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Abstract

In mobile ad-hoc peer-to-peer (M-P2P) networks, frequent
network partitioning leads to typically low data availabil-
ity, thereby making data replication a necessity. This work
proposes EcoRep, a novel economic model for dynamic
replica allocation in M-P2P networks. EcoRep performs
replica allocation based on a data item’s relative impor-
tance, which is quantified by the data item’sprice in terms
of a virtual currency. The price of a data item depends on
its access frequency, the number of users who accessed it,
the number of its existing replicas, its (replica) consistency
and the average response time required for accessing it.
EcoRep ensures fair replica allocation by considering the
origin of queries for data items. EcoRep requires a query
issuing user to pay theprice of his requested data item to
the user serving his request. This discourages free-riding
and encourages user participation by providing an incen-
tive for users to become service-providers. EcoRep also
considers other issues such as load, energy and network
topology as replication criteria. Our performance study in-
dicates that EcoRep is indeed effective in improving query
response times and data availability in M-P2P networks.

1 Introduction
In a Mobile ad-hoc Peer-to-Peer (M-P2P) network, mobile
hosts (MHs) interact with each other in a peer-to-peer (P2P)
fashion. Proliferation of mobile devices (e.g., laptops,
PDAs, mobile phones) coupled with the ever-increasing
popularity of the P2P paradigm [11] strongly motivate M-
P2P network applications. Some application scenarios,
which would facilitate mobile users in sharing information
with each otheron-the-flyin a P2P manner, are as follows:

• Tourists in different sight-seeing buses could share
touristic information (e.g., images of castles) with
each other. (inter-vehicular communication)

• Customers in a shopping mall could share information
about the cheapest available ‘Levis’ jeans. They could
also exchange shopping catalogues with each other.
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• Visitors to a museum could request images/video-
clips of different rooms of the museum to decide
which room they will visit first. They could even re-
quest the museum’s path information from other visi-
tors as in virtual reality applications.

Notably, such P2P interactions among mobile users are
generally not freely supported by existing mobile commu-
nication infrastructures. The notion of replica consistency
in this work is based on the time of the latest update. For
example, for the shopping mall application, a copy of a
shopping catalogue, which was updated one hour ago, is
considered to be more consistent than one that had been
updated two days ago. Note that our application scenarios
do not require absolute replica consistency [3, 17], hence
we consider tolerance to weaker replica consistency.

Interestingly, every sight-seeing bus generally has a tour
guide for facilitating tourists. A tour guide could facilitate
data sharinglocally among the tourists within his own bus.
Tour guides in different buses could also collaborate with
each other to enable effective data sharing across touristsin
different buses, thereby supportingremote querying. Sim-
ilarly, shopping malls usually have administrators such as
information guides, who typically move within particular
regions of the mall. Administrators in different parts of the
mall could interact with each other to facilitate data shar-
ing among mobile customers across different regions of the
mall. Furthermore, museums almost always have admin-
istrators who supervise particular sections of the museum
and provide information to visitors. Such museum admin-
istrators generally have the capability to interact with each
other. As we shall see in this work, such administrators can
be used to facilitate replication in our application scenarios.

Incidentally, data availability in M-P2P networks is typ-
ically lower than in fixed networks due to frequent net-
work partitioning arising from user movement and/or users
switching ‘on’/‘off’ their mobile devices. (Data availability
is less than 20% even in a wired environment [20].) To im-
prove M-P2P data availability, several replication schemes
[9, 21] have been proposed. However, these schemes do not
addressfair replica allocation since they allocate replicas
solely based on the read/write access ratio of a data item
d without considering the origin of queries ford (e.g., the
E-DCG+ approach in [9]). Hence, these schemes would
regardd as ‘hot’ and create several replicas ofd, even if a



single MHM issues a very large number of (read) queries
for d. This is inherently unfair since it favoursM , thus
these schemes are not able to serve the requests of mul-
tiple MHs in a fair manner. Moreover, existing schemes
do not combatfree-riding [10, 18], which is rampant in
P2P systems. (Nearly 90% of the peers in Gnutella were
free-riders [1].) Since free-rider MHs do not participate in
storing replicas, replication opportunities decrease, thereby
degrading performance of these schemes.

This work proposes EcoRep, which is a noveleconomic
model for dynamic replica allocation in M-P2P networks.
EcoRep performs replica allocation based on a data item’s
relative importance, which is quantified by the data item’s
price in terms of a virtual currency. The price of a data item
depends on its access frequency, the number of users who
accessed it, the number of its existing replicas, its (replica)
consistency and the average response time required for ac-
cessing it. EcoRep requires a query issuing user to pay the
price of his requested data item to the user serving his re-
quest. Hence, a user has to provide service to the network
to earn enough currency to be able to issue his own queries.

The main contributions of EcoRep are two-fold:

1. It ensures fair replica allocation by considering the
origin of queries for data items to determine their rel-
ative importance to the network as a whole.

2. It discourages free-riding and provides an incentive
for users to become service-providers by virtue of its
economic nature.

EcoRep also considers other issues such as load, energy
and network topology as replication criteria. Incidentally,
the load of the MHM serving an access request for a data
item d can influence the price ofd. If M is relatively un-
derloaded, it would be able to provide better service since
it can serve the request quickly, thereby implying lower
query response time and consequently, higher data item
price. However, ifM is overloaded, prices of data items
accessed atM would decrease due to increased query re-
sponse times. Notably, our primary focus iseconomy-
based fair replica allocation, a pleasant side-effect of
which is that ofdiscouraging free-riding at no additional
cost. EcoRep can also be regarded as anincentive scheme,
which encourages increased user partiticipation in M-P2P
networks essentially due to its economic nature.

To manage replication efficiently, EcoRep deploys a
super-peer architecture [23]. The super-peer (SP) is an
MH, which generally moves within the region and which
has maximum energy and processing capacity at a given
time. In the context of our application scenarios, the tour
guides in the sight-seeing buses, the administrators in the
shopping mall and the museum administrators would act as
SP. We assume that the SPs in different regions (in case of
the shopping mall and museum applications) or in different
buses (for the inter-vehicular application) have the capabil-
ity to collaborate with each other. This is in consonance
with real-world scenarios e.g., administrators in different

parts of a shopping mall are generally equipped with mo-
bile devices to interact with each other.

