemme and G. Alonso. A new approach to de-

limited data availability of M-P2P networks. EcoRep al- veloping and implementing eager database replication

locates replicas based on a data item’s relative importance  protocols.Proc. ACM TODS$25(3), 2000.

which is quantified by the data itemfzice. EcoRep en- ) . .

sures fair replica allocation by considering the origin of[13] J. F. Kurose and R. Simha. A microeconomic ap-

queries for data items. EcoRep requires a query issuing ~ Proach to optimal resource allocation in distributed

user to pay the price of his requested data item to the user ~ computer systems.Proc. IEEE Trans. Computers

serving his request, which discourages free-riding. EgoRe 38(5):705-717, 1989.

also considers load, energy and network topology as repli- i

cation criteria. Our performance study demonstrates thdit4] S- Lee., R. Sherwood, and B. Bhattacharjee. Cooper-

EcoRep is indeed effective in improving query response  ative peer groups in NICERroc. INFOCOM 2003.

times and data availability in M-P2P networks. [15] A. Mondal, SK. Madria, and M. Kitsuregawa,
CADRE: A collaborative replica allocation and deal-

References location approach for mobile-p2p network3o ap-

[1] E. Adarand B. A. Huberman. Free riding on Gnutella. pear in Proc. IDEAS2006.

Proc. First Monday5(10), 2000. [16] A. Mondal, S.K. Madria, and M. Kitsuregawa.

[2] J. Broch, D.A. Maltz, D.B. Johnson, Y.C. Hu, and CLEAR: An efficient context and location-based dy-
J. Jetcheva. A performance comparison of multi-hop ~ namic replication scheme for mobile-p2p networks.
wireless ad hoc network routing protocéiroc. MO- Proc. DEXA pages 399-408, 2006.

BICOM, 1998.

[17] E. Pitoura and B. Bhargava. Maintaining consistency
[3] A. Datta, M. Hauswirth, and K. Aberer. Updates of data in mobile distributed environmentsProc.
in highly unreliable replicated peer-to-peer systems. ICDCS 1995.

Proc. ICDCS 2003. . .-
[18] L. Ramaswamy and L. Liu. Free riding: A new chal-

[4] D.F. Ferguson, C. Nikolaou, and Y. Yemini. An econ- lenge to P2P file sharing systeni&oc. HICSSpage
omy for managing replicated data in autonomous de- 220, 2003.
centralized systemsProc. International Symposium ) ) ) ]
in Autonomous Decentralized Syste893. [19] B. Richard, D. Nioclais, and D. Chalon. Clique: A
transparent, peer-to-peer replicated file systBroc.
[5] D.F. Ferguson, Y. Yemini, and C. Nikolaou. Micro- MDM, 2003.

economic algorithms for load balancing in distributed

computer systems.Proc. ICDCS pages 491-499, [20] S. Saroiu, P.K. Gummadi, and S.D. Gribbler. A mea-
1988. surement study of P2P file sharing systentaroc.

MMCN, 2002.
[6] P. Golle, K.L. Brown, and I. Mironov. Incentives for

sharing in peer-to-peer networksProc. Electronic  [21] O. Wolfson, S. Jajodia, and Y. Huang. An adap-
Commerce2001. tive data replication algorithm.Proc. ACM TODS$

_ 22(4):255-314, June 1997.
[7] C. Grothoff. An excess-based economic model for

resource allocation in peer-to-peer networkroc.  [22] O. Wolfson, B. Xu, and A.P. Sistla. An economic
Wirtschaftsinformatik2003. model for resource exchange in mobile peer to peer

) networks.Proc. SSDBNM2004.
[8] R. Guy, P. Reiher, D. Ratner, M. Gunter, W. Ma, and

G. Popek. Rumor: Mobile data access through opti{23] B. Yang and H. Garcia-Molina. Designing a super-
mistic peer-to-peer replicatiofRroc. ER Workshops peer networkProc. ICDE 2003.
1998.