Our architecture facilitates replica allocation and avoids
broadcast storm during replica allocation. Intuitively, stor-
ing replicas arbitrarily at any MH could adversely impact
many MHs due to high communication overheads between
MHs, unnecessary delays and querying failures. Hence,
replication should be performed carefully based on MH
characteristics (e.g., load, energy) as well as network topol-
ogy. Thus, someregional knowledgebecomes a necessity.
As we shall see later, each MHperiodicallysends a mes-
sage to SP with information such as its current location,
load, available memory space and energy status, thereby
equipping SP with such regional knowledge. This helps SP
to better manage replication. In contrast, for an architec-
ture without any SP (e.g., the E-DCG+ approach [9]), each
MH needs to broadcast its status to all other MHs to make
each other aware of the regional status, thereby creating an
undesirable broadcast storm during replica allocation. Our
architecture avoids such broadcast storm due to SP.

Our architecture does not require local queries to pass
via SP, thereby preserving P2P autonomy. This is possi-
ble because every MH periodically sends the list of data
items/replicas stored at itself to SP, and SP broadcasts this
information to all MHs. Thus, every MH has adequate in-
formation not only for redirecting queries locally, but also
for distinguishing between local and remote queries. An
MH issues a remote query by sending the query to the SP
in its region; SP stamps the query with its unique identifier
and forwards it to other SPs.

Our performance study indicates that EcoRep is indeed
effective in improving query response times and data avail-
ability in M-P2P networks, while incurring relatively low
communication costs for replication. To our knowledge,
this is the first work to propose an economic model for
data replication in M-P2P networks. The remainder of this
paper is organized as follows. Section 2 discusses exist-
ing works, while Section 3 discusses the EcoRep economic
model. Section 4 details the replica allocation algorithm of
EcoRep. Section 5 reports our performance study. Finally,
we conclude in Section 6 with directions for future work.

2 Related Work

Economic models have been discussed in [5, 13, 7, 4, 22]
primarily for resource allocation in distributed systems.A
competitive micro-economic auction-based bidding model
with support for load-balancing has been proposed in [5],
while the work in [13] examines economy-based optimal
file allocation. The proposal in [7] uses game-theoritic and
trust-based ideas. Although the work in [4] considers eco-
nomic replication, it does not address fairness in replica
allocation and P2P concerns such as free-riding. Inciden-
tally, none of these works address the unique issues associ-
ated with the M-P2P environment such as frequent network
partitioning and mobile resource constraints. Our recent
works [16, 15] address issues associated with frequent net-
work partitioning and mobile resource constraints, but they



do not consider economic issues. Recently, the work in [22]
has proposed an economic model for M-P2P environments.
However, the proposal in [22] aims at data dissemination
with the aim of reaching as many peers as possible, while
we consider on-demand services. Furthermore, it does not
consider replication, bidding and the conversion of relay
peers into pro-active brokers.

Works concerning free-riding include [6, 10, 14, 18].
The works in [6, 10] propose incentive schemes to combat
free-riding. The work in [18] discuss utility functions to
capture user contributions, while trust issues are examined
in [14]. However, these works are completely orthogonal
to replication issues associated with free-riding.

The work in [12] proposes a suite of replication proto-
cols for maintaining data consistency and transactional se-
mantics of centralized systems. P2P replication systems in-
clude Clique [19] and Rumor [8]. An update strategy, based
on a hybrid push/pull Rumor spreading algorithm, for truly
decentralized and self-organizing systems has been exam-
ined in [3].

The proposals in [9] present replica allocation methods
with periodic and aperiodic updates, which consider lim-
ited memory space in MHs for storing replicas, access fre-
quencies of data items and the network topology, to im-
prove data accessibility in mobile ad-hoc networks. TheE-
DCG+ approach [9] is among the most influential replica
allocation approaches. By creating groups of MHs that
are biconnected components in a network, E-DCG+ shares
replicas in larger groups of MHs to provide high stability.
However, the proposal in [9] does not consider economic
issues such as incentives and prices of data items. Further-
more, the architecture in [9] is not suitable for our applica-
tion scenarios since it does not consider load sharing and
tolerance to weaker consistency.

3 EcoRep: An Economic Model for Data
Replication in M-P2P networks

This section discusses EcoRep, which is an economic
model for dynamic replica allocation in M-P2P networks.

In EcoRep, each data item has aprice ρ (in terms of a
virtual currency) that quantitatively reflects its relative im-
portance to the M-P2P network as a whole. Whenever an
MH MI accesses a data itemd stored at an MHMS , it
pays thepriceρ (in terms of avirtual currency) of d toMS

sinceMS serves its request. Thus,MI spends the amount
ρ, whileMS earnsρ. We define therevenueof an MH as
the difference between the amount of virtual currency that
it earns and the amount that it spends. EcoRep provides an
incentive for MHs to provide service to the network so that
they can earn more revenue in order to be able to issue their
own queries. An MH can provide service to the network
either by storing data items/replicas that are accessed by
other MHs or by forwarding messages e.g., queries, query
results (i.e., relay functions). The amountRel earned by
an MH each time it performs a relay function is constant,
irrespective of the message being forwarded. (Randomness
ensures that each MH will generally have to forward com-

parable number of messages.) We stipulate that the value
of Rel should be lower than the price of the lowest-priced
data item to ensure that storage of data items and replicas
is assigned higher priority than relay functions.

Each MH maintains recent read-write logs (including
timestamps) of its own data items and the read-logs of the
replicas stored at itself. As we shall see shortly, each MH
uses this information for computing the prices of the data
items and replicas stored at itself. We shall explain the de-
tails concerning the access statistics maintenance at each
MH in Section 4. Furthermore, each data itemd is owned
by only oneMH, which can updated autonomouslyany-
time; other MHs cannot updated. Memory space of MHs,
bandwidth and data item sizes may vary. We define the
load Li,j of an MHMi at timetj as the job queue length
of Mi normalized w.r.t. available bandwidth and service
capacity to address heterogeneity.

Li,j = Ji,tj
÷ ( σi ×Bi ) (1)

whereJi,tj
represents the job queue length ofMi at time

tj . Since job queue length is a function of time, load is also
a function of time.σi andBi are the normalized values of
the service capacity and the available bandwidth ofMi re-
spectively.σi is fixed for a given MH since it is hardware-
dependent.σi = ( σMi

/σmin ), whereσMi
is the service

capacity ofMi andσmin is a low service capacity. We have
used the minimum service capacity among all the MHs as
σmin. Similarly,Bi = ( BMi

÷ Bmin ), whereBMi
rep-

resents the available bandwidth ofMi andBmin is a low
bandwidth e.g., we have usedBmin = 56 Kbps.

Factors influencing the price of a data item

When an MHMI accesses a data itemd that is stored at an
MH MS, the priceρ, which is spent byMI and earned by
MS , depends upon the following factors:

• Access frequency ofd during recent time periods:
Higher access frequency ofd implies greater impor-
tance ofd, henced’s price should increase with in-
creasing access frequency.

• The number of MHs served byd during recent time
periods: The larger the number of MHs served by
d, the greater isd’s importance to the network as a
whole. Hence,d’s price should increase as it serves
requests originating from more MHs. Thus, unlike ex-
isting works, for two data items with equal access fre-
quencies, the price would be higher for the data item
that is accessed by a larger number of MHs.

• The number of existing replicas ofd: The lesser the
number of replicas ofd in the network, the more diffi-
cult it is to obtaind. Hence,d’s price should increase
as d’s number of replicas decreases and vice versa.
This is in consonance with the economic principles,
which dictate higher prices for rarer items.



• Consistency of the replicas which answered queries
on d: In some sense, replica consistency may be re-
garded as being akin to the quality of results. Hence,
higher replica consistency should imply higher price
and vice versa. Notably, replica consistency issues do
not arise for queries answered by an MH’s own data
items since such data items are always consistent.

• Query response time:Response timeτ for a queryQ
pertaining tod reflects the quality of service provided
to the query issuing MHMI by the query serving MH
MS , hence shorter response times should command
higher price. τ equals (TW + TD + Tdelay), where
TW is the waiting time spent byQ in MS ’s job queue,
TD is the download time ford, andTdelay is the path
delay. TW depends onMS ’s job queue length and
its service capacity.TD depends upon the bandwidth
allocated byMS for d’s download, which is related
to MS ’s total bandwidth and the number of concur-
rent access requests toMS. Tdelay depends on the
delays introduced in the path of the query results dur-
ing the hops fromMS to MI due to bandwidth vari-
ations, in caseMS andMI are not 1-hop neighbours.
Thus,Tdelay = (

∑nhop

i=1
(RSize/Bi) ), wherenhop is

the number of ‘hops’ betweenMS andMI , RSize is
the size of the query result andBi is the bandwidth
between the MHs at theith hop.Tdelay considers the
connectivity of an MH answering an access request.

Quantifying the relative importance of a data item by
its price

Based on the factors discussed above, an MHMS , which
stores a data itemd, computesd’s price in two steps. First,
MS computesρrec, which is the price ofd based on the ac-
cesses tod atMS during the most recent replica allocation
period. Second,MS uses moving averages ofρrec over a
fixed number of replica allocation periods to compute the
price ρ of d. This is necessary becauseρrec may not al-
ways be able to reflect the true importance ofd to the net-
work (e.g., when spurious ‘spikes’ ind’s access frequency
occur). Table 1 summarizes the notations, which we shall
henceforth use in this paper.

Computation of ρrec: MS first sorts the MHs inde-
scendingorder of their access frequencies ford during the
most recent replica allocation period i.e., the first MH in
this order made the most accesses tod. Given this order
and using the notations in Table 1,MS computesρrec of d
as follows:

ρrec =

NMH∑

i=1

(wi × ni × Ci ×BAi) × PAMS
/

((NR + 1) × (JMS ,tj
/σMS

)) (2)

where the weight coefficientwi equals (i/NMH ), thereby
ensuring that more the number of MHs served byd, the
more its price will be.Ci reflects the (replica) consistency
with which d was answered for queries by MHi. Ci =

Notation Significance

d A given data item

MS MH that stores a given data itemd and serves requests ford

ρrec Price ofd during most recent allocation period

ρ Moving Average Price ofd across multiple allocation periods

NMH Number of MHs

wi Weight coefficient for MHi for fairness in serving multiple MHs

ni Number of access requests ford originating from a given MHi

Ci Average consistency with which MHi answered queries ond

BAi Bandwidth allocated by MHi for d’s download

PAMS
Probability of availability of MHMS

NR Number of existing replicas ofd

JMS,tj
Job queue length at query serving MHMS during timetj

σMS
Service capacity of query serving MHMS

Table 1: Summary of notations

1 for queries answered byMS ’s own data items since such
queries are always answered with absolute consistency. For
queries answered by replicas, we consider three different
levels of replica consistency, namelyhigh, mediumand
low. Ci is assigned values of 1, 0.5 and 0.25 for high,
medium and low consistency respectively. Each MH main-
tains a tableTǫ,C , which contains the following entries:
(x%, high), (y%, medium), (z%, low), where x, y, z are
error-bounds, whose values are application-dependent and
pre-specified by the system at design time. Thus,Ci is
computed usingTǫ,C , which is replicated at each MH and
is the same for each MH.
BAi equals(TB/Na), whereTB is the sum of all the

bandwidths thatMS allocated to MHi over each of the
times when MHi accessedd atMS . Na is the total num-
ber of access requests that MHi made ford. Observe how
the probability of availabilityPAMS

of MH MS influences
the price. Equation 2 takes heterogeneity in service capac-
ities of MHs into account by normalizing job queue length
of the query serving MHMS w.r.t. its service capacity.
Furthermore, the total number of copies ofd in the M-P2P
network equals the number of replicas in addition to the
original data item itself, which explains the term (NR+1)
in Equation 2. To put things into perspective, now let us
consider some examples for the computation ofρrec with
NMH = 50. For simplicity, assume thatJMS ,tj

/σMS
= 1

(at a given timetj) for the following examples:

1. A single MH makes 100 accesses tod; for all i, Ci =
1,BAi = 50 units;PAMS

= 0.5,NR = 1: Here,ni =
100 wheni =1 (and 0 otherwise), henceρrec = 25.

2. A single MH makes 100 accesses tod; for all i, Ci =
1,BAi = 50 units;PAMS

= 0.5,NR = 5: Here,ni =
100 wheni =1 (and 0 otherwise), henceρrec = 8.33.

3. A single MH makes 100 accesses tod; for all i, Ci =
1,BAi = 10 units;PAMS

= 0.5,NR = 5: Here,ni =
100 wheni =1 (and 0 otherwise), henceρrec = 1.67.



4. 4 MHs make 25 accesses each tod; for all i, Ci = 1,
BAi = 50 units; PAMS

= 0.5, NR = 1: Here,ni =
25 for i = 1 to 4 (and 0 otherwise), henceρrec = 62.5.

5. 50 MHs make 2 accesses each tod; for all i, Ci = 1,
BAi = 50 units;PAMS

= 0.5,NR = 1: Here,ni = 2
for i = 1 toNMH , henceρrec = 637.5.

6. 50 MHs make 2 accesses each tod; for all i, Ci = 1,
BAi = 50 units; PAMS

= 1, NR = 1: Here,ni = 2
for i = 1 toNMH , henceρrec =1275.

7. 50 MHs make 2 accesses each tod; for all i, Ci =
0.25,BAi = 50 units;PAMS

= 1, NR = 1: Here,ni

= 2 for i = 1 toNMH , henceρrec = 318.75.

Observe from examples 1 and 2 above howρrec decreases
with increase in the number of existing replicas. From ex-
amples 2 and 3, notice howρrec decreases when average
available bandwidth for download is decreased. Across ex-
amples 1, 4 and 5, we see howρrec increases asd serves
more MHs. Observe from examples 5 and 6 howρrec in-
creases with increase in the probability of availability of
MS . Examples 6 and 7 indicate howρrec decreases with
decreasing replica consistency. Finally, even though the
total access frequency ofd is the same in all the above ex-
amples,ρrec differs in each case.

Computation of the moving average priceρ: Inciden-
tally, ρrec may not always be able to reflect the true impor-
tance of a given data itemd to the network. As a single
instance,d’s access frequency may have been low during
the most recent allocation period, even thoughd could have
been heavily accessed during the allocation periods prior to
the most recent one. Since replica allocation is an expen-
sive operation, the true importance of a data item should be
determined meticulously to avoid unnecessary replica allo-
cation. Hence,MS computes the moving average priceρ of
d. However, simple moving averages give the same weight
to the lastN replica allocation periods, hence they suffer
from ‘lag’ i.e., they are not capable of reacting quickly
to changing access patterns of data items. Given that in
M-P2P networks, access patterns typically change dynam-
ically over time, we use the Exponential Moving Average
(EMA), which gives higher weights to recent access pat-
terns relative to older access patterns, thereby reducing the
‘lag’. MS computes the priceρ of d as follows:

ρ = (ρrec − EMAprev) × 2/(N + 1)) +EMAprev (3)

whereEMAprev represents the EMA that was computed
for the previous replica allocation period, andN represents
the number of replica allocation periods over which the
moving average is computed. Observe that the EMA ap-
proach only requiresMS to store the previous allocation
period’s value of EMA instead of the values of price data
for the entire period being averaged, thereby optimizing
memory space usage of SP, which is important in case of
M-P2P networks. We performed preliminary experiments
to determine a suitable value forN for various scenarios

in our applications. The results indicate thatN = 5 is a
reasonably good value for our application scenarios.

Price ρ of a data item w.r.t. a region: Recall that our
application scenarios involve multiple SPs such that each
SP is responsible for a specific region in space. For ex-
ample, in case of the shopping mall application, a region
could be the area covered by one floor of the mall. For
the tourist bus application, it could be either the area of the
bus, or the area of some castle, museum or garden which
the tourists of a bus are currently visiting. As we shall see
in Section 4, the price of a data itemd should be computed
w.r.t. each such region to determine the region(s) in which
d should be replicated. Hence, each MHperiodicallysends
the prices of the data items and replicas stored at itself to
the corresponding SPS in its region.S collates such price
information from all the MHs in its region to compute the
priceρRegion of a data itemd w.r.t. the region covered by
itself. ρRegion is the sum of the prices ofd at all the MHs
within S’s region. Given thatη is the number of MHs in
the region covered by a particular SP, andρi is d’s priceρ
at theith MH, ρRegion equals (

∑η
i=1

ρi ).

Revenue of an MH: In EcoRep, a MHM earns virtual
currency from accesses to its own data items and replicas
that are stored at itself. Suppose MHM storesp data items
of its own andq replicas. Letρi be the price of theith data
item/replica. Letnedi

andneri
be the access frequencies

of the ith data item and theith replica respectively. The
amountE (of virtual currency) earned byM follows:

E =

p∑

i=1

( ρi × nedi
) +

q∑

i=1

( Ci × ρi × neri
) (4)

In the second term of Equation 4,Ci is a parameter which
indicates the average consistency with which queries on the
replicas (stored atM ) were answered.Ci does not occur in
the first term of Equation 4 as the first term concernsM ’s
own data items, which are always absolutely consistent.

M spends its virtual currency when it accesses data
items and/or replicas stored at other MHs. SupposeM ac-
cessesp original data items andq replicas. Letρi be the
price of theith data item/replica. Letnsdi

andnsri
be the

access frequencies of theith data item and theith replica
respectively. The amountS spent byM follows:

S =

p∑

i=1

( ρi × nsdi
) +

q∑

i=1

( Ci × ρi × nsri
) (5)

whereCi has the same significance as in Equation 4. Using
Equations 4 and 5, therevenueω ofM follows.

ω = E − S (6)

Thus, revenue of an MH is simply the difference between
the amount that it earns and the amount that it spends. Ob-
serve how EcoRep’s economy-based paradigm of replica-
tion encourages MHs to store replicas so that they can in-
crease their revenues, thereby ensuring that they obtain bet-



ter service from the M-P2P network.
When an MH joins the M-P2P network, SP provides the

MH with a small amount of revenue to start with so that the
MH can issue a few queries. However, once this initial rev-
enue is exhausted, the MH will eventually have to provide
service to the network, otherwise it will not be able to issue
any further queries. However, it is possible for a malicious
MH to join the network, obtain the initial amount of rev-
enue from SP and issue a few queries. Then it can leave the
network and re-join the network after some time. To miti-
gate the effect of such free-riding, the unique device identi-
fier of a mobile device could be used to uniquely identify an
MH; SP could maintain a log containing MH identifiers and
a summary of MH behaviours during recent time intervals.
Understandably, our aim is to encourage MH participation
in the network, hence we do not want to exclude MHs by
deploying policies that are too strict against free-riding.

4 AReL: An Adaptive Revenue-Load-based
Replica Allocation Algorithm for EcoRep

This section discusses the AReL (Adaptive Revenue-Load)
replica allocation algorithm deployed by EcoRep. We first
explore the interaction between revenue and load of an MH.

Interaction between revenue and load of an MH

Incidentally, an MHM may earn high amounts of virtual
currency by serving only a few requests for some high-
priced data items, while not issuing any access requests of
its own. Thus,M ’s revenue could be high, even thoughM
is underloaded. On the other hand,M could be serving a
large number of access requests for low-priced data items,
thereby implying thatM ’s revenue could be low in spite
of its high load. Even ifM earns high amounts of virtual
currency,M ’s revenue could still be low ifM issues sev-
eral access requests for high-priced data items. In essence,
there is no direct correlation between the revenue and load
of an MH. AReL uses a parameterλ that can be tweaked to
adjust the relative importance of revenue and load during
replica allocation. Thus, AReL is capable ofadaptingto
the needs of different types of applications.

Computation ofλ involves calculating the normalized
values of revenue and load since revenue and load are
measured in different units. Normalization is necessary
to correctly reflect the relative weights of revenue and
load. We define the normalized revenue of an MHM as
MRev/TotalRev, whereMRev is the revenue ofM and
TotalRev is the summation of the revenues of all the MHs
in the network. Similarly, normalized load of an MHM is
defined asMLoad/TotalLoad, whereMLoad is the load of
M andTotalLoad is the summation of the loads of all the
MHs in the network. For the sake of convenience, we shall
henceforth designate the normalized revenue of an MH as
R and the normalized load of an MH asL. Moreover, for
every MH, we normalize further to make (R + L) = 1. This
can be easily performed by multiplying the value of (R +
L) of every MH by a real numberk, whose value may dif-

fer across MHs. For the sake of convenience, we shall use
R + L = 1 to reflect the above normalization.

Computation ofλ for different cases follows.
Case 1: Revenue and load are both assigned equal
weight: AReL computes a functionf as follows.

f = R× L = R× (1 −R)

Using the product rule of differentiation, we differentiatef
w.r.t.R.

df/dR = R(−1) + 1 −R = 1 − 2R

To findf ’s maximum value, the derivative (df/dR) is set to
zero. Hence,1 − 2R = 0 ⇒ R = 1/2. SinceR + L =1, we
obtainL = 1/2. Thus,f ’s maximum value occurs whenR
= L = 1/2. Hence, AReL computesλ= (R + L) in this case.

Case 2: Revenue is assigned higher weight than load:
AReL computes the following functionf .

f = R2 × L = R2 × (1 −R)

Now we differentiatef w.r.t.R.

df/dR = R2(−1) + 2R(1 −R) = R(−3R+ 2)

To find the maximum value off , we set the derivative
(dp/dR) to zero. SinceR 6= 0, −3R + 2 = 0 ⇒ R = (2/3).
Hence,L = 1/3. Thus, the maximum value off occurs
whenR =2L, henceλ = 2R + L.

Case 3: Revenue is assigned lower weight than load:
In this case, we computef as follows.

f = R× L2 = R× (1 −R)2

Differentiatingf w.r.t.R, we obtain

df/dR = R(2)(1 −R)(−1) + (1)(1 −R)2

= (1 −R)(1 − 3R)

To find f ’s maximum value, we set the derivative (df/dR)
to zero. SinceL 6= 0,1−R 6= 0, hence1− 3R = 0⇒ R =
(1/3). Hence, we obtainL = 2/3. Thus, the maximum value
of f occurs whenL =2R. Thus,λ =R + 2L in this case.

Notation Significance

dataid Identifier of a given data item

MI Identifier of the query issuing MH

MS Identifier of the MH serving the query request

SPI Identifier of the SP in whose regionMI is currently moving

t Time of query issue

Dint List summarizing internal accesses toMS ’s own data items atMS

Dext List summarizing external access toMS ’s own data items atMS

Rint List summarizing internal accesses to replicas atMS

Rext List summarizing external access to replicas atMS

Table 2: Notations for access statistics maintenance



Maintenance of access statistics at each MH

Table 2 summarizes the notations for access statistics main-
tenance at each MH. Each MHMS distinguishes between
accesses made to its own data items from within the re-
gion of its corresponding SP (i.e.,internal accesses) and
accesses to its own data items from MHs that are mov-
ing within the region of other SPs (i.e.,external accesses).
Dint andDext are lists in whichMS summarizes the inter-
nal accesses and external accesses respectively to its own
data items.Dint guidesMS in selecting its own data items
that should be replicated within the region of its corre-
sponding SP, whileDext facilitatesMS in determining its
own data items that should be replicated at regions covered
by other SPs. Using Table 2, each entry inDint is of the
form (dataid, MI), while entries inDext are of the form
(dataid, SPI , MI). MS uses the entry ofSPI in Dext

to decide the SP, within whose region the given data item
should be replicated. (Every query issuing MH includes the
identifier of its corresponding SP in its query.)
MS also differentiates between its own data items and

the replicas that are stored at itself. Thus, in Table 2,Rint

andRext are lists in whichMS summarizes the internal
accesses and external accesses respectively to the replicas
stored at itself. Using Table 2, each entry inRint is of
the form (dataid, MI ), while entries inRext are of the
form (dataid, SPI , MI ). Notably, heredataid refers to
the identifier of thereplicastored atMS , while for the lists
Dint andDext, dataid represented the identifier ofMS ’s
own data item. Besides this difference, the data structures
of Rint andRext are essentially similar to that ofDint and
Dext respectively.Rint andRext guideMS in computing
replica prices w.r.t. different SPs. Notably, the listsDint,
Dext, Rint andRext areperiodically refreshed to reflect
recentaccess statistics. This is performed by periodically
deleting all the existing entries from these lists and then
re-populating them with fresh information from the recent
queries. Such refreshing is especially important due to the
dynamic changes in access patterns in M-P2P networks.

Selection of candidate data items for replication

Using itsDint andRint respectively, each MH computes
the price of each of its items (i.e., its own data items and
replicas stored at itself), which were accessed by MHs from
within the region of its corresponding SPS. SinceDint

andRint summarize theinternal accesses, these prices are
w.r.t. S. Similarly, from itsDext andRext respectively,
each MH calculates the price of each of its items, which
were accessed by MHs that are outside the region ofS. In
this case, MHs from the respective regions corresponding
to multiple SPs may have accessed a particular item, hence
the prices of data items and replicas are computed w.r.t.
each SPseparately. Periodically, each MH sends all these
prices to to its corresponding SPS. Upon receiving these
prices from all the MHs in its region, each SPS sums up the
price of each item (w.r.t. each of the other SPs) from each
MH within its region, thereby computing the total price of
each item w.r.t. each SP.

Intuitively, internally accessed items should be repli-
cated at MHs within a given SPS’s region, while the exter-
nally accessed items need to be replicated at MHs in the re-
gions of other SPs. Hence, when selecting candidate items
for replica allocation,S distinguishes between internally
accessed and externally accessed data items. For the in-
ternally accessed items,S sorts these items in descending
order of their prices.S considers those items, whose prices
exceed the average priceψ, as candidates for replication.ψ
equals ((1/Nd)

∑Nd

k=1
ρj ), whereNd is the total number

of items andρj is the price of thejth item. Observe howS
prefers items with relatively higher prices for replica allo-
cation due to the higher importance of these items.

For the externally accessed items,S computes the price
of each data itemd w.r.t. every (external) SP from whose
region at least one access was made ford. ThenS creates
a listLSuggest of these items, each entry of which is of the
form (dataid, ρ, SPid), wheredataid is the identifier of
the item, andρ is the price of the item w.r.t.SPid, which is
the identifier of a given external SP. ThenS sorts the items
in LSuggest in descending order ofρ. S considers items
(of LSuggest), whose prices exceed the thresholdα, as can-
didates for replication. (The remaining items are deleted
from LSuggest.) α equals ((1/Nd)

∑Nd

k=1
ρj ), whereNd

is the total number of items accessed by external SPs, and
ρj is the price of thejth data item w.r.t a given external SP.

Observe the similarities in determining the candidate
data items for replication for internally and externally ac-
cessed data items, the difference being that the case for ex-
ternally accessed data items is more complicated due to the
computation of data item prices w.r.t. multiple SPs. Fur-
thermore,S does not participate in allocating replicas for
the selected candidate items inLSuggest. Instead, for each
candidate item,S just sends a message to therelevantex-
ternal SP, which will perform the actual replica allocation
at some MH within its region. Givendataid, the relevant
external SP is the correspondingSPid in LSuggest. Just as
S suggests external SPs to replicate items, the external SPs
also suggestS to replicate items that have been accessed
at these external SPs by the MHs ofS’s region. We shall
henceforth refer to the list of items, for whichS needs to
allocate replicas, asRep. Thus,Rep comprises two types
of items: (a) items that are stored at the MHs within its own
regionR (i.e., internal items) (b) items which are stored at
MHs outsideR (i.e., external items). External items are
recommended toS by the other (external) SPs.

The AReL algorithm

Each SP performs replica allocation within the region that
it covers.Periodically, each MH sends its current (x,y) co-
ordinates, its revenue valueω, the prices of items stored at
itself, its load, energy and available memory space status to
the corresponding SP in its region. SP collates the (x,y) co-
ordinate information of all the MHs in its region to estimate
the network topology during the time of replica allocation.

Figure 1 depicts the AREL replication algorithm, which
is executed by a given SPS for allocating replicas at MHs



within its own region. The listRep in Figure 1 comprises
items that are candidates for replica allocation byS. Line 1
of Figure 1 indicates that AREL allocates replicas starting
from the highest-priced data item, thus preferring higher-
priced items since these items have higher importance.

Algorithm AReL
Rep: List of data items that are candidates for replication

(1) Sort data items inRep in descending order ofρ

(2) for each data itemd in Rep

(3) FLAG R = FALSE

(4) Identify listLA of MHs which have recently accessedd

(5) for each MHM in LA

(6) Compute the no.φ of M ’s 1-hop neighbours that accessedd

(7) Sort the MHs in descending order ofφ into a listLB

(8) while (FLAG R != TRUE)

(9) for each MHM in LB

(10) AddM and its 1-hop neighbours to a listLC

(11) Delete MHs with inadequate memory space fromLC

(12) Delete MHs with low remaining energy fromLC

(13) Delete overloaded MHs fromLC

(14) Delete MHs with low probability of availability fromLC

(15) if ( LC is not an empty list )

(16) FromLC , select the MH with lowestλ for storing the

replica ofd

(17) Delete all entries fromLA, LB andLC

(18) Recomputeρ of d /* ρ depends on number of replicas */

(19) FLAG R = TRUE

(20) break

end

Figure 1: AReL replica allocation algorithm

Lines 4-7 indicate thatS identifies MHs that have re-
cently accessed a given data itemd. Among these MHs,
it tries to replicated starting from the MHM , which has
maximum number of 1-hop neighbours that have accessed
d or at one ofM ’s 1-hop neighbours. (S knows the 1-hop
neighbours ofM due to its knowledge of network topol-
ogy.) This facilitates bringingd nearer to the origin of most
of the requests ford, which is in consonance with EcoRep’s
objective of serving the maximum possible number of MHs
in a fair manner. Line 10 shows that we also consider the
1-hop neighbours ofM sinceM may not have adequate
available memory space and/or remaining energy.

From Lines 11-14 observe how thatS performs replica
allocation based on constraints such as available memory
space at the MHs, energy, load status of the MHs and the
probability of availability of the MHs. (SP is able to es-
timate probability of availability of an MH by maintain-
ing availability information about the MH over a period
of time.) In particular, AREL avoids replica allocation at
overloaded MHs (see Line 13) primarily because such MHs
would not be able to provide good service due to their large
job queues, which would force queries to incur long wait-
ing times and consequently, higher response times.

Line 16 of Figure 1 indicates that AReL allocates repli-
cas of relatively higher-priced data items to MHs with low
values ofλ. This facilitates both revenue-balance and load-
balance since low value ofλ implies relatively lower MH
revenue and lower MH load. Revenue-balancing becomes
a necessity because gross imbalance of revenues across
MHs may result in undesirably low revenues for some of
the MHs, which could potentially prevent them from ob-
taining their desired services (i.e., issuing access requests)
from the network. This would decrease the overall partici-
pation in the M-P2P network, which is undesirable. On the
other hand, load-balancing is required to optimize query
response times by preventing queries from incurring long
waiting times in the job queues of overloaded MHs.

In Line 18 of Figure 1, the priceρ of a data itemd is re-
computed after replica allocation sinceρ depends upon the
number of existing replicas. If there is still some available
memory space at some MHs after the AReL algorithm has
been executed for all the candidate data items for replica-
tion, the algorithm is executed multiple times until none of
the MHs have adequate memory space for storing replicas.

5 Performance Evaluation

Our experiments considerfive different regions. Each re-
gion has 50 MHs and 1 SP. MHs in each region move ac-
cording to theRandom waypoint model[2] within the re-
gion. Each region’s area is 1000 metre×1000 metre. The
Random Waypoint Modelis appropriate for our application
scenarios, which consider random movement of users. As a
single instance, tourists in a shopping mall generally move
randomly i.e., they do not follow any specific mobility pat-
tern. SPs move within their respective regions. SPs are able
to communicate with each other. Each region contains 200
data items that are uniformly distributed among 50 MHs
i.e., each MH owns 4 data items. Each query is a request
for either a local data item or a remote one. We had per-
formed experiments with different percentages of remote
and local queries, the results indicating increasing queryre-
sponse times with increasing percentage of remote queries.
Since the results exhibited similar trends, here we present
the results of experiments in which 60% of the queries were
remote ones, while the other 40% were local queries.

Periodically, everyTP seconds, SP decides whether
to perform replica allocation. Network topology doesnot
change significantly during replica allocation since it re-
quires only a few seconds [9]. In all our experiments, 20
queries/second are issued in the network, the number of
queries directed to each MH being determined by the Zipf
distribution. Communication range of all MHs (except SP)
is a circle of 100 metre radius. Table 3 summarizes the
parameters used in our performance evaluation.

Performance metrics areaverage response time(ART )
of a query,data availability (DA) and traffic (TR) for



Parameter Default value Variations

No. of MHs (NMH ) 50 10, 20, 30, 40

Zipf factor (ZF) 0.9 0.1, 0.3, 0.5, 0.7

Allocation periodTP (102 s) 2 1, 3, 4, 5, 6

Queries/second 20

Bandwidth between MHs 28 Kbps to 100 Kbps

Probability of MH availability 50% to 85%

MH service capacity 1 to 5 service capacity units

Size of a data item 50 Kb to 350 Kb

Memory space of each MH 1 MB to 1.5 MB

Speed of an MH 1 metre/s to 10 metres/s

Size of message headers 220 bytes

Table 3: Performance Study Parameters

replica allocation. We compute ART as follows:

ART = (1/NQ)

NQ∑

i=1

(Tf − Ti) (7)

whereTi is the time of query issuing,Tf is time of the
query result reaching the query issuing MH, andNQ is the
total number of queries.DA is computed as follows:

DA = ( NS/NQ ) × 100 (8)

whereNS is the number of queries that were answered
successfully andNQ is the total number of queries. Each
query has a ‘hops-to-live’ i.e., queries that are not answered
within n hops are dropped. Preliminary results of our ex-
periments indicated thatn = 4 is a reasonable value for our
application scenarios. We define TR as the total hop-count
for replica allocation during the course of the experiment.

As reference, we adapt theE-DCG+ approach [9] (dis-
cussed in Section 2) to our scenario. Notably, the E-DCG+
approach is the closest to our scheme since it addressesdy-
namic replica allocation in M-P2P environments. More-
over, none of the proposals on economic issues addresses
dynamicreplica allocation in M-P2P networks. E-DCG+ is
executed at every replica allocation period. As a baseline,
we also compare our proposed AReL algorithm with an
approachNoRep, which does not perform replica alloca-
tion. Incidentally, AReL showed comparable performance
for different values ofλ, hence we present here the results
of AReL corresponding to equal weight for both revenue
and load (i.e.,λ = R + L, as discussed in Section 4).

Effect of fair replica allocation

We conducted an experiment to observe the number of
replicas created by AReL and E-DCG+ for a single ‘hot’
data itemd over a period of time. This data item was se-
lected randomly from the top 10% hottest data items. Fig-
ure 2a depicts the results. For both AReL and E-DCG+,
the number of replicas ofd increases over time since more
MHs start participating in providing service. However, the
number of replicas does not increase indefinitely over time

and eventually plateaus after some time due to competi-
tion among replicas for MH memory space. AReL cre-
ates more replicas ofd than E-DCG+ because AReL’s eco-
nomic model encourages more MHs to participate in stor-
ing replicas, hence total available memory space and avail-
able bandwidth are more for AReL than for E-DCG+.
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0

40

80

120

160

10 20 30

A
R

T
 (

s
)

V

AReL
E-DCG+

NoRep

(a) Average Query Response Time

20

60

100

10 20 30

D
A

V

AReL
E-DCG+

NoRep

(b) Data Availability

Figure 3: Effect of revenue threshold

Figure 2b indicates the average number of hop-counts
required for querying the same data itemd during differ-
ent periods of time. These results were averaged over a
total of 1200 queries. Initially, before replica allocation
had been performed, all three approaches required compa-
rable number of hops for queryingd. After replica alloca-
tion has been performed, AReL requires lower number of
hops than E-DCG+ to answer queries ond since AReL cre-
ates more replicas ford, as discussed for Figure 2a. More
replicas generally decrease the querying hop-count since it
increases the likelihood of queries being answered within
lower number of hops. Observe that E-DCG+ requires
lower number of querying hop-counts than NoRep essen-
tially due to replication.



40

80

120

160

4 8 12 16 20

A
R

T
 (

s
)

No. of queries (103)

AReL
E-DCG+

NoRep

(a) Average Query Response Time

20

60

100

4 8 12 16 20

D
A

No. of queries (103)

AReL
E-DCG+

NoRep

(b) Data Availability

1

2

3

4

4 8 12 16 20

T
R

 (
1

04
)

No. of queries (103)

AReL
E-DCG+

NoRep

(c) Replica Allocation Traffic
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Figure 5: Effect of variations in the workload skew

Effect of variations in the number of MHs above thresh-
old revenue

Threshold revenueγ is defined as the ratio of the total rev-
enue of the system to the total number of MHs. In other
words,γ is the average revenue in the system. Figure 3
depicts the results concerning the effect of variations in the
number of MHs aboveγ. In Figure 3, the ‘V’ on the x-axis
refers to the ‘number of MHs above the threshold revenue
γ’. The results indicate that when the revenue of more MHs
exceedγ, ART decreases and data availability increases.
This is due to more MHs participating in providing service
as MH revenues increase, thereby implying more oppor-
tunities for replication, more memory space and available
bandwidth, and multiple paths for locating a replica. E-
DCG+ and NoRep show relatively constant ART and DA
as these approaches are independent of revenue. AReL out-
performs the reference approaches due to the reasons ex-
plained for Figure 2 i.e., larger number of replicas owing to
more MHs providing service in case of AReL.

Performance of AReL

We conducted an experiment using default values of the pa-
rameters in Table 3. Figure 4 depicts the results, which can
be explained partly by the reasons discussed for Figures 2

and 3. Additionally, AReL creates larger number of repli-
cas for many different data items depending upon data item
prices. Thus, AReL would create a replica for a data item
d, which is accessed by a large number of MHs, even if
d’s total access frequency is low, in which case E-DCG+
would not create any replica. Furthermore, AReL allo-
cates replicas only to underloaded MHs, while it is possible
for E-DCG+ to allocate replicas to overloaded MHs. The
performance gap between AReL and E-DCG+ keeps in-
creasing over time due to to more MH participation in case
of AReL. Incidentally, during replica allocation, E-DCG+
requires every MH to broadcast its RWR values to every
MH, thereby incurring O(N2

MH ) messages, while AReL re-
quires each MH to send only one message to SP and SP to
send a message to each MH, thus incurring O(NMH ) mes-
sages, which explains the results in Figure 4c.

Effect of variations in the workload skew

Figure 5 depicts the results when the zipf factor (ZF) is
varied. For high ZF values (i.e., high skew), AReL and
E-DCG+ perform better in terms of ART and DA due to
more replica allocations in response to load-imbalance con-
ditions. The performance gap between AReL and E-DCG+
decreases with decreasing skew since lowly skewed work-
loads do not require replica allocations. AReL outperforms
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E-DCG+ and NoRep due to the reasons explained for Fig-
ures 2, 3 and 4. The explanation for Figure 5c is essentially
similar to that of Figure 4c.

Effect of variations in the replica allocation period

Recall that everyTP seconds, SP decides whether to allo-
cate replicas. Figure 6 depicts the results of varyingTP .
At lower values ofTP , more number of replica allocation
periods occur, hence load imbalances are corrected quickly
in response to changing access patterns, thereby improv-
ing ART and DA for both AReL and E-DCG+. AsTP
increases, load imbalances are corrected less frequently,
hence performance degrades for both AReL and E-DCG+.
For NoRep, ART and DA remain relatively constant be-
cause they depend only upon probability of MH availabil-
ity. The explanation for the results in Figure 6c is essen-
tially similar to that of Figure 4c. In particular, replica al-
location traffic decreases dramatically with increasingTP
due to decreased number of replica allocation periods.

Effect of variations in the number of MHs

To test AReL’s scalability, we varied the numberNMH of
MHs, keeping the number of queries proportional toNMH .
Figure 7 depicts the results. At high values ofNMH , AReL

outperforms E-DCG+ due to the reasons explained for Fig-
ures 2, 3 and 4. AsNMH decreases, the performance gap
decreases due to limited replication opportunities. Replica
allocation traffic for E-DCG+ dramatically decreases with
decreasingNMH due to reduced broadcast traffic.
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Discouraging free-riding

Figure 8 depicts the percentage of service providers for
AReL in the M-P2P network during different time periods.



An MH is regarded as a service provider during a time pe-
riodT if it stores a data item/replica that is accessed at least
once duringT . Initially, the MHs have little revenue, but
as more queries are issued, MH revenues increase, thereby
increasing MH participation levels upto the point where the
majority of the MHs are providing service to the network
essentially due to AReL’s economic replication model.

6 Conclusion
We have proposed EcoRep, which is a novel economic dy-
namic replica allocation model for improving the typically
limited data availability of M-P2P networks. EcoRep al-
locates replicas based on a data item’s relative importance,
which is quantified by the data item’sprice. EcoRep en-
sures fair replica allocation by considering the origin of
queries for data items. EcoRep requires a query issuing
user to pay the price of his requested data item to the user
serving his request, which discourages free-riding. EcoRep
also considers load, energy and network topology as repli-
cation criteria. Our performance study demonstrates that
EcoRep is indeed effective in improving query response
times and data availability in M-P2P networks.
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